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Identifying disease-critical cell types and 
cellular processes by integrating single-cell 
RNA-sequencing and human genetics

Karthik A. Jagadeesh    1,2,8  , Kushal K. Dey    1,2,8  , Daniel T. Montoro1, 
Rahul Mohan1, Steven Gazal    2, Jesse M. Engreitz    1,3,4, Ramnik J. Xavier    1, 
Alkes L. Price    1,2,5,9   and Aviv Regev    1,6,7,9 

Genome-wide association studies provide a powerful means of identifying 
loci and genes contributing to disease, but in many cases, the related cell 
types/states through which genes confer disease risk remain unknown. 
Deciphering such relationships is important for identifying pathogenic 
processes and developing therapeutics. In the present study, we introduce 
sc-linker, a framework for integrating single-cell RNA-sequencing, 
epigenomic SNP-to-gene maps and genome-wide association study 
summary statistics to infer the underlying cell types and processes by 
which genetic variants influence disease. The inferred disease enrichments 
recapitulated known biology and highlighted notable cell–disease 
relationships, including γ-aminobutyric acid-ergic neurons in major 
depressive disorder, a disease-dependent M-cell program in ulcerative 
colitis and a disease-specific complement cascade process in multiple 
sclerosis. In autoimmune disease, both healthy and disease-dependent 
immune cell-type programs were associated, whereas only 
disease-dependent epithelial cell programs were prominent, suggesting a 
role in disease response rather than initiation. Our framework provides a 
powerful approach for identifying the cell types and cellular processes by 
which genetic variants influence disease.

Genome-wide association studies (GWASs) have successfully identified 
thousands of disease-associated variants1–3, but the cellular mecha-
nisms through which these variants drive complex diseases and traits 
remain largely unknown. This is due to several challenges, including 
the difficulty of relating the approximately 95% of risk variants that 
reside in noncoding regulatory regions to the genes they regulate4–7 

and our limited knowledge of the specific cells and functional programs 
in which these genes are active8. Previous studies have linked traits to 
functional elements9–15 and to cell types using bulk RNA-sequencing 
(RNA-seq) profiles16–18. Considerable work remains to analyze cell types 
and states at finer resolutions across a breadth of tissues, incorpo-
rate disease tissue-specific gene expression patterns, model cellular 
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We analyzed a broad range of human scRNA-seq data, spanning 
17 datasets from 11 tissues and 6 disease conditions. The 11 nondisease 
tissues included blood/immune (peripheral blood mononuclear cells 
(PBMCs)26,42, cord blood27 and bone marrow27), brain28, kidney43, liver44, 
heart25, lung29, colon34, skin45 and adipose tissue44. The six disease con-
ditions included multiple sclerosis (MS, brain)46, Alzheimer’s disease 
(AD, brain)30, ulcerative colitis (UC, colon)34, asthma, lung47, idiopathic 
pulmonary fibrosis (IPF), lung29 and COVID-19, bronchoalveolar lav-
age fluid (BAL)48 (Extended Data Fig. 1). In total, the scRNA-seq data 
included 209 individuals, 1,602,614 cells and 256 annotated cell subsets 
(Methods and Supplementary Table 1). We also compiled publicly 
available GWAS summary statistics for 60 unique diseases and com-
plex traits (genetic correlation <0.9; average N = 297,000) (Methods 
and Supplementary Table 2). We analyzed gene programs from each 
scRNA-seq dataset together with each of 60 diseases and complex 
traits, but we primarily reported those that are most pertinent for 
each program.

Benchmarking the sc-linker
As a proof of principle, we benchmarked the sc-linker by analyzing 
five blood cell traits that biologically correspond to specific immune 
cell types (Supplementary Table 2) using immune cell-type programs 
constructed from scRNA-seq data (Fig. 2a,b and Extended Data Fig. 1). 
We constructed six immune cell-type programs that were identified 
across four datasets: two from PBMCs (k = 4,640 cells, n = 2 individu-
als26; k = 68,551, n = 8 (ref. 42)) and one each of cord blood27 (k = 263,828, 
n = 8) and bone marrow27 (k = 283,894, n = 8). We identified enrichment 
of erythroid cells for red blood cell count, megakaryocytes for platelet 
count, monocytes for monocyte count and B cells and T cells for lym-
phocyte percentage (Fig. 2d and Extended Data Fig. 2a); these enrich-
ments reflect known biological roles and have been reported in previous 
studies49,50, such that we refer to them as expected enrichments.

We defined a sensitivity/specificity index quantifying the presence 
of expected enrichments and absence of other enrichments (Methods). 
A limitation of this index is that other enrichments may be biologically 
real in some cases; thus, we also consider sensitivity to detect expected 
enrichments (Methods). The sc-linker outperformed the MAGMA39 
gene-set-level association method in terms of the sensitivity/specific-
ity index (Fig. 2c). Benchmarks on the sc-linker method, the choice of 
enhancer–gene-linking strategies and cell-type programs are included 
in Supplementary Note.

Distinguishing the cells involved in immune-related diseases
We next analyzed eleven autoimmune diseases (Supplementary Table 2) 
using the six immune cell-type programs above (Fig. 2a,b and Extended 
Data Fig. 1) and ten (intracell and intercell types) immune cellular 
process programs (Fig. 2f). (Enrichment results for the remaining 49 
diseases and traits with immune cell-type programs are reported in 
Extended Data Fig. 3; we did not construct disease-dependent pro-
grams, because these datasets included healthy samples only.) We 
identified cell-type-disease enrichments that conform to known dis-
ease biology (Fig. 2e and Extended Data Fig. 2b), including T cells for 
eczema51,52, B and T cells for primary biliary cirrhosis (PBC)18 and den-
dritic cells (DCs) and monocytes for AD53. In addition, the highly statis-
tically significant enrichments for MS across all six immune cell-type 
programs analyzed are consistent with previous analyses18,54–56, sup-
porting the validity of our approach.

Several of the significant cell-type-disease enrichments have 
limited literature support and may implicate previously unexplored 
biological mechanisms (Fig. 2e, Table 1 and Extended Data Fig. 2b). 
For example, we detected significant enrichment in B cells for UC; B 
cells have been detected in basal lymphoid aggregates in the UC in 
the colon, but their pathogenic significance remains unknown57. In 
addition, T cells were highly enriched for celiac disease, the top driving 
genes including ETS1 (ranked 1), associated with T cell development 

processes within and across cell types and leverage enhancer–gene 
links19–23 to improve power.

Single-cell RNA-seq (scRNA-seq) data provide a unique opportu-
nity to tackle these challenges24. Single-cell profiles allow the construc-
tion of multiple gene programs to more finely relate GWAS variants 
to function, including programs that reflect cell-type-specific signa-
tures25–28, disease-dependent signatures within cell types29,30 and key 
cellular processes that vary within and/or across cell types31. Initial stud-
ies have related single-cell profiles with human genetics in post-hoc 
analyses by mapping candidate genes from disease-associated genomic 
regions to cell types by their expression relative to other cell types32–34. 
More recent studies have begun to leverage genome-wide polygenic 
signals to map traits to cell types from single cells within the context of 
a single tissue35–37. However, focusing on a single tissue could, in prin-
ciple, result in misleading conclusions, because disease mechanisms 
span tissue types across the human body. For example, in the context 
of the colon, a neural gene associated with psychiatric disorders would 
appear highly specific to enteric neurons, but this cell population may 
no longer be strongly implicated when the analysis also includes cells 
from the human central nervous system38. Thus, there is a need for a 
principled method that combines human genetics and comprehensive 
scRNA-seq applied across multiple tissues and organs.

In the present study, we develop and apply sc-linker, an integrated 
framework to relate human disease and complex traits to cell types and 
cellular processes by integrating GWAS summary statistics, epigenom-
ics and scRNA-seq data from multiple tissue types, diseases, individuals 
and cells. Unlike previous studies, we analyze gene programs that rep-
resent different functional facets of cells, including discrete cell types, 
processes activated specifically in a cell type in disease and processes 
activated across cells irrespective of cell-type definitions (recovered by 
latent factor models). We transform gene programs to SNP annotations 
using tissue-specific enhancer–gene links19–23 in preference to standard 
gene window-based linking strategies used in existing gene-set enrich-
ment methods such as MAGMA39, RSS-E13 and linkage disequilibrium 
score regression (LDSC)-specifically expressed genes18. We then link 
SNP annotations to diseases by applying stratified LDSC11 (S-LDSC) 
using the baseline-LD model40,41 to the resulting SNP annotations. We 
further integrate cellular expression and GWAS to prioritize specific 
genes in the context of disease-critical gene programs, thus providing 
new insights into underlying disease mechanisms.

