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Abstract. Modern medical vocabularies can contain up to hundreds of
thousands of concepts. In any particular use-case only a small fraction of
these will be needed. In this paper we first define two notions of a disease-
centric subdomain of a large ontology. We then explore two methods for
identifying disease-centric subdomains of such large medical vocabular-
ies. The first method is based on lexically querying the ontology with an
iteratively extended set of seed queries. The second method is based on
manual mapping between concepts from a medical guideline document
and ontology concepts. Both methods include concept-expansion over
subsumption and equality relations. We use both methods to determine
a breast-cancer-centric subdomain of the SNOMED CT ontology. Our
experiments show that the two methods produce a considerable overlap,
but they also yield a large degree of complementarity, with interesting
differences between the sets of concepts that they return. Analysis of the
results reveals strengths and weaknesses of the different methods.

Keywords: identifying ontology subdomain, disease related concepts,
ontology subsetting, mapping medical terminologies, seed queries, med-
ical guidelines.

1 Introduction

Large medical ontologies such as SNOMED CT 1 contain hundreds of thousands
of clinical concepts usually organized in a hierarchy and interconnected by do-
main specific relations, together representing the explicit semantic knowledge
describing a medical field. Such knowledge can be of great help when developing
intelligent clinical decision support systems that focus on reasoning about pa-
tient data within a certain disease domain. A disease-specific, richly annotated
1 http://www.ihtsdo.org/snomed-ct/
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semantic subdomain is also an important element in the process of overcoming
the frequent problem of lexical heterogeneity between the concepts occurring in
the patient data and those from the applicable clinical guidelines. However, iden-
tifying a disease-centric subdomain of a large medical ontology is not a trivial
task. The relevant concepts are seldom to be found under one sub-branch of the
ontology, instead they are usually scattered in various branches representing dif-
ferent facets of the domain coverage, e.g. clinical findings, procedures, anatomic
regions, etc.

In this paper we describe a study on the identification of SNOMED CT con-
cepts related to breast cancer. We compare results of two different methods: (i)
The seed query method from [1] was used for extraction of concepts that are
unique to breast cancer. (ii) The so-called guideline-based method, consisting of
a manual mapping between SNOMED CT concepts and the important concepts
from the Dutch national breast cancer guidelines, was used for the identification
of those concepts that are relevant with respect to breast cancer.

Our experiments show that the two methods produce a considerable overlap,
but they also yield a large degree of complementarity, with interesting differ-
ences between the sets of concepts that they return. The size of the identified
subdomains is considerably smaller than that of the whole medical ontology (be-
tween 0.1%-1%), making the reasoning as well as the maintenance task of such
subdomain much more feasible.

The paper is structured as follows: Section 2 introduces different notions of rel-
evancy in subdomains of a medical ontology, and puts forward the main hypothe-
sis of the paper. Section 3 and 4 introduce our two different subdomain-selection
methods: the seed query method in section 3 and the guideline-based method in
section 4. Section 5 compares and analyses the results. Section 6 presents related
work. Section 7 summarizes the findings and presents the concluding remarks.

2 Two Types of Disease-Centric Subdomains

Before investigating methods for identifying disease-centric subdomains from a
large ontology, we must first define what we mean by such a subdomain. For the
purpose of this paper we will set our own definitions. Presented below methods
are not based on any *a priori* modularization of the ontology, but they identify
subdomains that are specific for any particular use of a vocabulary.

Definitions: We distinguish two kinds of disease-centric subdomains, namely
relevant subdomains and key subdomains, which consist of relevant concepts and
key concepts respectively. The notions of “relevant concepts” and “key concepts”
are each defined as follows:

Relevant concept: A concept C is a relevant concept for a disease D if clin-
ical guidelines for D state that it influences a decision on the diagnosis or
treatment of D.
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An example of a concept that is relevant to breast cancer is “pregnancy”:
datasources about breast cancer (such as guidelines, patient-records, textbooks,
etc) often contain the concept “pregnancy” because certain treatments (e.g.
chemotherapies) are ruled out for pregnant women.

However, the converse is not the case: not any document containing the con-
cept “pregnancy” is likely to be about breast cancer. To capture this, we define
a second notion:

Key concept: A concept C is a key concept2 for a disease D if the occurrence
of C in a datasource S means that S is conclusively about D.

