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% Check for updates Genome-wide association studies provide a powerful means of identifying

lociand genes contributing to disease, but in many cases, the related cell
types/states through which genes confer disease risk remain unknown.
Deciphering such relationshipsisimportant for identifying pathogenic
processes and developing therapeutics. In the present study, we introduce
sc-linker, aframework for integrating single-cell RNA-sequencing,
epigenomic SNP-to-gene maps and genome-wide association study
summary statistics to infer the underlying cell types and processes by
which genetic variants influence disease. The inferred disease enrichments
recapitulated known biology and highlighted notable cell-disease
relationships, including y-aminobutyric acid-ergic neurons in major
depressive disorder, a disease-dependent M-cell program in ulcerative
colitis and a disease-specific complement cascade process in multiple
sclerosis. In autoimmune disease, both healthy and disease-dependent
immune cell-type programs were associated, whereas only
disease-dependent epithelial cell programs were prominent, suggesting a
rolein disease response rather thaninitiation. Our framework provides a
powerful approach for identifying the cell types and cellular processes by
which genetic variants influence disease.

Genome-wide association studies (GWASs) have successfully identified
thousands of disease-associated variants' >, but the cellular mecha-
nisms through which these variants drive complex diseases and traits
remain largely unknown. This is due to several challenges, including
the difficulty of relating the approximately 95% of risk variants that
reside in noncoding regulatory regions to the genes they regulate*”’

and our limited knowledge of the specific cells and functional programs
inwhich these genes are active®. Previous studies have linked traits to
functional elements’ " and to cell types using bulk RNA-sequencing
(RNA-seq) profiles’®, Considerable work remains to analyze cell types
and states at finer resolutions across a breadth of tissues, incorpo-
rate disease tissue-specific gene expression patterns, model cellular
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processes within and across cell types and leverage enhancer-gene
links* to improve power.

Single-cell RNA-seq (scRNA-seq) data provide a unique opportu-
nity to tackle these challenges®. Single-cell profiles allow the construc-
tion of multiple gene programs to more finely relate GWAS variants
to function, including programs that reflect cell-type-specific signa-
tures” %, disease-dependent signatures within cell types**° and key
cellular processes that vary withinand/or across cell types™. Initial stud-
ies have related single-cell profiles with human genetics in post-hoc
analyses by mapping candidate genes from disease-associated genomic
regionsto cell types by their expression relative to other cell types®>*.
More recent studies have begun to leverage genome-wide polygenic
signals to map traitsto cell types from single cells within the context of
asingle tissue* ¥, However, focusing on a single tissue could, in prin-
ciple, resultin misleading conclusions, because disease mechanisms
spantissue types across the humanbody. For example, in the context
ofthe colon, aneural gene associated with psychiatric disorders would
appear highly specific to enteric neurons, but this cell population may
no longer be strongly implicated when the analysis also includes cells
from the human central nervous system*®, Thus, there is a need for a
principled method that combines human genetics and comprehensive
scRNA-seq applied across multiple tissues and organs.

Inthe present study, we develop and apply sc-linker, anintegrated
framework torelate human disease and complex traits to cell types and
cellular processes by integrating GWAS summary statistics, epigenom-
icsand scRNA-seq datafrom multiple tissue types, diseases, individuals
and cells. Unlike previous studies, we analyze gene programs that rep-
resent different functional facets of cells, including discrete cell types,
processes activated specificallyinacell type in disease and processes
activated across cells irrespective of cell-type definitions (recovered by
latent factor models). We transform gene programs to SNP annotations
using tissue-specific enhancer-gene links” * in preference to standard
gene window-based linking strategies used in existing gene-set enrich-
ment methods such as MAGMA®, RSS-E” and linkage disequilibrium
score regression (LDSC)-specifically expressed genes'®. We then link
SNP annotations to diseases by applying stratified LDSC" (S-LDSC)
using the baseline-LD model*®* to the resulting SNP annotations. We
further integrate cellular expression and GWAS to prioritize specific
genesinthe context of disease-critical gene programs, thus providing
new insights into underlying disease mechanisms.