Results
Overview of sc-linker
We developed a framework to link gene programs derived from 
scRNA-seq with diseases and complex traits (Fig. 1a). First, we use 
scRNA-seq to construct gene programs, defined as continuous-valued 
gene sets, that characterize (1) individual cell types, (2) 
disease-dependent (disease versus healthy cells of the same type) or 
(3) cellular processes (cell cycling, endoplasmic reticulum stress). 
(The continuous values are on the probabilistic 0–1 scale but do not 
formally represent probabilities (Methods).) Then, we link the genes 
underlying these programs to SNPs that regulate them by incorporat-
ing two tissue-specific, enhancer–gene-linking strategies: Roadmap 
Enhancer-Gene Linking19–21 and the Activity-by-Contact (ABC) model22,23. 
Finally, we evaluate the disease informativeness of the resulting SNP 
annotations by applying S-LDSC11 conditional on a broad set of coding, 
conserved, regulatory and LD-related annotations from the baseline-LD 
model40,41. Altogether, our approach links diseases and traits with gene 
programs recapitulating cell types and cellular processes. We have 
released open-source software implementing the approach (sc-linker; 
see Code availability), a web interface for visualizing the results (Data 
availability) and postprocessed scRNA-seq data, gene programs, 
enhancer–gene-linking strategies and SNP annotations analyzed in 
the present study (Data availability). A more comprehensive overview 
is provided in Supplementary Note.
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and interleukin (IL)-2 signaling58, and CD28 (ranked 3), critical for T cell 
activation. This suggests that aberrant T cell maintenance and activa-
tion may impact inflammation in celiac disease. Recent reports of a 
permanent loss of resident γδ T cells in the celiac bowel and the sub-
sequent recruitment of inflammatory T cells may further support this 
hypothesis59. These results were recapitulated across an independent 
immune cell scRNA-seq dataset, in both the gene programs (average 
correlation: 0.78 for the same cell type) and the disease enrichments 
(0.86 correlation of the E-score over all cell-type and -trait pairs). A 
cross-trait analysis of the patterns of cell-type enrichments suggests 

that celiac disease and rheumatoid arthritis involve cell-mediated 
adaptive immune response, UC and PBC involve antibody-mediated 
adaptive immune response, AD has a strong signal of innate immune 
and MS and inflammatory bowel disease (IBD) involve contributions 
from a wide range of immune cell types (Extended Data Fig. 4).

Analyzing the ten immune cellular process programs (Fig. 2f) 
across the eleven immune-related diseases and five blood cell traits, 
we identified both disease-specific enrichments and others that shared 
across diseases (Fig. 2g and Table 1). For example, although T cells have 
been previously linked to eczema, we pinpointed higher enrichment 
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in CD4+ T cells compared with CD8+ T cells. The IL-2 signaling cellular 
process program in T and B cells was significantly enriched for both 
eczema and celiac disease, although the genes driving the enrich-
ment were not significantly overlapping (P = 0.21). In addition, the 
complement cascade cellular process program in plasma, B cells and 
hematopoietic stem cells was most highly enriched among all intercel-
lular programs for celiac disease. For AD, there was a strong enrich-
ment in both classic and nonclassic, monocyte intracell-type cellular 
programs, and in major histocompatibility complex class II (MHC-II) 
antigen presentation (intercell type: dendritic cells (DCs) and B cells) 
and prostaglandin biosynthesis (intercell type: monocytes, DCs, B 
cells and T cells) programs. Among the notable driver genes were IL7R 
(ranked 1) and NDFIP1 (ranked 3) for CD4+ T cells in eczema, which 
respectively play key roles in helper T cell 2 differentiation60,61 and in 
mediating peripheral CD4 T cell tolerance and allergic reactions62,63, 
and CD33 (ranked 1) in MHC-II antigen processing in AD, a microglial 
receptor strongly associated with increased risk in previous GWASs64,65.

Linking GABA-ergic and glutamatergic neurons to psychiatric 
disease
We next focused on brain cells and psychiatric disease, by analyz-
ing 9 cell-type programs (Fig. 3a) and 12 cell process programs  

(Fig. 3e; 10 intra- and 2 intercell-type programs) from scRNA-seq data 
of healthy brain prefrontal cortex (k = 73,191, n = 10)28 (Supplemen-
tary Table 1) with 11 psychiatric or neurological diseases and traits  
(Supplementary Table 2).

Notably, we observed enrichments of major depressive disorder 
(MDD) and body mass index (BMI) specifically in γ-aminobutyric acid 
(GABA)-ergic neurons, whereas insomnia, schizophrenia and intel-
ligence were highly enriched, specifically in glutamatergic neurons, 
and neuroticism was highly enriched in both. GABA-ergic neurons 
regulate the brain’s ability to control stress levels, which is the most 
prominent vulnerability factor in MDD66 (Fig. 3b,c, Table 1 and Extended 
Data Fig. 2c). Among the top genes driving this enrichment were TCF4 
(ranked 1), a critical component for neuronal differentiation that affects 
neuronal migration patterns67,68, and PCLO (ranked 4), which is impor-
tant for synaptic vesicle trafficking and neurotransmitter release69. 
Although predominant therapies for MDD target monoamine neu-
rotransmitters, especially serotonin, the enrichment for GABA-ergic 
neurons is independent of serotonin pathways, suggesting that they 
might include other therapeutic targets for MDD. These results were 
robustly detected in an independent brain scRNA-seq dataset, in both 
the gene programs (average correlation: 0.77 for the same cell type and 
−0.21 otherwise) and the disease enrichments (0.77 correlation of the 

Table 1 | Notable enrichments from analyses of cell-type, disease-dependent and cellular process gene programs

Cell-type programs

GWAS disease/trait Tissue (scRNA-seq) Cell type E-score P (E-score) q-value Top genes

UC Blood/Immune B cells 3.2 1.50 × 10−5 2.33 × 10−5 REL, GPX1, LSP1

Celiac disease Blood/Immune T cells 4.5 2.3 × 10−7 7.16 × 10−7 ETS1, CD247, CD28

MDD Brain GABA-ergic 4 1.00 × 10−4 3.39 × 10−4 TCF4, BEND4, TMX2

Atrial fibrillation Heart Atrial cardiomyocyte 5.6 3.2 × 10−9 2.2 × 10−8 CAV2, PKD2L2, FAM13B

Blood pressure (dia.) Heart Smooth muscle 3.4 2.9 × 10−6 1.2 × 10−5 CACNB2, TMEM165, MRVI1

Eczema Skin Langerhans’ cells 3.7 0.004 0.03 IL1R1, RUNX3, FCER1G

IBD Colon Endothelial 2.8 0.002 0.01 RHOA, PDLIM4, STARD3

Disease-dependent programs

GWAS disease/trait Tissue (scRNA-seq) Cell type E-score P (E-score) q-value Top genes

MS MS, brain Microglia 11.6 5.70 × 10−6 3.66 × 10−5 PRDX5, RPL5, SKP1,

AD AD, brain Microglia 9.1 7.10 × 10−5 6.82 × 10−4 PICALM, APOE, APOC1

UC UC, colon Enterocytes 2.6 2.70 × 10−7 1.66 × 10−6 RNF186, APEH, DLD

IBD UC, colon M cells 2.2 1.07 × 10−4 2.2 × 10−4 UQCR10, FERMT1, PPP1R1B

Asthma Asthma, lung T cells 12.8 4.82 × 10−5 3.99 × 10−4 FMNL1, RORA, GPR183

Cellular process programs

GWAS disease/trait Tissue (scRNA-seq) Cellular process E-score P (E-score) q-value Top genes

Eczema Blood/Immune CD4+ T cells 3.8 1.32 × 10−7 4.83 × 10−7 IL7R, STMN3, NDFIP1

Celiac disease Blood/Immune Complement cascade 2.8 4.84 × 10−8 1.92 × 10−7 DCC, PDIA5, PPCDC

AD Blood/Immune MHC-II antigen processing 4.9 7.11 × 10−0 2.08 × 10−6 MS4A6A, MS4A4A, CD33

BMI Brain LAMP5 2.7 6.33 × 10−8 7.01 × 10−7 FLRT1, COL4A2, SBF2

MDD Brain SST 3.9 4.37 × 10−5 1.22 × 10−4 TCF4, PCLO, ZNF462

Years of education Brain Electron transport 3.5 4.42 × 10−8 5.49 × 10−7 ATP6V0B, NSF, GPX1

MS MS, brain Complement cascadea 4.9 5.49 × 10−11 9.62 × 10−10 CD37, RGS14, NCF4

AD AD, brain Apelin signalingb 1.5 9.27 × 10−7 6.50 × 10−6 MS4A6A, SORL1, SYK

UC UC, colon EGFR-1 pathwayb 3.0 8.81 × 10−4 2.14 × 10−3 C1orf106, SLC26A3, NXPE4

Asthma Asthma, lung Mac-neutrophil transb 6.6 0.002 0.006 CCL20, IL6, GPR183

For each notable enrichment, we report the GWAS disease/trait, tissue source for scRNA-seq data, cell type, enrichment score (E-score), one-sided S-LDSC P value for positive E-score and top 
genes driving the enrichment. Multiple testing correction was performed across cell types and traits at the level of each tissue. Blood pressure (dia.), diastolic blood pressure; mac-neutrophil 
trans., macrophage–neutrophil transition.aCellular process programs specific to disease states. The full list of genes driving these associations is provided in Supplementary Data 4.bCellular 
process programs shared across healthy and disease states.
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E-score over all cell-type and -trait pairs), including GABA-ergic neurons 
in MDD and BMI as well as glutamatergic neurons in insomnia and 
schizophrenia. Enrichment results for the remaining 49 diseases and 
traits together with brain cell-type programs are reported in Extended 
Data Fig. 3.