An example is the concept “malignant neoplasm of breast”. Any key concept is
of course a relevant concept, but not vice versa.

Hypothesis: Our hypothesis is that the seed query method (described in section
3), when seeded properly, will identify only key concepts, while the manual
guideline-based method (described in section 4) will identify relevant concepts.
From the above definitions, this hypothesis also implies that the seed query
results should be contained in the guideline-based results.

Choice of dataset: In this paper, we focus on breast cancer as our clinical domain
both because of its prevalence and the highly progressed state-of-the-art in di-
agnoses and treatment, which is expected to involve a relatively rich vocabulary
and thus presents an interesting use-case. We concentrate on SNOMED CT as
our main ontology, mainly because of its high adoption and a broad clinical cov-
erage, containing more than 300.000 concepts. Besides applying both methods to
the breast cancer domain in SNOMED CT, we also apply the seed query method
to three other very large ontologies, namely to NCI, MeSH and ICD10. We do
this to verify the consistency of our results. The precise use of these ontologies is
described in next section. Also applying the manual guideline-method to these
ontologies would have been prohibitively expensive.

3 Seed Query Method to Find Key Concepts

Method. The seed query method, originally published in [1], is a combination of
a lexical and a structural approach.

It takes a list of combinations of some of key concepts (the so-called “seed
queries”), which serve as prior knowledge, to find an initial set of domain spe-
cific, in this case breast cancer related concepts through lexical mapping to the
concepts in the ontology. This set is then expanded through the hierarchical
structure of the ontology, and through the structure of UMLS (Unified Medical
Language System3) metathesaurus. Given a set of seed queries, the process is
completely automatic, ensuring repeatability of the extraction. It also allows for
gradual improvement by adjusting the initial set of seed queries.
2 ”key” is inspired by the database notion of the same name
3 http://www.nlm.nih.gov/research/umls/

http://www.nlm.nih.gov/research/umls/
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In more detail, the seed query method proceeds in three steps: (i) Query
matching which uses the concept’s names, (ii) Subconcept expansion based on
the hierarchical structure of the ontologies, and (iii) UMLS expansion which
uses the UMLS metathesaurus. The three steps in this method are sequential,
increasing the set incrementally, each step produces set of concepts which is
passed as input to the next step. The third step produces the final result of the
method. Next, we elaborate each of the steps, and also present it as a pseudo-
code algorithm.

Query matching uses a list of seed queries to find concepts from the subdomain
by trying to lexically match the queries to each concept from the ontology. The
lexical match was not sensitive to letter capitalization, and in addition, Porter’s
stemmer algorithm [11] was used to normalize the words before comparison. Such
queries consist of keywords or combinations of keywords which are specific to the
subdomain, and when a concept lexically matches to some of these queries, it can
be considered part of the subdomain. The algorithm for query matching is shown
in Figure 1. It is applied on each of the four candidate ontologies separately.

Subconcept expansion expands the set of concepts produced in the first step by
including their subconcepts. Each ontology generally organizes the concepts in a
hierarchy through IS-A relations among them (e.g. Breast cancer IS-A Cancer).
These relations were used to find all the subconcepts of the concepts found
in the first step. This process was done exhaustively, transitively adding the
subconcepts of the newly found concepts as well, until no new concepts could
be added. The algorithm for subconcept expansion is shown in Figure 2. It is
separately applied on each set obtained in the first step.

UMLS expansion uses UMLS to further increase the set produced in the second
step. UMLS assigns a unique identifier to every concept from every ontology
integrated in it, and if two concepts have the same identifier then they mean
the same thing. Suppose two arbitrary concepts A1 and A2 from two ontologies
ONT1 and ONT2 respectively, are assigned the same identifier in UMLS. Now, if
A1 is found as key concept in the first two steps for the ontology ONT1 and A2

is not found as key concept for the ontology ONT2 in the first two steps, then
A2 can be added as a key concept for the ontology ONT2, thus expanding the
set of key concepts for the ontology ONT2. This way of expanding the sets of
key concepts is the third step of the method. It is done exhaustively, for every
concept and every pair of ontologies used in the experiment. The algorithm for
UMLS expansion is given in Figure 3. It is applied on the four sets of key concepts
obtained in the second step.