Results

Overview of sc-linker

We developed a framework to link gene programs derived from
scRNA-seq with diseases and complex traits (Fig. 1a). First, we use
scRNA-seqto construct gene programs, defined as continuous-valued
gene sets, that characterize (1) individual cell types, (2)
disease-dependent (disease versus healthy cells of the same type) or
(3) cellular processes (cell cycling, endoplasmic reticulum stress).
(The continuous values are on the probabilistic 0-1scale but do not
formally represent probabilities (Methods).) Then, we link the genes
underlying these programsto SNPs that regulate them by incorporat-
ing two tissue-specific, enhancer-gene-linking strategies: Roadmap
Enhancer-Gene Linking'? and the Activity-by-Contact (ABC) model**.
Finally, we evaluate the disease informativeness of the resulting SNP
annotations by applying S-LDSC" conditional onabroad set of coding,
conserved, regulatory and LD-related annotations from the baseline-LD
model*>*, Altogether, our approach links diseases and traits with gene
programs recapitulating cell types and cellular processes. We have
released open-source software implementing the approach (sc-linker;
see Code availability), aweb interface for visualizing the results (Data
availability) and postprocessed scRNA-seq data, gene programs,
enhancer-gene-linking strategies and SNP annotations analyzed in
the present study (Data availability). A more comprehensive overview
is provided in Supplementary Note.

We analyzed a broad range of human scRNA-seq data, spanning
17 datasets from11tissues and 6 disease conditions. The 11 nondisease
tissuesincluded blood/immune (peripheral blood mononuclear cells
(PBMCs)***?, cord blood” and bone marrow”), brain, kidney*, liver*,
heart”, lung”, colon*, skin* and adipose tissue**. The six disease con-
ditions included multiple sclerosis (MS, brain)*¢, Alzheimer’s disease
(AD, brain)*°, ulcerative colitis (UC, colon)**, asthma, lung”, idiopathic
pulmonary fibrosis (IPF), lung® and COVID-19, bronchoalveolar lav-
age fluid (BAL)*® (Extended Data Fig. 1). In total, the scRNA-seq data
included 209 individuals, 1,602,614 cellsand 256 annotated cell subsets
(Methods and Supplementary Table 1). We also compiled publicly
available GWAS summary statistics for 60 unique diseases and com-
plex traits (genetic correlation <0.9; average N=297,000) (Methods
and Supplementary Table 2). We analyzed gene programs from each
scRNA-seq dataset together with each of 60 diseases and complex
traits, but we primarily reported those that are most pertinent for
each program.

Benchmarking the sc-linker

As a proof of principle, we benchmarked the sc-linker by analyzing
five blood cell traits that biologically correspond to specificimmune
celltypes (Supplementary Table 2) usingimmune cell-type programs
constructed fromscRNA-seq data (Fig. 2a,b and Extended Data Fig.1).
We constructed six immune cell-type programs that were identified
across four datasets: two from PBMCs (k= 4,640 cells, n =2 individu-
als®; k= 68,551, n = 8 (ref. **)) and one each of cord blood” (k= 263,828,
n=_8)andbonemarrow? (k=283,894, n = 8). Weidentified enrichment
oferythroid cells for red blood cell count, megakaryocytes for platelet
count, monocytes for monocyte countand B cellsand T cells for lym-
phocyte percentage (Fig. 2d and Extended Data Fig. 2a); these enrich-
mentsreflect known biological roles and have beenreportedin previous
studies***, such that we refer to them as expected enrichments.

We defined a sensitivity/specificity index quantifying the presence
of expected enrichments and absence of other enrichments (Methods).
Alimitation of thisindex s that other enrichments may be biologically
realinsome cases; thus, we also consider sensitivity to detect expected
enrichments (Methods). The sc-linker outperformed the MAGMA*
gene-set-level association method in terms of the sensitivity/specific-
ity index (Fig. 2c). Benchmarks on the sc-linker method, the choice of
enhancer-gene-linking strategies and cell-type programs are included
inSupplementary Note.