Tissue specificity of both the cell-type program and the enhancer–
gene strategy was important for successful linking, which we found by 
comparing the enrichment of all four possible combinations of immune 
or brain cell-type programs with immune- or brain-specific enhancer–
gene-linking strategies, meta-analyzed across 11 immune-related 
diseases or 11 psychiatric/neurological diseases and traits (Fig. 3d). 
This highlights the importance of leveraging the tissue specificity of 
enhancer–gene strategies.

The 12 brain cellular process programs showed that the significant 
enrichment of brain-related diseases in the neuronal cell types above 
is primarily driven by finer programs reflecting neuron subtypes (Fig. 
3f, Table 1 and Supplementary Note). For example, the enrichment of 
GABA-ergic neurons for BMI was driven by programs reflecting LAMP5+ 
and VIP+ cell subsets with higher expression of LAMP5 and VIP, respec-
tively. Furthermore, the enrichment of GABA-ergic neurons for MDD 
reflects SST+ and PVALB+ cell subsets with higher expression of SST and 
PVALB, respectively. We also observed enrichment in more specific cell 
subsets within glutamatergic neurons (for example, inferior temporal 
(IT) neurons were enriched for neuroticism).

Linking cell types from diverse human tissues to disease
Analysis of kidney, liver, heart, skin and adipose tissuse cell types 
(Supplementary Table 1) and corresponding relevant traits (Supple-
mentary Table 2) revealed the role of particular immune, stromal and 
epithelial cellular compartments across different diseases/traits. For 
example, kidney and liver cell-type programs (Extended Data Fig. 1) 
highlighted relations with urine biomarker traits (Fig. 4a and Extended 
Data Figs. 3 and 5a,b), such as enrichment for creatinine level in kidney 
proximal and connecting tubule cell types, but not in liver cell types, 
as expected70,71, or a significant enrichment for bilirubin level only in 
liver hepatocytes (driven by ANGPTL3; ranked 4)72,73. In heart (Fig. 4b, 
Extended Data Figs. 3 and 5c and Table 1), atrial cardiomyocytes were 
enriched for atrial fibrillation, and pericytes and smooth muscle cells 
for blood pressure, consistent with their respective roles in determin-
ing heart rhythm through activity74 of ion channels (top genes included 
the ion channel genes PKD2L2 (ranked 2), CASQ2 (ranked 7) and KCNN2 
(ranked 18)) and blood pressure regulation through vascular tone75 (top 
driving genes included adrenergic pathway genes PLCE1 (ranked 1), 
CACNA1C (ranked 21) and PDE8A (ranked 23)). In skin (Fig. 4c, Extended 
Data Fig. 3 and Table 1), both brain-derived neurotrophic factor sign-
aling and Langerhans’ cells were enriched for eczema. Langerhans’ 
cells have been implicated in inflammatory skin processes related to 
eczema76 (top driving genes included IL-2-signaling pathway genes 
(FCER1G (ranked 3), NR4A2 (ranked 26) and CD52 (ranked 43)), which 
modulate eczema pathogenesis77). In adipose (Fig. 4d and Extended 
Data Figs. 3 and 5e), adipocytes were enriched for BMI, driven by adi-
pogenesis pathway genes78 (STAT5A (ranked 15), EBF1 (ranked 29), LIPE 

(ranked 45)) and triglyceride biosynthesis genes78 (GPAM (ranked 14), 
LIPE (ranked 45), both of which contribute to the increase in adipose 
tissue mass in obesity79,80).

We expanded our analysis to evaluate all cell-type programs 
for all diseases, irrespective of the tissue locus of disease, aiming 
to identify cell-type enrichments involving ‘mismatched’ cell-type 
disease/trait pairs (Supplementary Fig. 5). As expected, in most cases, 
‘mismatched’ cell-type programs and disease/trait pairs do not yield 
significant association. Notable exceptions included enrichments of 
skin Langerhans’ cells for AD (E-score: 15.2, P = 10−4), M cells (in colon) 
for asthma (E-score: 2.2, P = 10−4) and heart smooth muscle cells for 
lung capacity (E-score: 5.6, P = 3 × 10−4). In some cases, the association 
may indicate a direct relationship, whereas in others the associated 
cell type may only ‘tag’ the causal cell type in the disease tissue, as 
cell-type programs derived from cells of the same type across tissues 
were found to be highly correlated (Fig. 4e), with consistent enrich-
ment in these correlated cell-type programs (Extended Data Fig. 3 and 
Supplementary Note).

Linking neuronal cells to MS and AD progression
We next turned to cases where both healthy and disease tissue have 
been profiled, allowing us to link disease GWASs to programs associ-
ated with disease-specific biology. Such understanding is especially 
important for identifying therapeutic targets associated with disease 
development rather than disease-onset mechanisms.

We first examined disease-dependent programs in MS and AD, 
where aberrant interactions between neurons and immune cells are 
thought to play an important role. We analyzed MS and AD GWAS data 
(Supplementary Table 2) along with cell-type, disease-dependent and 
cellular process programs from scRNA-seq of brains of healthy and MS46 
or AD30 individuals (Fig. 5a,e and Supplementary Table 1). We considered 
brain enhancer–gene links, immune enhancer–gene links (because MS 
and AD are associated with both tissue types) and nontissue-specific 
enhancer–gene links (Extended Data Fig. 6) and detected the strongest 
enrichment results for the immune enhancer–gene links. In both MS and 
AD, disease-dependent programs in each cell type differed substantially 
from cell-type programs constructed from cells from healthy (average 
Pearson’s r = 0.16) or disease (average Pearson’s r = 0.29) samples alone 
(Extended Data Fig. 7). Furthermore, we confirmed that disease GWASs 
matched to the corresponding disease-dependent programs produced 
the strongest enrichments, although there was substantial cross-disease 
enrichment (Extended Data Figure 8).

In MS, there was enrichment in disease-dependent programs in 
GABA-ergic neurons and microglia (Fig. 5b and Extended Data Fig. 
9), as well as in layer 2 and 3 glutamatergic neurons and the comple-
ment cascade (in multiple cell types; Fig. 5d). The specific enrich-
ment of the GABA-ergic neuron, disease-dependent program (but 
not the healthy cell-type program) for MS is consistent with the obser-
vation that inflammation inhibits GABA transmission in MS81. The 
GABA-ergic disease-dependent program was enriched with hydro-
gen ion transmembrane transporter activity genes, whereas the 
GABA-ergic cell-type program was enriched in genes with general 

Fig. 3 | Linking neuron cell subsets and cellular processes to brain-related 
diseases and traits. a,b, Major brain cell types. UMAP embedding of brain 
scRNA-seq profiles (dots) colored by cell-type annotations (a) or expression 
of cell-type-specific genes (b). c, Enrichments of brain cell-type programs for 
brain-related diseases and traits. Magnitude (E-score, dot size) and significance 
(−log10(P), dot color) of the heritability enrichment of brain cell-type programs 
(columns) are shown for brain-related diseases and traits (rows). d, Comparison 
of immune versus brain cell-type programs, enhancer–gene-linking strategies 
and diseases/traits. Magnitude (E-score and s.e.m.) of the heritability enrichment 
of immune versus brain cell-type programs (columns) is constructed using 
immune versus brain enhancer–gene-linking strategies (left and right panels) for 
immune-related (n = 11) versus brain-related (n = 11) diseases and traits (top and 

bottom panels). Data are presented as mean values ± s.e.m. e, Examples of inter- 
and intracell-type cellular processes. UMAP (as in a) is colored by each program 
weight (color bar) from NMF. f, Enrichments of brain cellular process programs 
for brain-related diseases and traits. Each of the cellular process programs is 
constructed using NMF to decompose the cells using a genes matrix into two 
matrices, cells by programs and programs by genes (NP = neural progenitor, 
CT = corticothalamic). Magnitude (E-score, dot size) and significance (−log10(P), 
dot color) of the heritability enrichment of cellular process programs (columns) 
are shown for brain-related diseases and traits (rows). In c and f, the size of each 
corresponding SNP annotation (percentage SNPs) is reported in parentheses. 
Numerical results are reported in Supplementary Data 1 and 3. Further details of 
all diseases and traits analyzed are provided in Supplementary Table 2.
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neuronal functions (Supplementary Data 10). The enrichment of the 
microglia disease-dependent program for MS is consistent with the 
role of microglia in inflammation and demyelination in MS lesions82,83 
and highlights a contribution of microglia to both disease onset and 

response. The top driving genes for the microglia disease-dependent 
program enrichment included MERTK (ranked 2) and TREM2 (ranked 4), 
both having roles in myelin destruction in MS patients84,85. Supporting 
this finding, there is a significant increase in the number of microglia 
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(P = 2 × 10−4, Fisher’s exact test) and a significant decrease in number 
of glutamatergic neurons (P = 8 × 10−5) in MS lesions (Fig. 5c and Sup-
plementary Data 11).