Results. The breast cancer-centric subdomain of SNOMED CT (containing only
key concepts for breast cancer) was extracted using the method described above.

We seeded the method with a hand-crafted list of breast cancer seed queries,
shown in Table 1. After starting with a small number of key concepts, and
iteratively adding seeds, we observed that after a small number of concepts the
results stabilise, and no longer grow when adding further key concepts as seeds.
This process has up to now been informal, and would merit a more detailed
study in its own right.
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The resulting set of matched concepts is empty in the beginning
1 subdomain := ∅

Lexically matching the concepts from the ontology to the query list
2 for each query Q ∈ list of queries do

3 for each concept C ∈ CONT do
4 if LexicalMatch(C, Q) and C /∈ subdomain then
5 subdomain := subdomain ∪ {C}

Fig. 1. Step one: Query matching

Add all the subconcepts to the concepts in subdomain
1 while adding new concepts in subdomain is possible repeat
2 for each concept X ∈ subdomain do

3 for each concept Y ∈ CONT do
4 if Y ⊆ X and Y /∈ subdomain then
5 subdomain := subdomain ∪ {Y }

Fig. 2. Step two: subconcept-based expansion

Expanding each of 4 result sets through UMLS
1 for any ONTp, ONTq ∈ {SNOMED CT, NCI, MeSH, ICD10} , where p �= q do
2 for each concept X ∈ subdomainp do
3 for each concept Y ∈ subdomainq do
4 if UMLS : X ≡ Y and Y /∈ subdomainp then
5 subdomainp := subdomainp ∪ {Y }

Fig. 3. Step three: UMLS-based expansion

Besides SNOMED CT, the method was applied on three other ontologies:
NCI4 - a vocabulary for annotating medical documents primarily cancer related,
MeSH5 - a vocabulary for scientific literature annotation and ICD106 - a classifi-
cation of diseases. The ontologies were used as extracted from the UMLS 2008AA
version.

The results of applying the seed query method are shown in Table 2. The
table shows that only a fraction of the entire ontology (much less than 1%) are
key concepts for a disease such as breast cancer. It also shows that most of
the results are actually found in the first phase. This is reasonable: most of the
concepts are very specialized and are hence leafs in the ontologies. Finally, it is
interesting to see that the most specialised ontology (the oncology-specific NCI)
has the highest hit-rate of key concepts, and the most general and wide ranging
ontologies (MeSH and SNOMED CT) have the lowest hit-rates.

4 http://nciterms.nci.nih.gov
5 http://www.nlm.nih.gov/mesh
6 http://www.ahima.org/icd10

http://nciterms.nci.nih.gov
http://www.nlm.nih.gov/mesh
http://www.ahima.org/icd10
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Table 1. Seed queries used to extract the breast cancer subdomain

1. Breast cancer
2. Breast carcinoma
3. Microcalcification
4. Mammary carcinoma
5. Lobular carcinoma
6. Ductal carcinoma
7. Mastectomy
8. Paget breast
9. HER2/neu

10. HER-2
11. BRCA

Table 2. Results of applying the seed query method on the four ontologies: incremental
results are reported after each step (full method = after step 3)

Ontology size of number of concepts extracted % of
ontology after step 1 after step 2 after step 3 full ontology

SNOMED 308,677 198 271 279 0.09%

NCI 62,969 358 388 399 0.63%

MeSH 282,425 105 120 129 0.05%

ICD10 11,529 5 5 12 0.10%

4 Mapping of Guidelines to Find Relevant Concepts

In this method, we used clinical guidelines a source of information about domain
related concepts, in order to identify a disease-centric subdomain of an ontology.
Medical guidelines describe recommendations and conclusions regarding proper
treatment based on scientific evidence. They aim to reduce the growing gap be-
tween knowledge and the actual practice. In our research, we used breast cancer
guideline developed by the joint initiative of the Dutch Institute for Health care
Improvement (CBO) [3].

From formalised models of the guideline [8] we extracted the names of all
treatment plans, as well as all parameters describing patient data and their
possible values in case of enumerated types. The parameters either specify plan
preconditions and intentions or data that can be requested from external sources
during guidelines execution. We mapped extracted concepts manually and had
it verified by medical expert. Then we used the obtained mapping as a gold
standard to compare with the results which could be produced by automatic
mapping tool, the MetaMap [2].