Distinguishing the cells involved inimmune-related diseases
We nextanalyzed eleven autoimmune diseases (Supplementary Table 2)
using the siximmune cell-type programs above (Fig. 2a,b and Extended
Data Fig. 1) and ten (intracell and intercell types) immune cellular
process programs (Fig. 2f). (Enrichment results for the remaining 49
diseases and traits withimmune cell-type programs are reported in
Extended Data Fig. 3; we did not construct disease-dependent pro-
grams, because these datasets included healthy samples only.) We
identified cell-type-disease enrichments that conform to known dis-
ease biology (Fig. 2e and Extended Data Fig. 2b), including T cells for
eczema’*, Band T cells for primary biliary cirrhosis (PBC)*® and den-
dritic cells (DCs) and monocytes for AD*. Inaddition, the highly statis-
tically significant enrichments for MS across all siximmune cell-type
programs analyzed are consistent with previous analyses'®**¢, sup-
porting the validity of our approach.

Several of the significant cell-type-disease enrichments have
limited literature support and may implicate previously unexplored
biological mechanisms (Fig. 2e, Table 1 and Extended Data Fig. 2b).
For example, we detected significant enrichment in B cells for UC; B
cells have been detected in basal lymphoid aggregates in the UC in
the colon, but their pathogenic significance remains unknown”. In
addition, T cells were highly enriched for celiac disease, the top driving
genes including £TS1 (ranked 1), associated with T cell development
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Fig.1| Approach for identifying disease-critical cell types and cellular
processes by integration of single-cell profiles and human genetics. a, The sc-
linker framework. Left: input. scRNA-seq (top) and GWAS (bottom) data. Middle
and right: step 1: deriving cell-type, disease-dependent and cellular process gene
programs from scRNA-seq (top) and associating SNPs with traits from human
GWASs (bottom). Step 2: generation of SNP annotations. Gene programs are
linked to SNPs by enhancer-gene-linking strategies to generate SNP annotations.
Step 3:S-LDSC s applied to the resulting SNP annotations to evaluate heritability

enrichment for a trait. b, Constructing gene programs. Top: cell-type programs
of genes specifically expressed in one cell type versus others. Middle: disease-
dependent programs of genes specifically expressed in cells of the same type
indisease versus healthy samples. Bottom: cellular process programs of genes
co-varying either within or across cell subsets; these programs may be healthy
specific, disease specific or shared. ¢, Examples of disease-gene, program-gene
relationships recovered by our framework.

andinterleukin (IL)-2 signaling®®, and CD28 (ranked 3), critical for T cell
activation. This suggests that aberrant T cell maintenance and activa-
tion may impact inflammation in celiac disease. Recent reports of a
permanent loss of resident y6 T cells in the celiac bowel and the sub-
sequentrecruitment of inflammatory T cells may further support this
hypothesis®’. These results were recapitulated across anindependent
immune cell scRNA-seq dataset, in both the gene programs (average
correlation: 0.78 for the same cell type) and the disease enrichments
(0.86 correlation of the E-score over all cell-type and -trait pairs). A
cross-trait analysis of the patterns of cell-type enrichments suggests

that celiac disease and rheumatoid arthritis involve cell-mediated
adaptive immune response, UC and PBC involve antibody-mediated
adaptive immune response, AD has a strong signal of innate immune
and MS and inflammatory bowel disease (IBD) involve contributions
from awide range ofimmune cell types (Extended Data Fig. 4).
Analyzing the ten immune cellular process programs (Fig. 2f)
across the eleven immune-related diseases and five blood cell traits,
we identified both disease-specific enrichments and others that shared
across diseases (Fig.2g and Table 1). For example, although T cells have
been previously linked to eczema, we pinpointed higher enrichment
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dotsize) and significance (-log;(P), dot color) of the heritability enrichment
ofimmune cell-type programs (columns) are shown for blood cell traits (rows,

d) orimmune-related diseases (rows, e). f, Examples of inter-and intracell-type
cellular process programs. UMAP of PBMCs (as in a) are colored by each program
weight (color bar) from NMF. NK, natural killer. g, Enrichments ofimmune cellular
process programs forimmune-related diseases. Magnitude (E-score, dot size) and
significance (—log,,(P), dot color) of the heritability enrichment of cellular process
programs (columns) are given forimmune-related diseases (rows).Ind,eand g,
thessize of each corresponding SNP annotation (percentage SNPs) isreported in
parentheses, and the dashed boxes denote results that are highlighted in the main
text. Numerical results are reported in Supplementary Dataland 3. Further details
of all diseases and traits analyzed are provided in Supplementary Table 2. “Erythroid
cellswere observed in only bone marrow and cord blood datasets.