In AD, all associations highlighted the central role of microglia, 
suggesting that different processes may be at play in microglia or 
microglia subsets in healthy brains and after disease initiation: only 
the microglia disease-dependent program was enriched out of eight 
disease-dependent programs tested (Fig. 5e,f and Extended Data Fig. 
10), along with the healthy microglia program and the apelin signaling 
pathway, disease-specific cellular process program (intercell type: 
GABA-ergic neurons and microglia). The microglia program enrich-
ments are consistent with the contribution of microglia-mediated 
inflammation to AD progression86. Supporting this finding, there is 
a significant increase in the number of microglia in AD, brain (Fig. 5g 
and Supplementary Data 11).

Thus, in both MS and AD, heritability was enriched in distinct 
ways in microglia cell-type, disease-dependent and cellular process 
programs, suggesting therapeutic opportunities to combat the role 
of microglia in varying contexts for disease risk.

Linking enterocytes and M cells to UC
We next examined the role of cell-type, disease-dependent and cel-
lular process programs in UC, where failure to maintain the colon’s 
epithelial barrier results in chronic inflammation. We analyzed UC 
and IBD GWAS data (Supplementary Table 2) with healthy cell-type, 
UC disease-dependent and UC cellular process programs constructed 
from scRNA-seq of healthy colon and from matched uninflamed and 
inflamed colon of UC patients (Fig. 6a and Supplementary Table 1). We 
compared colon enhancer–gene links (Fig. 6) and nontissue-specific 
enhancer–gene links (Extended Data Fig. 6) and detected the strongest 
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Fig. 4 | Linking cell types from diverse human tissues to disease. a–d, 
Enrichments of cell-type programs for corresponding diseases and traits. 
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enrichment results for the colon enhancer–gene links. As in MS and 
AD, UC disease-dependent programs in each cell type differed sub-
stantially from the corresponding healthy or disease colon cell-type 
programs (average Pearson’s r = 0.24; Extended Data Fig. 7 and  
Supplementary Data 12).

In addition to previously observed enrichments in healthy immune 
cell-type programs, our analysis highlighted healthy cell-type pro-
grams of enteroendocrine and endothelial cells, disease-dependent 
programs of enterocytes and M cells, as well as the complement cascade 
(in plasma, B cells, enterocytes and fibroblasts), MHC-II antigen pres-
entation (macrophages, monocytes and DCs) and epidermal growth 

factor receptor 1 (EGFR-1) signaling (macrophages and enterocytes) 
in both healthy and disease cells (Fig. 6, Extended Data Fig. 3 and Sup-
plementary Data 1). The strong enrichment in endothelial cells, which 
comprise the gut vascular barrier, is consistent with their rapid changes 
in UC87; the top driving genes included members of the tumor necrosis 
factor-α signaling pathway (EFNA1, NFKBIA and CD40, ranked 18, 26 
and 29, respectively), a key pathway in UC88.

The disease-dependent programs (Fig. 6c, Table 1 and Extended 
Data Figs. 9 and 10) highlighted M cells, a rare cell type in healthy colon 
that increases in UC34 (Fig. 6d and Supplementary Data 11). M cells sur-
veil the lumen for pathogens and play a key role in immune–microbiome 
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Fig. 5 | Linking MS and AD disease-dependent and cellular process programs 
to MS and AD. a, UMAP embedding of scRNA-seq profiles (dots) from MS and 
healthy brain tissue, colored by cell-type annotations (top) or disease status 
(bottom). b, Enrichments of MS disease-dependent programs for MS. Magnitude 
(E-score, dot size) and significance (−log10(P), dot color) of the heritability 
enrichment of MS disease-dependent programs (columns) are shown, based 
on the Roadmap–ABC–immune enhancer–gene-linking strategy. c, Proportion 
(mean and s.e.m.) of the corresponding cell types (columns) in healthy (blue) 
and MS (red) (n = 21 biologically independent brain samples). P value is by 
one-sided Fisher’s exact test. d, Enrichments of MS cellular process programs 
for MS. Magnitude (E-score, dot size) and significance (−log10(P), dot color) of 
the heritability enrichment of intracell (left) or intercell (right) type cellular 
processes (healthy specific (H), MS specific (D) or shared (H + D)) (columns) are 
shown, based on the Roadmap–ABC–immune enhancer–gene-linking strategy. 
e, UMAP embedding of scRNA-seq profiles (dots) from AD and healthy brain 

tissue, colored by cell-type annotations (top) or disease status (bottom). f, 
Enrichments of AD disease-dependent programs for AD. Magnitude (E-score, 
dot size) and significance (−log10(P), dot color) of the heritability enrichment of 
AD disease-dependent programs (columns) are shown, based on the Roadmap–
ABC–immune enhancer–gene-linking strategy. g, Proportion (mean and s.e.m.) 
of the corresponding cell types (columns) are shown in healthy (blue) and AD 
(red) samples (n = 48 biologically independent brain samples). P value is by 
one-sided Fisher’s exact test. h, Enrichments of AD cellular process programs 
for AD. Magnitude (E-score, dot size) and significance (−log10(P), dot color) of 
the heritability enrichment of intercell-type cellular processes (AD specific (D) 
or shared (H + D)) (columns) are shown, based on the Roadmap–ABC–immune 
enhancer–gene-linking strategy. dev., development. In b, c, d and f–h, the 
size of each corresponding SNP annotation (percentage SNPs) is reported in 
parentheses. Numerical results are reported in Supplementary Data 2 and 3. 
Further details of all traits analyzed are provided in Supplementary Table 2.
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homeostasis89. Supporting this finding, mutations in FERMT1, a top 
driving gene in the M-cell disease-dependent program (ranked 3), cause 
Kindler’s syndrome, a monogenic form of IBD with UC-like symptoms90. 
Notably, there was no enrichment in M-cell healthy cell-type programs 
(Fig. 6b), emphasizing that M cells are activated specifically in UC 
disease, as their proportions increase (P = 0.008; Fig. 6d).

Immune and connective tissue cell types linked to asthma
We analyzed GWAS data for asthma, idiopathic pulmonary fibro-
sis (IPF), COVID-19 (both general COVID-19 and severe COVID-19) 
and lung capacity (Supplementary Table 2) with healthy cell-type, 
disease-dependent and cellular process programs from asthma, 
IPF, COVID-19 and healthy29 (lower lung lobes) tissue scRNA-seq  
(Fig. 7a,c,f, Supplementary Figs. 13d–f and 15 and Supplementary 
Data 12), using either lung enhancer or immune enhancer–gene links.  

For asthma, there was significant enrichment for healthy cell-type and 
disease-dependent programs in T cells (Supplementary Note). For lung 
capacity (height-adjusted forced expiratory volume in 1 s (FEV1adj), 
relaxed vital capacity (RVC)), there was significant enrichment for 
healthy cell-type and disease-dependent programs in fibroblasts (Fig. 
7b and Supplementary Data 1) and the MAPK cellular process program 
(in basal, club, fibroblast and endothelial cells) (Fig. 7f,g and Table 1). 
Genes driving these enrichments and enrichment results for IPF and 
COVID-19 are detailed in Supplementary Note.

Discussion
Previous work on identifying disease-critical tissues and cell types by 
combining expression profiles and human genetics signals has largely 
focused on the direct mapping of the expression of individual genes34 
and genome-wide polygenic signals18,36 to discrete cell categories. Our 

a

e

c

d

b

f

Inflamed
Healthy

DC
B cell

Enterocytes
Endothelial

Fibroblast

Enteroendocrine

Goblet
Glia

Monocytes
Mast

Pericytes
NK cell

TA
Stem

Tuft
T cell

MThi
ILCs

Macrophages
M cells

Ent
er

oc
yte

s (
1.