Practical experiences with manual mapping. The main challenges of mapping
concepts extracted from the guidelines to SNOMED CT concepts were search-
ing among the hundreds of thousands of SNOMED CT concepts for the equiv-
alences. Mapping required understanding the meaning of concepts used in the
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guidelines and knowing the exact context where they were used. After the ini-
tial mappings were identified, we consulted with our clinical expert and made
adjustments where necessary. Below we illustrate some of the difficulties which
we encountered.

In many cases guidelines and SNOMED CT use different terminology to ex-
press the same information. ’Axillary-node-dissection-proper’ used in the guide-
lines and ’Excision of axillary lymph node’ defined in SNOMED CT are an
example of such case. Finding corresponding concepts was done using key words
or using synonyms found in medical dictionaries. In cases where both approaches
failed, we checked the context in the guidelines or looked for an explanation of
concepts in other resources. This applied in the case of abbreviations as well as
full phrases.

On the other hand finding an exact lexical match can be sometimes mislead-
ing. Such a situation was encountered when the plan ’Mastectomy’ was ana-
lyzed. In the guidelines it covers the plan ’Mastectomy-proper’ and also other
procedures such as ’Radiotherapy-chest-wall’ and ’Breast-reconstruction’. Hence
the plan ’Mastectomy-proper’ rather than ’Mastectomy’ should be mapped to
the SNOMED CT concept ’Mastectomy’. Therefore knowing the context was
necessary.

Differences in granularity and abstraction level caused most of the missing
matches. This issue appears mostly in the case of multiterms concepts, which
are commonly used in the guidelines. Examples of such compound concepts are
therapy + drug e.g. anthracycline-chemotherapy-manual, or therapy + drug
+ number of repetition e.g. six-courses-anthracycline-chemotherapy. Multiterms
concepts are also used to define the intentions of therapies, for example
’elimination-distant-metastases’. Such specific concepts turned out to be very
unlikely to be found in SNOMED CT ontology.

In a few cases even the large SNOMED CT ontology is not expanded enough
yet. For example, SNOMED CT contains no concept corresponding to the pa-
rameter ’patient-prefers-bct’, describing the patients preference of breast con-
serving treatment over mastectomy.

All these points above show that the method of obtaining relevant subdomains
by mapping from guidelines is essentially a manual operation that cannot easily
be automated. Results of manual mapping are significantly better, our early
work in this domain ([12]) also corroborate this.

Results of the manual mapping. We found around 60 exact matches (matches
with the same meaning but not necessarily the same name) out of all 150 pa-
rameters extracted from the guidelines. In the case of treatment procedures,
we found around 40 exact matches out 190 procedures, and 40 matches, where
SNOMED CT concepts have a close but more general meaning. The missing
matches are caused by the reasons mentioned above.

Benchmark against MetaMap. In order to verify that manual mapping is indeed
necessary we tested the applicability of MetaMap tool for the purpose of our
research. MetaMap is a program developed at the National Library of Medicine
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to map biomedical text to the Metathesaurus [2]. It combines computational
linguistic techniques with symbolic, natural language processing. MetaMap per-
forms mapping in five main steps:

1. Parsing. The entire text is parsed, and divided into simple phrases using
the SPECIALIST minimal commitment parser [9] which produces a shallow
syntactic analysis of the text.

2. Variant Generation. In second step for each phrase are generated variants, us-
ing SPECIALIS lexicon and a database of synonyms, including all acronyms,
synonyms, derivational and spelling variants of the given phrase.

3. Candidate Retrieval. Further the algorithm retrieves the set of all Metathe-
saurus strings, containing at least one of the variants.

4. Candidate Evaluation. Retrieved candidates from Metathesaurus are used to
generate the mappings, which are evaluated using a linguistically principled
evaluation function consisting of a weighted average of metrics measuring
centrality, variation, coverage and cohesiveness. Then the list is ordered ac-
cording to calculated scores.

5. Mapping Construction. Final mapping are constructed by combining candi-
dates involved in disjoint parts of the phrases, and evaluated using the same
scoring function. The mapping with the highest score is the best proposal of
MetaMap.