6%
)

Ent
er

oe
nd

oc
rin

e 
(0

.4
%

)

End
ot

he
lia

l (
0.

9%
)

T ce
lls

 (0
.4

%
)

TA ce
lls

 (2
.1

%
)

543210

543210
–log(P )

E-score

C
ell-type

com
position

Healthy

0.2

0.1

0

Disease

UC disease progression

UC cellular processes

Colon cell types

M
 ce

lls
 (0

.4
%

)

64 7532

54321
–log(P)

E-score
UC

IBD

Ent
er

oc
yte

s (
1.

5%
)

Ent
er

oe
nd

oc
rin

e 
(0

.2
%

)

End
ot

he
lia

l (
0.

6%
)

M
 ce

lls
 (0

.3
%

)

T ce
lls

 (0
.8

%
)

TA ce
lls

 (2
.0

%
)

UC

IBD

UC

IBD

53 421

54321
–log(P )

E-score

Com
ple

m
en

t c
as

ca
de

 (c
olo

n)
 (0

.5
%

)

M
HC-II

 a
nt

ige
n 

pr
es

en
ta

tio
n 

(0
.7

%
)

Apo
pt

os
is 

(1
.2

%
)

EGFR1 
(1

.0
%

)

G-α 
sig

na
lin

g 
(0

.2
%

)

α-D
ef

en
sin

s (
0.

4%
)

HNF3A
 p

at
hw

ay
 (0

.9
%

)

Inter-

H + D DH

0 0.4 0.8

Program weight

Shared Specific
Coagulation intrinsic pathway

Coagulation intrinsic pathway

TGF-β reg. of extracellular matrix

α-Defensins
H

ealthy
D

isease

0.04 0.0032

7.8 × 10
–5

0.0012 0.0026

0.0082

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

Fig. 6 | Linking UC disease-dependent and cellular process programs to UC 
and IBD. a, UMAP embedding of scRNA-seq profiles (dots) from UC and healthy 
colon tissue, colored by cell-type annotations (top) or disease status (bottom) 
(TA = Transit Amplifying, MThi = mitochondrial high, ILCs = immune-like cells). b, 
Enrichments of healthy colon cell types for disease. Magnitude (E-score, dot size) 
and significance (−log10(P), dot color) of the heritability enrichment of colon cell-
type programs (columns) are shown for IBD or UC (rows). Results for additional 
cell types, including immune cell types in the colon, are reported in Extended 
Data Fig. 3 and Supplementary Data 1. c, Enrichments of UC disease-dependent 
programs for disease. Magnitude (E-score, dot size) and significance (−log10(P), 
dot color) of the heritability enrichment of UC disease-dependent programs 
(columns) are shown for IBD or UC (rows). d, Proportion (mean and s.e.m.) of 

the corresponding cell types (columns) in healthy (blue) and UC (red) samples is 
shown (n = 36 biologically independent colon samples). P value is by one-sided 
Fisher’s exact test. e, Examples of shared (healthy and disease), healthy-specific 
and disease-specific cellular process programs. UMAP (as in a) is colored by each 
program weight (color bar) from NMF. TGF-β, transforming growth factor-β. f, 
Enrichments of UC cellular process programs for disease. Magnitude (E-score, 
dot size) and significance (−log10(P), dot color) of the heritability enrichment 
of intercell-type cellular processes (shared (H + D), healthy specific (H) or 
disease specific (D)) (columns) are shown for IBD or UC (rows). In b–d and f, the 
size of each corresponding SNP annotation (percentage SNPs) is reported in 
parentheses. Numerical results are reported in Supplementary Data 1–3. Further 
details of all traits analyzed are provided in Supplementary Table 2.
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Fig. 7 | Linking asthma disease-dependent and cellular process programs 
to asthma and lung capacity. a, UMAP embedding of healthy lung scRNA-seq 
profiles (dots) colored by cell-type annotations. b, Enrichments of healthy lung 
cell types for disease. Magnitude (E-score, dot size) and significance (−log10(P), 
dot color) of the heritability enrichment of healthy lung cell-type programs 
(columns) are shown for lung capacity or asthma (rows). c, UMAP embedding 
of scRNA-seq profiles (dots) from asthma and healthy lung tissue, colored by 
cell-type annotations (top) or disease status (bottom) (AT1 = Alveolar Type 1, 
AT2 = Alveolar Type 2, EM = effector memory T cell, EMRA = effector memory 
re-expressing CD45RA T cell, TMC = tissue migratory CD4+ T cells, CM = central 
memory T cells, TRM = tissue resident memory T cell). d, Enrichments of 
asthma disease-dependent programs for disease. Magnitude (E-score, dot 
size) and significance (−log10(P), dot color) of the heritability enrichment of 
asthma disease-dependent programs (columns) are shown for lung capacity 

or asthma (rows). e, Proportion (mean and s.e.m.) of the corresponding cell 
types (columns), in healthy (blue) and asthma (red) samples (n = 54 biologically 
independent lung samples). P value is by one-sided Fisher’s exact test. f, 
Examples of shared (healthy and disease), healthy-specific and disease-specific 
cellular process programs. sig., signaling. UMAP (as in c) is colored by each 
program weight (color bar) from NMF. g, Enrichments of asthma cellular 
process programs for disease. Magnitude (E-score, dot size) and significance 
(−log10(P), dot color) of the heritability enrichment of intracell (left) and intercell 
(right)-type cellular processes (shared (H + D), healthy specific (H) or disease 
specific (D)) (columns) are shown for lung capacity and asthma GWAS summary 
statistics (rows). In b, d, e and g, the size of each corresponding SNP annotation 
(percentage SNPs) is reported in parentheses. Numerical results are reported 
in Supplementary Data 1–3. Further details of all traits analyzed are provided in 
Supplementary Table 2.
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study demonstrates that there is much to be gained by linking inferred 
representations of the underlying biological processes beyond cell types 
in different cell and tissue contexts with genome-wide polygenic disease 
signals, by integrating scRNA-seq, epigenomic and GWAS datasets.

Our work introduces three main conceptual advances: first, 
by integrating scRNA-seq data and GWAS summary statistics using 
tissue-specific enhancer–gene-linking strategies, we detect sub-
tle differences in SNP-to-gene mapping between tissues which, on 
aggregation over the full GWAS signal, produce strong differences 
in disease heritability across cell types. Second, by constructing 
disease-dependent programs comparing cells of the same type 
in disease versus healthy tissue, we project GWAS signals across 
disease-specific cell states. Third, by using non-negative matrix fac-
torization (NMF) to construct cellular process programs that do not 
rely on known cell-type categories, we identify cellular mechanisms 
that vary across a continuum of cells of one type or are shared between 
cells of different types, such as the mitogen‑activated protein kinase 
(MAPK) signaling pathway identified in the lung.

Leveraging these advances, we identified notable enrichments 
(Table 1) that have not previously been identified using GWAS data and 
are biologically plausible but not clearly expected, thus supporting the 
potential of the sc-linker to identify new knowledge. We also observed 
patterns across datasets that offer additional insights. For example, we 
observed that disease-dependent programs, but not healthy cell-type 
programs, of epithelial cells (M cells and basal cells) tend to be enriched 
in autoimmune diseases (UC and asthma). In contrast, for immune 
cells, healthy and disease-dependent programs tended to be similarly 
enriched. We posit that this suggests a role for epithelial cells in devel-
opment, rather than initiation, of disease. Future studies are required 
to experimentally validate these hypotheses.

Our work has several limitations that highlight directions for 
future research. First, the cell types and states covered in this work are 
not exhaustive, and there will continue to be other cell types and more 
granular cell states uncovered as the scale of sequencing continues 
to grow. Second, the enhancer–gene-linking strategies can continue 
to be improved beyond the Roadmap and ABC models incorporated 
here. Finally, we focus on genome-wide disease heritability (rather than 
a particular locus); however, our approach can be used to implicate 
specific genes and gene programs. Additional limitations are discussed 
in Supplementary Note.

Looking forward, the gene program–disease links identified by our 
analyses can be used to guide downstream studies, including designing 
systematic perturbation experiments91,92 in cell and animal models for 
functional follow-up. In the long term, with the increasing success of 
phenome-wide association studies and the integration of multimodal 
single-cell resolution epigenomics, this framework will continue to 
be useful in identifying biological mechanisms driving a broad range 
of diseases.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, extended data, supplementary information, acknowledge-
ments, peer review information; details of author contributions and 
competing interests; and statements of data and code availability are 
available at https://doi.org/10.1038/s41588-022-01187-9.
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Methods
Ethical approval
This research complies with all relevant ethical regulations, and the 
research protocols are approved by the Harvard School of Public 
Health.

ScRNA-seq data pre-processing
All scRNA-seq datasets in the present study25–30,34,42–48 are publicly 
available cell-by-gene expression matrices that are aligned to the hg38 
human transcriptome (Supplementary Table 1). Each dataset included 
metadata information for each cell, describing the total number of 
reads in the cell and which sample the cell corresponds to and, if appli-
cable, its disease status. We transformed each expression matrix to a 
count matrix by reversing any log(normalization) processing (because 
each downloaded dataset contained (1) raw counts, (2) normalized 
log2(TP10K) or (3) normalized log10(TP10K), where TP10K is transcripts 
per 10,000 transcripts) and standardized the normalization approach 
across all datasets to account for differences in sequencing depth 
across cells by normalizing the total number of unique molecular 
identifiers (UMIs) per cell, converting to TP10K and taking the log of the 
result to obtain log(10,000 × UMIs/total UMIs + 1), with ‘log2(TP10K + 1)’ 
as the final expression unit.

Dimensionality reduction, batch correction, clustering and 
annotation of scRNA-seq
The log2(TP10K + 1) expression matrix for each dataset was used for the 
following downstream analyses. For each dataset, we identified the top 
2,000 highly variable genes across the entire dataset using Scanpy’s93 
v.1.7.1 highly_variable_genes function with the sample ID as input for 
the batch. We then performed a principal component analysis (PCA) 
with the top 2,000 highly variable genes and identified the top 40 prin-
cipal components (PCs), beyond which negligible additional variance 
was explained in the data (the analysis was performed with 30, 40 and 
50 PCs and was robust to this choice). We used Harmony94 v.0.1.1 for 
batch correction, where each sample was considered its own batch. 
Subsequently, we built a k-nearest neighbors graph of cell profiles 
(k = 10) based on the top 40 batch-corrected components computed 
by Harmony and performed community detection on this neighbor-
hood graph using the Leiden graph clustering method95 with resolu-
tion 1. For each dataset, individual single-cell profiles were visualized 
using the Uniform Manifold Approximation and Projection (UMAP)96. 
If previous annotations were available, they are used as a reference to 
annotate each cell in each dataset. If previous annotations were not 
available, we used established cell-type-specific expression signatures 
and gene markers described in the data source to annotate cells at the 
resolution of Leiden clusters.

Cell-type gene programs
We constructed cell-type programs for every cell type in a given tissue 
by applying a nonparametric Wilcoxon’s rank-sum test for differential 
expression (DE) between each cell type versus other cell types and 
computed a P value for each gene. Using a previously published strat-
egy15, we transform these P values to X = −2log(P), which follows a χ22 
distribution; these transformed values are converted to a grade 
between 0 and 1 using the minimum/maximum (min/max) normaliza-
tion g = (X – min(X))/(max(X) – min(X)), resulting in a relative weighting 
of genes in each program. We note that these scores do not formally 
represent probabilities. In brief, cell-type programs constructed from 
healthy cells were termed healthy cell-type programs, and similarly 
cell-type programs constructed from disease cells were termed disease 
cell-type programs.

Disease-dependent gene programs
We constructed disease-dependent programs for each cell type 
observed in both healthy and matching disease tissue. For each 

cell type, we computed a gene-level, nonparametric, Wilcoxon’s 
rank-sum DE test between cells from healthy and those from dis-
ease tissues of the same cell type. The P values for each gene were 
transformed to a grade between 0 and 1 using the same strategy as 
in the cell-type program to form a relative weighting of genes in each 
program. In the COVID-19 BAL scRNA-seq, we also constructed viral 
progression programs based on DE between virally infected and 
uninfected cells of the same cell type in individuals with COVID-19. We 
observed low correlation between healthy cell-type gene programs 
and disease-dependent gene programs (Supplementary Fig. 13 and 
Supplementary Data 12).

Cellular process gene programs
Using latent factors derived from NMF97 (see below), we defined a cel-
lular process program based on genes with high correlation (across 
cells) between their expression in each cell and the contribution of 
the factor to each cell (collapsing latent factors with high correla-
tion). The correlations were transformed to a continuous-valued 
scale (between 0 and 1) by scaling their values (negative correlations 
are assigned to 0). We then annotated each factor (program) by the 
pathway most enriched in the top driving genes for the factor and 
labeled each as an ‘intracell type’ or ‘intercell type’ latent factor if 
the pathway was highly correlated with only one or multiple cell-type 
programs, respectively.

We constructed cellular process programs using an unsupervised 
approach, by applying NMF97 to the scRNA-seq cells-by-genes matrix. 
The solution to this formulation can be identified by solving the fol-
lowing minimization problem:

argmin{ 1
2

‖
‖‖‖
Xn,m −∑

p
W{n,p} × Hp,m

‖
‖‖‖

2

F

+ (1 − α) 1
2
‖
‖Wn,p

‖
‖ +

1
2
(1 − α) ‖‖Hp,m

‖
‖

+α ‖‖vec(Wn,p)‖‖1 + α
‖
‖vec(Hp,m)

‖
‖1 }

(1)

where Xn,m represents the log(normalized) expression of gene m in 
sample n, Wn,p denotes the grade of membership of latent factor p 
in sample n and Hp,m represents the factor weight of factor p in gene 
m. NMF identifies cellular processes as latent factors with a grade of 
contribution to each cell. For each dataset, we specified the number 
of latent factors p to be the number of annotated cell types in the data-
set + 10. For each latent factor, we define a cellular process gene pro-
gram by identifying genes with high correlation (across cells) between 
expression in a cell and the contribution of each factor to each cell. 
Latent factors with correlation >0.8 are collapsed to only consider a 
single latent factor. We annotated each cellular process program by 
the pathway most enriched (calculated with the Enrichr database and 
Fisher’s exact test P value) in the genes with highest correlation (across 
cells) between expression levels and factor weights (H) underlying the 
cellular process program (not necessarily the most highly expressed 
genes; Supplementary Fig. 17) and labeled it as an ‘intracell-type’ or 
‘intercell-type’ cellular process program if highly correlated with only 
one or multiple cell-type programs, respectively.

Cellular process gene programs constructed from healthy and 
disease tissues
For scRNA-seq from healthy and disease tissue contexts, we proposed 
a modified NMF approach to construct gene programs that are shared 
across both tissues, specific to either healthy tissue or disease tissue. 
Let HP×N1 be the observed gene expression data for a tissue T from a 
healthy individual and DP×N2 be the observed gene expression data for 
the corresponding tissue from a disease individual. P is the number of 
features (genes), and N1 and N2 denote the number of samples from the 
healthy and disease tissues, respectively.
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We assume an NMF for H and D as follows:

HP×N1 ≈ [LCHP×KCL
UH
P×KH

] FH(KC+KH)×N1 where L
CH, LUH, FH > 0 (2)

DP×N2 ≈ [LCDP×KCL
UD
P×KD

] FD(KC+KD)×N2 where L
CD, LUD, FD > 0 (3)

where KC is the number of shared programs between the healthy and 
the disease samples, KH is the number of healthy specific programs and 
KD is the number of disease-specific programs. LCH and LCD are used to 
denote the shared programs between healthy and disease states. There-
fore, we assume that LCH is very close to LCD but not exact to account for 
other factors such as experimental conditions perturbing the estimates 
slightly. On the other hand, LUH and LUD are used to denote the healthy 
specific and disease-specific programs, respectively. FH and FD denote 
the program weights in the healthy and disease samples, respectively. 
This framed in the form of the following optimization problem:

argmin
LH ,LD ,FH ,FD
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(4)

where LH = [LCHPXKCL
UH
PXKH

] and LD = [LCDPXKCL
UD
PXKD

] and γ is a tuning parameter 

that controls how close LCH is to LCD and μ represents a tuning parameter 
that controls for the size of the loadings and the factors.

To determine the multiplicative updates of the NMF optimization 
problem in equation (4), we compute the derivatives of the optimiza-
tion criterion with respect to each parameter of interest. We call the 
optimization criterion Q:

∇Q (LH) = −HFHT + LHFHFHT + μLH − γ[LCD0] (5)

∇Q (LD) = −DFDT + LDFDFDT + μLD − γ[LCH0] (6)

∇Q (FH) = −LHTH + LHT LHFH (7)

∇Q (FD) = −LDTD + LDT LDFD (8)

Following the multiplicative update rules of NMF as per Lee and 
Seung97, we get the following iterative updates and assume convergence 
has been achieved after 100 iterations or when the reconstruction 
error is below a user-specified error threshold (here the threshold is 
taken to be 1 × 10−4):

LH
ij
← LH

ij

(HFHT + γ [LCD0])
ij

(LHFHFHT + μLH)
ij

(9)

LD
ij
← LD

ij

(DFDT + γ[LCH0])
ij

(LDFDFDT + μLD)
ij

(10)

FH
ij
← FH

ij

(LHTH)
ij

(LHT LHFH)
ij

(11)

FD
ij
← FD

ij

(LDTD)
ij

(LDT LDFD)
ij

(12)

Enhancer–gene-linking strategies
We define an enhancer–gene-linking strategy as an assignment of 0, 
1 or more genes to each SNP with a minor allele count >5 in the 1000 

Genomes Project European reference panel98. In the present study, we 
primarily considered an enhancer–gene-linking strategy defined by the 
union of the Roadmap21,99 and ABC22,100 strategies. Roadmap and ABC 
enhancer–gene links are publicly available for a broad set of tissues and 
have been shown to outperform other enhancer–gene-linking strate-
gies in previous work101. We consider tissue-specific Roadmap and ABC 
enhancer–gene-linking strategies for gene programs corresponding 
to any of the biosamples (cell types or tissues) associated with the 
relevant tissue. Based on analysis in immune cell types, 87% of genes 
expressed in the scRNA-seq were observed to have enhancer–gene 
links. We also consider nontissue-specific Roadmap and ABC strategies 
(Supplementary Fig. 12). Besides this enhancer–gene-linking strategy, 
we also considered a standard 100-kb window-based strategy13,18.