We tested MetaMap on the same set of parameters and treatment plans ex-
tracted from the Breast Cancer guidelines. We compared the results with the
results obtained by the manual mapping experiment. For each concept extracted
from the guidelines, we checked whether its corresponding SNOMED CT con-
cept, identified during manual mapping, is in the list of candidates proposed
by MetaMap. In order to avoid ambiguity, and include equivalent mapping of
different synonyms, we used for the comparison UMLS identifiers instead of con-
cept names. It was possible due to the fact that SNOMED CT is included in
the UMLS Metathesaurus. We tried different settings options to gain the deeper
insight of MetaMap possibilities, including ’Term processing’ and ’Ignore stop
phrases’. In ’Term processing’ mode input text is not divide into simple phrases
but considered as a whole, which seems to be more adequate in the case of
mapping concepts, which are most commonly multiword concepts.

The biggest overlap between the results produced by these two different map-
ping methods contains 30 out of 190 treatment plans and 16 out of 150 param-
eters. It was obtained using ’Term processing’ mode. When for the comparison
were used only the best candidates of MetaMap algorithm, then the numbers of
exactly the same mappings decreased to 22 and 14 in case of plans and param-
eters respectively. Obtained results are summarized in table 3.

The major reason for differences in obtained mapping result are different
strategies used for dealing with multiterms concepts. MetaMap proposes list
of individually mapped Metathesaurus concepts, whereas we were aiming for
finding a single corresponding concept with the closest meaning. For example
MetaMap suggests for the concept ’Tumour negative excision margins’ follow-
ing mapping : ’Tumor excision NOS’, ’Negative’, ’Margin (Marginal)’. Manual



58 K. Milian et al.

Table 3. Comparison of results of identified SNOMED CT concepts obtained using
different mapping strategies

Mapping strategy Identified parameters Identified plans

MetaMap (all) 16 (10%) 30 (15%)
MetaMap (first) 14 (9%) 22 (12%)

Manual 60 (40%) 80 (41%)

browsing of the ontology and awareness of the application context let us iden-
tify the actual corresponding SNOMED CT concept ’Breast surgical margin not
involved by tumour’. Automatic identification of such lexically unrelated con-
cepts could be possible if for example SNOMED CT contained rich enough list
of synonyms.

Results obtained using MetaMap, 15% of plans, and 10% of parameters cor-
rectly mapped to single corresponding concepts, clearly show that using mapping
tools, which focus on lexical matching, is not sufficient in case of text composed
using non-standard terminology, as that provided by SNOMED CT. It confirms
our concern that manual mapping is necessary manual exercise in such case.

The set of identified SNOMED CT concepts, obtained by mapping guidelines
concepts will be further expanded as described below.

Results of the expansion steps. In section 3, seed queries were used for the lex-
ically querying for matching concepts. In the guideline-based method, this step
is performed more semantically, namely by manually mapping the parameters
and procedures of the guideline. In both cases, this first step is followed by
subconcept-based expansion (transitively including all subsuming concepts, fig.
2) and UMLS expansion (using UMLS to include equivalent concepts, fig. 3).

Applying these two expansion steps to the results of the first manual map-
ping step resulted in an expansion from 140 to 2250 concepts. The two expan-
sion steps have a much bigger impact after the manual mapping (from 140 to
2250) than they have after the first step in the seed query method (from 198 to
279). This difference can be explained by the fact that the first step in the seed
query method returns mostly very specific SNOMED CT concepts that have
very few subconcepts, while the manual mapping also yielded concepts higher
in the SNOMED CT hierarchy.

However, also in the manual mapping case, the breast cancer-centric subdo-
main is again a very small fraction of the entire ontology, namely 0.73 % of the
full ontology (308.677 concepts).

5 Evaluation of the Two Methods

Our two methods for identifying breast cancer-centric subdomains provided
different results. The manual guideline-method found 2250 concepts, against
279 concepts found by the seed query method. Of these 279 concepts, 155 are
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279

2095

SNOMED CT

guideline

seed-query

155

124

2250

Fig. 4. Breast cancer subdomains identified using different approaches

also found by the guideline-method. The inclusion relations are summarised in
figure 4.

Unsurprisingly, all 2250 concepts found by the guideline-method are indeed
relevant concepts for the breast cancer-centric subdomain, in other words this
method has a high precision. This is unsurprising because all concepts are either
direct mappings from parameters or procedures in the recommendations of a
national breast cancer guideline, or are subconcepts of these concepts.