Genomic annotations and the baseline-LD models
We define an annotation as an assignment of a numeric value to each 
SNP in a predefined reference panel (for example, 1000 Genomes 
Project98; see Data availability). Binary annotations can have a value of 
0 or 1 only, continuous-valued annotations can have any real value and 
our focus is on continuous-valued annotations with values between 0 
and 1. Annotations that correspond to known or predicted functions 
are referred to as functional annotations. The baseline-LD model40,41 
(v.2.1) contains 86 functional annotations (Data availability), including 
binary coding, conserved and regulatory annotations (for example, 
promoter, enhancer, histone marks, transcription factor-binding site) 
and continuous-valued LD-related annotations.

S-LDSC
S-LDSC assesses the contribution of a genomic annotation to disease 
and complex trait heritability11. It assumes that the per-SNP heritability 
or variance of effect size (of standardized genotype on trait) of each 
SNP is equal to the linear contribution of each annotation.

var (ßj) =
C

∑
c

ajctc (14)

where ajc is the value of annotation c at SNP j, with the annotation either 
continuous or binary (0/1), and tc is the contribution of annotation c 
to per-SNP heritability conditional on the other annotations. S-LDSC 
estimates tc for each annotation using the following equation:

E (X2
j
) = N∑

c

l (j, c) tc + 1 (15)

where l (j, c) = ∑k ackr
2
jk

 is the stratified LD score of SNP j with respect to 
annotation c, rjk is the genotypic correlation between SNPs j and k 
computed using 1000 Genomes Project, and N is the GWAS  
sample size.

We assess the informativeness of an annotation c using two met-
rics. The first metric is the enrichment score (E-score), which relies on 
the enrichment of annotation c (Ec), defined for binary annotations as 
follows (for binary and continuous-valued annotations only):

Ec =

h2g(c)
h2g

∑
j
ajc

M

(16)

where h2g (c) is the heritability explained by the SNPs in annotation c, 
weighted by the annotation values where M is the total number of SNPs 
on which this heritability is computed (5,961,159 in our analyses). The 
E-score is defined as the difference between the enrichment for annota-
tion c corresponding to a particular program against an SNP annotation 
for all protein-coding genes with a predicted enhancer–gene link in 
the relevant tissue. The E-score metric generalizes to continuous-valued 
annotations with values between 0 and 1 (ref. 102). We primarily focus 
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on the P value for nonzero E-score >2. We chose the threshold of 2 
because it is a round number that is roughly the geometric mean of the 
value of 1 (no enrichment) and the median value of 3.7 among the 
notable enrichments highlighted in Table 1.

The second metric is standardized effect size (τ*), the proportion-
ate change in per-SNP heritability associated with a 1 s.d. in the value 
of the annotation, conditional on other annotations included in the 
model40:

τ∗c =
τcsdc
h2g/M

(17)

where sdc is the s.e.m. of annotation c, h2g is the total SNP heritability 
and M is as defined previously. τ∗c is the proportionate change in per-SNP 
heritability associated with an increase of 1 s.d. in the value of a 
annotation.

We assessed the statistical significance of the enrichment score 
and τ* via block-jackknife, as in previous work11, with significance 
thresholds determined via false discovery rate (FDR) correction 
(q-value < 0.05)103. The FDR was calculated over all relevant relatively 
independent traits for a tissue and all programs of a particular type 
(cell-type programs, disease-dependent programs, cellular process 
programs) derived from that tissue. We used the P value for nonzero 
enrichment score as our primary metric, because τ* is often nonsignifi-
cant for small cell-type-specific annotations when conditioned on the 
baseline-LD model104.

MAGMA gene-level and GSEAs
MAGMA assesses the enrichment of genes and gene sets with disease. 
MAGMA v.1.08 was run using a 0-kb window around each gene to link 
SNPs to genes, using all default MAGMA parameters for running the 
gene-level analysis, and using the 1000 Genomes reference panel for 
the genotype LD reference. For the gene-set-level analysis, two types 
of analysis were performed: (1) a binary gene-set analysis by thresh-
olding the gene programs at different thresholds of program score 
(ranging from 0.2 to 0.95) (using the --set-annot flag in MAGMA) and 
(2) a continuous variable-based analysis by treating the gene program 
probabilistic grade or −log(odds) of the probabilistic grade as continu-
ous gene-level variables (using the --gene-covar flag in MAGMA).

GWAS summary statistics
We analyzed publicly available GWAS summary statistics for 60 unique 
diseases and traits with genetic correlation <0.9. Each trait passed the 
filter of being well powered enough for heritability studies (z-score 
for observed heritability >5 as in previous work including Finucane 
et al.18). We used the summary statistics for SNPs with minor allele 
count >5 in a 1000 Genomes Project European reference panel98. The 
lung FEV1:forced vital capacity (FVC) trait was corrected for height data. 
For COVID-19, we analyzed two phenotypes: general COVID-19 (Covid 
versus population, liability scale heritability, h2 = 0.05, s.e.m. = 0.01) 
and severe COVID-19 (hospitalized Covid versus population, liability 
scale heritability, h2 = 0.03, s.e.m. = 0.01)105 (meta-analysis round 4, 20 
October 2020: https://www.covid19hg.org/).

Computing a sensitivity/specificity index
We define a sensitivity/specificity index to benchmark (1) sc-linker 
versus MAGMA gene-set enrichment analysis (GSEA) and (2) differ-
ent versions of the sc-linker corresponding to varying ways to define 
cell-type programs and SNP-to-gene linking strategies.

For the comparison of the sc-linker with MAGMA, we define the 
sensitivity/specificity index as the difference of (1) the average of −
log10(P) of enrichment score (association) using the sc-linker (MAGMA) 
for ‘expected enrichments’ (gene program, trait) combinations (sen-
sitivity) and (2) the average of −log10(P) of GSEA (association) using 
the sc-linker (MAGMA) for ‘other enrichments’ (gene program, trait) 

combinations (specificity). In Fig. 4e, the expected enrichment com-
binations include immune programs for blood cell traits and immune 
diseases, and brain programs for brain-related traits49,50; all other com-
binations are considered to be other enrichments. In Supplementary 
Fig. 8, the expected enrichment combinations include B and T cells 
for lymphocyte percentage, monocytes for monocyte percentage, 
megakaryocytes for platelet count, erythroid for red blood cell (RBC) 
counts and RBC distribution width; all other combinations of cell types 
and traits are considered to be other enrichments49,50. A limitation 
of the sensitivity/specificity index is that other enrichments may be 
biologically real in some cases; thus, we also consider sensitivity to 
detect expected enrichments.

For the comparison of the different versions of the sc-linker 
approach using either varying definitions of cell-type programs (Sup-
plementary Figs. 6 and 7) or different ways to link SNPs to genes beyond 
Roadmap–ABC enhancer–gene-linking strategy (Fig. 3d,e and Sup-
plementary Fig. 3), we use a slightly different definition of sensitivity/
specificity index. Instead of the −log10(P) value, we use the τ* metric 
from the S-LDSC method, which evaluates conditional information in 
the SNP annotation corresponding to a gene program, corrected for 
the annotation size. This metric is preferred when comparing across 
cell-type programs or enhancer–gene-linking strategies that are widely 
different in their corresponding SNP annotation sizes, as is the case in 
these comparisons (we note that use of this metric is not possible in 
comparisons involving MAGMA, which does not estimate τ*).

Identifying genes driving heritability enrichment
For each gene program, we first subset the full gene list to only consider 
genes with >80% probability grade of membership in the gene program. 
Subsequently, we ranked all remaining genes using MAGMA (v.1.08) 
gene-level significance score and considered the top 50 ranked genes 
for further downstream analysis, which is different from the top 200 
genes used for a ‘baseline’ method for scoring cell-type enrichments 
for disease that we used as a benchmark for sc-linker.

Identifying statistically significant differences in cell-type 
proportions
To identify changes in cell-type proportions between healthy and 
disease tissue, we used a multinomial regression test to jointly test 
changes across all cell types simultaneously. This helps account for all 
cell-type changes simultaneously, because an increase in the number 
of cells of one cell type implies that fewer cells of the other cell type will 
be captured. This regression model and the associated P values were 
calculated using the multinom function in the nnet v.7.3–17R package.

Statistics and reproducibility
All data used in the present study were generated and designed by the 
original studies in which they appear. No statistical method was used 
to predetermine sample size. No data were excluded from the analyses. 
The experiments were not randomized. The Investigators were not 
blinded to allocation during experiments and outcome assessment. 
All sc-linker heritability enrichment and significance P values are com-
puted using a one-sided S-LDSC test. Multiple hypothesis correction 
was performed at the level of each scRNA-seq dataset across all cell-type 
and disease pairs.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All postprocessed scRNA-seq data (except for AD; see below) are 
available through the original publications with PMIDs: 28091601, 
33208946, 31316211, 31097668, 31042697, 31348891, 32832598, 
31209336, 31604275, 33654293, 32403949 and 30355494. In addition, 

https://www.covid19hg.org/
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gene programs, enhancer–gene-linking annotations, supplementary 
data files and high-resolution figures are publicly available online at 
https://data.broadinstitute.org/alkesgroup/LDSCORE/Jagadeesh_
Dey_sclinker. The AD scRNA-seq data30 are available exclusively at 
https://www.radc.rush.edu/docs/omics.htm per its data usage terms. 
This work used summary statistics from the UK Biobank study (http://
www.ukbiobank.ac.uk). The summary statistics for UK Biobank used 
in this paper are available at https://data.broadinstitute.org/alkes-
group/UKBB. The 1000 Genomes Project Phase 3 data are available 
at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/2013050. The 
baseline-LD annotations are available at https://data.broadinstitute.
org/alkesgroup/LDSCORE. We provide a web interface to visualize 
the enrichment results for different programs used in our analysis 
at https://share.streamlit.io/karthikj89/scgenetics/www/scgwas.py.
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Extended Data Fig. 1 | Single-cell RNA-seq datasets. UMAP embedding of scRNA-seq profiles (dots) colored by cell type annotations from 12 datasets (labels on top).
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Extended Data Fig. 2 | Standardized effect sizes of immune and brain 
cell type programs. Standardized effect size (τ*) (dot size) and significance 
(-log10(P-value), dot color) of the heritability enrichment of immune (a,b) 
or brain (c) cell type programs (columns) for blood cell traits (a), immune 
disease traits (b), or neurological/psychological related traits (c), based 

on SNP annotations generated with the Roadmap∪ABC-immune (a,b) or 
Roadmap∪ABC-brain (c) enhancer-gene linking strategy. Numerical results 
are reported in Supplementary Data 1. Details for all traits analyzed are in 
Supplementary Table 2.
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Extended Data Fig. 3 | Linking cell type programs to diseases and traits across 
all analyzed tissues. Magnitude (E-score, dot size) and significance (-log10(P-
value), dot color) of the heritability enrichment of cell type programs (columns) 
from each of nine tissues (color code, legend) for GWAS summary statistics of 

diverse traits and diseases (rows), based on the Roadmap∪ABC enhancer-gene 
linking strategy for the corresponding tissue. Details for all traits analyzed are in 
Supplementary Table 2. See Data Availability for higher resolution version of 
this figure.
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Extended Data Fig. 4 | Cross trait analysis of cell type enrichments. Pearson correlation coefficient (colorbar) between the cell type enrichment profiles of each pair 
of traits (rows, columns), clustered (dashed lines) hierarchically. Trait clusters labeled by their overall cell type enrichments.
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Extended Data Fig. 5 | Linking cellular process programs to relevant diseases 
and traits in each of six tissues. Magnitude (E-score, dot size) and significance 
(-log10(P-value), dot color) of the heritability enrichment of cellular process 

programs (columns; obtained by NMF) in each of seven tissues (label on top) 
for traits relevant in that tissue (rows) using the Roadmap∪ABC strategy for the 
corresponding tissue. Details for all traits analyzed are in Supplementary Table 2.
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Extended Data Fig. 6 | Analysis of cell type programs using a non-tissue-
specific enhancer-gene linking strategy. Magnitude (E-score, dot size) 
and significance (-log10(P-value), dot color) of the heritability enrichment of 
immune (a), brain (b), lung (c), heart (d), colon (e), adipose (f) and skin (g) 

cell type programs (columns) for traits relevant in that tissue (rows) using a 
non-tissue-specific Roadmap∪ABC strategy. Details for all traits analyzed are in 
Supplementary Table 2.
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Extended Data Fig. 7 | Disease-dependent programs have low correlations 
with healthy and disease cell type programs. Pearson correlation coefficient 
(color bar) of gene program membership vectors between healthy cell type, 

disease cell type and disease-dependent programs in scRNA-seq studies from a 
disease tissue (label on top) and the corresponding healthy tissue.
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Extended Data Fig. 8 | Disease specificity of disease-dependent programs. 
Proportion of disease-dependent programs with a -log10(P-value) of enrichment 
score (p.E-score) > 3 in IBD, MS and asthma GWAS summary statistics (column) 

for disease-dependent programs from IBD, MS and asthma (columns), when 
combined with tissue-specific Roadmap∪ABC (row).
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Extended Data Fig. 9 | Analysis of disease-dependent programs using 
alternative Roadmap∪ABC enhancer-gene linking strategies. Magnitude 
(E-score, dot size) and significance (-log10(P-value), dot color) of the heritability 
enrichment of disease-dependent programs (columns) in UC (colon cells) using 

Roadmap∪ABC-immune (a), asthma (lung cells) using Roadmap∪ABC-immune 
(b), and MS (brain cells) using Roadmap∪ABC-brain (c). Details for all traits 
analyzed are in Supplementary Table 2.
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Extended Data Fig. 10 | Analysis of disease-dependent programs across 
all tissues and traits. Magnitude (E-score, dot size) and significance (-log10(P-
value), dot color) of the heritability enrichment of disease-dependent programs 
(columns) from UC, MS, Alzheimer’s, asthma and pulmonary fibrosis (labels 

on top, color code, legend), for GWAS summary statistics of diverse traits and 
diseases (rows), based on the Roadmap∪ABC enhancer-gene linking strategy 
for the corresponding tissue. Details for all traits analyzed are in Supplementary 
Table 2. See Data Availability for higher resolution version of this figure.






	Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics ...
	Results

	Overview of sc-linker

	Benchmarking the sc-linker

	Distinguishing the cells involved in immune-related diseases

	Linking GABA-ergic and glutamatergic neurons to psychiatric disease

	Linking cell types from diverse human tissues to disease

	Linking neuronal cells to MS and AD progression

	Linking enterocytes and M cells to UC

	Immune and connective tissue cell types linked to asthma


	Discussion

	Online content

	Fig. 1 Approach for identifying disease-critical cell types and cellular processes by integration of single-cell profiles and human genetics.
	Fig. 2 Linking immune cell types and cellular processes to immune-related diseases and blood cell traits.
	Fig. 3 Linking neuron cell subsets and cellular processes to brain-related diseases and traits.
	Fig. 4 Linking cell types from diverse human tissues to disease.
	Fig. 5 Linking MS and AD disease-dependent and cellular process programs to MS and AD.
	Fig. 6 Linking UC disease-dependent and cellular process programs to UC and IBD.
	Fig. 7 Linking asthma disease-dependent and cellular process programs to asthma and lung capacity.
	Extended Data Fig. 1 Single-cell RNA-seq datasets.
	Extended Data Fig. 2 Standardized effect sizes of immune and brain cell type programs.
	Extended Data Fig. 3 Linking cell type programs to diseases and traits across all analyzed tissues.
	Extended Data Fig. 4 Cross trait analysis of cell type enrichments.
	Extended Data Fig. 5 Linking cellular process programs to relevant diseases and traits in each of six tissues.
	Extended Data Fig. 6 Analysis of cell type programs using a non-tissue-specific enhancer-gene linking strategy.
	Extended Data Fig. 7 Disease-dependent programs have low correlations with healthy and disease cell type programs.
	Extended Data Fig. 8 Disease specificity of disease-dependent programs.
	Extended Data Fig. 9 Analysis of disease-dependent programs using alternative Roadmap∪ABC enhancer-gene linking strategies.
	Extended Data Fig. 10 Analysis of disease-dependent programs across all tissues and traits.
	Table 1 Notable enrichments from analyses of cell-type, disease-dependent and cellular process gene programs.