More interestingly, manual inspection of the 279 seed query results shows that
this method has a near perfect precision (i.e. all the concepts it finds are indeed
key concepts for the breast cancer-centric subdomain). This confirms the main
hypothesis put forward in section 2.

The figure also shows that besides its high precision (finding only key con-
cepts), the seed query method has a rather low recall: it finds less than 10% of
the concepts found by guideline-method. This is to be expected since the seed
query method is tuned to find only key concepts (instead of finding all rele-
vant concepts). However, inspection of the 2095 concepts that are only found
by the guideline-method reveals that there are quite a few key concepts still
contained in that set. Hence, even when counting only key concepts, the seed
query method has no perfect recall. Examples of obvious concepts that we found
missing are “Breast surgical margin involved by tumor”, very detailed concepts
such “Metastasis in internal mammary lymph nodes with microscopic disease de-
tected by sentinel lymph node dissection but not clinically apparent” and quite
a few others.

Finally, and contrary to our prediction, the seed query results are not a subset
of the results from the guideline-method. In fact, well over 40% of all seed query
results (124) are not found by the guideline-method. Inspecting this set yielded
the following explanations for this falsification of our hypothesis:

Guidelines do not cover diagnostic concepts: The biggest part of concepts
in this group describe breast neoplasm in general, e.g. ’Carcinoma in situ of
female breast’. The guidelines are focused on recommendation for treatment of
already diagnosed breast cancer, which is malignant. Benign neoplasm is not
broadly discussed, since such concepts would be rather covered by diagnosis
guidelines.

Only the guidelines recommendations were used: Some of those concepts are
connected with breast cancer but are not included in the recommendations, the
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only part of the guidelines which was formalized. For example recommendation
do not mention treatment procedures for male breast cancer, whereas concepts
like ’Carcinoma in situ of male breast’ or ’Carcinoma in situ of areola of male
breast’ were identified by seed queries. Moreover guidelines predominantly focus
on ductal carcinoma as it is the most prevalent disease. Other types such as
lobular carcinoma were only mentioned marginally - and did not occur in the
formalized version.

The guidelines do not mention procedures that vary between hospitals: In The
Netherlands, some hospitals employ special oncology nurses for home care of
patients, others don’t. The national guidelines do not discuss procedures for
which there is an accepted high local variance between hospitals.

Between them, these reasons would remove a substantial part of the outly-
ing 124 concepts, although we are currently not able to determine the exact
number.

6 Related Work

Identification of a disease centric subdomain out of a large medical ontology
to some extent resembles the problem of ontology modularization [4] which is
applied in the context of combining existing ontologies by importing relevant
modules. While not exactly the same7, our notion of a subdomain can be com-
pared to the ontology module as defined in [4] and hence we consider the papers
presented below as related work.

Existing methods in the literature often rely on an a priori modularization of
the vocabularies. These are typically based on some notion of semantic distance,
or on the connectivity-graph of the ontology [6,13]. Such methods providing un-
customized modularization do not fulfill the requirement which we are aiming
to meet, identifying subdomains specific for a particular use of a vocabulary.
However, the methods which create partitioning of an ontology based on a given
signature can be an alternative to the presented here seed query method. We
will have a closer look to some of them. Generally, modularization techniques
are divided into prescriptive and analytic. In prescriptive approach, the user ex-
plicitly states what is in or outside of the module, which requires the changes in
the syntax and semantics of the language. In [4] one can find many arguments
against it. The authors stress the fact that consequently whole infrastructure,
OWL reasoners and parsers have to be changed as well. This approach leads
to the tight, non-standard solutions, which severely restricts the reusability by
other organization. Therefore we will focus on description of techniques based
on analytic approach, where ontologies are defined using standard syntax and
semantics of OWL, and ontology tools provide modularization services. In [4]
they are evaluated according to the aspect of module correctness (any inference
deduced from the module should be deduced from the original ontology), module

7 In our case, we do not impose all formal properties that a module has as it is not
necessary in our target application.
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completeness (a module should contain all relevant information, so the user can
not recognize that not whole ontology is imported) and module minimality ( a
module should be as small as possible).

One of analytic, ad hoc solution can be produced using PromptFactor algo-
rithm [10]. It extracts a fragment of an ontology, based on a given signature.
Created modules contain axioms that are mentioned in that signature and are
further expanded with other concepts mentioned in those axioms until a fixed
point is reached. The algorithm has been evaluated in [5], where authors prove
that it is not always complete and creates modules larger than those, created by
other algorithms that can guarantee completeness.

CEL and MEX are algorithms which work only with tractable fragments
of OWL, the EL family of DL. This restriction is not problematic in case of
SNOMED CT ontology, but NCI thesaurus and GALEN are beyond expressive-
ness of EL. The CEL reasoner [14] provides modularization technique based on
connected reachability. Reachability can be expressed by a graph, where nodes
are labeled with concepts from the ontology and edges are labeled with axioms.
The modules contain the concepts themselves and the concepts and axioms from
labels of connected nodes. They are guaranteed to be complete. MEX [7] can
be applied only for acyclic EL ontologies, it generates minimal modules, smaller
then other more generic algorithms.

Locality based algorithms are seen as most promising ones. Informally axiom
is local if it does not change the meaning of concepts if included in the module.
Changes of meaning are recognized differently according to the chosen locality
type, e.g. axiom is top-local for a class if it does not define a new subclass for
the concept. Basing on the application one can choose top or bottom locality,
to be able to effectively generalize or refine set of identified axioms. Produced
modules are proven to be correct and complete and the empirical analysis de-
scribed in [5] attests the better approximation of minimal modules then other
known algorithms.

7 Summary and Conclusions

Summary. Medical vocabularies are typically very large, containing up to hun-
dreds of thousands of concepts. However, for any particular usage of such vo-
cabularies only a small fraction of the concepts will be needed. In our ex-
ample use-case, the breast cancer-centric subdomain of SNOMED CT is at
most 1% of all concepts in the ontology. This gives urgency to the question
of how to find such relevant subsets of concepts from potentially very large
vocabularies.

In this paper, we have investigated two methods for identifying such relevant
concepts. Our first method consisted of manually identifying a number of seed
queries, and performing a lexical search for all concepts whose lexical labels con-
tain any of the seed queries as a substring. All of the resulting concepts and their
subconcepts are then considered as relevant for the subdomain characterised by
the seed queries followed by the expansion phases.
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Our second method consisted of extracting concepts that appeared as a pa-
rameter or procedure in the recommendations of the Dutch national guideline
for the treatment of breast cancer. These concepts were mapped to SNOMED
CT concepts. We compared the results of manual mapping with those obtained
using MetaMap tool, which clearly showed that using automatic tool, which fo-
cus on lexical matching is not sufficient. This step was followed again by the two
expansion phases.

These methods differ from other approaches for the identification of relevant
subvocabularies that are based on any *a priori* modularization of the ontology,
but instead select sets of concepts that are specific for a particular use of a
vocabulary.

Conclusions. Our findings indicate that:
– the breast cancer-centric subdomain is indeed only a fraction (< 1%) of all

concepts in SNOMED CT
– the seed query method has a high precision, returning only key concepts
– the seed query method has a low recall for returning relevant concepts
– the guideline-method has a higher recall for relevant concepts while still

having a high precision for relevant (but possibly non-key) concepts.
– contrary to our prediction, not all key concepts are found by the guideline-

method. Close inspection yielded a number of reasons why this is the case
in our experiment:
• the guideline covers only procedures for treatment, hence misses diag-

nostic concepts
• we extracted our concepts only from the recommendations in the guide-

line, hence missing those concepts that only appear in the background
information

• the guideline does not mention procedures that vary between hospitals

Future Work. In future work, the validity of our conclusions should be tested
by running these experiments on other subdomains (e.g. different diseases), and
possibly using other methods to obtain a ”gold standard” (our gold standard
was obtained by manual extraction of all concepts from a national treatment
guideline).

Similarly, it would be interesting to apply the guideline-method to other doc-
uments such as patient-records to see if that would yield a very different set of
concepts.

More insight should be obtained in the correct choice for the seed concepts,
since obviously the method is sensitive to this. The apparent fixed-point be-
haviour of this method deserves further investigation, for example on the degree
of sensitivity to the initial set of query-concepts.

In addition we would like to take a closer look to various modularization algo-
rithms. It would be very interesting to compare modules produced by different
methods to learn more about their applicability for identifying disease specific
concepts.
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