Fig. 2| Linkingimmune cell types and cellular processes toimmune-related
diseases and blood cell traits. a,b, Inmune cell types. UMAP embedding of PBMC
scRNA-seq profiles (dots) colored by cell-type annotations (a) or expression of cell-
type-specific genes (b). ¢, Benchmarking of sc-linker versus MAGMA. Significance
(average -log,,(P)) of association across immune, brain and other tissue cell-type
programs (rows) and blood cell,immune-related, brain-related and other traits
(columns) for the sc-linker (left) and MAGMA gene-set analysis (right). Other cell
types x other diseases/traits are not included in the specificity calculation, due

to the broad set of cell types and diseases/traits in this category. For the MAGMA
analysis, the gene program is binarized using a threshold = 0.95; the numerical
results for other binarization thresholds and continuous variable-based approaches
arereported in Supplementary Data 7. d,e, Enrichments ofimmune cell-type
programs for blood cell traits and immune-related diseases. Magnitude (E-score,
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Table 1| Notable enrichments from analyses of cell-type, disease-dependent and cellular process gene programs

Cell-type programs

GWAS disease/trait Tissue (scRNA-seq) Celltype E-score P (E-score) g-value Top genes

uc Blood/Immune B cells 3.2 1.50x10°° 2.33x10°° REL, GPX1, LSP1

Celiac disease Blood/Immune T cells 4.5 2.3x107 716x107 ETS1, CD247, CD28

MDD Brain GABA-ergic 4 1.00x10™ 3.39x10™ TCF4, BEND4, TMX2

Atrial fibrillation Heart Atrial cardiomyocyte 5.6 3.2x107° 2.2x10 CAV2, PKD2L2, FAM13B
Blood pressure (dia.) Heart Smooth muscle 3.4 2.9x10°° 1.2x10° CACNB2, TMEM165, MRVI1
Eczema Skin Langerhans’ cells 37 0.004 0.03 ILTR1, RUNX3, FCER1G

IBD Colon Endothelial 2.8 0.002 0.01 RHOA, PDLIM4, STARD3
Disease-dependent programs

GWAS disease/trait Tissue (scRNA-seq) Cell type E-score P (E-score) g-value Top genes

MS MS, brain Microglia 1.6 570x107 3.66x10° PRDX5, RPL5, SKP1,

AD AD, brain Microglia 91 710x10™° 6.82x10™ PICALM, APOE, APOCT1

uc UC, colon Enterocytes 2.6 2.70x107 1.66x10° RNF186, APEH, DLD

IBD UC, colon M cells 2.2 1.07x10™ 2.2x107 UQCRI10, FERMT1, PPP1R1B
Asthma Asthma, lung Tcells 12.8 4.82x107° 3.99x10-4 FMNL1, RORA, GPR183
Cellular process programs

GWAS disease/trait Tissue (scRNA-seq) Cellular process E-score P (E-score) g-value Top genes

Eczema Blood/Immune CD4' T cells 3.8 1.32x1077 4.83x1077 IL7R, STMN3, NDFIP1
Celiac disease Blood/Immune Complement cascade 2.8 4.84x1078 1.92x1077 DCC, PDIA5, PPCDC

AD Blood/Immune MHC-Il antigen processing 4.9 711x107° 2.08x107® MS4A6A, MS4A4A, CD33
BMI Brain LAMP5 27 6.33x107® 7.01x107 FLRT1, COL4A2, SBF2
MDD Brain SST 3.9 4.37x10° 1.22x10™ TCF4, PCLO, ZNF462
Years of education Brain Electron transport 35 4.42x1078 5.49x1077 ATP6VOB, NSF, GPX1

MS MS, brain Complement cascade® 49 5.49x10™ 9.62x10™° CD37, RGS14, NCF4

AD AD, brain Apelin signaling® 15 9.27x107 6.50x107® MS4A6A, SORLT, SYK

uc UC, colon EGFR-1 pathway® 3.0 8.81x10™ 214x107° C1orf106, SLC26A3, NXPE4
Asthma Asthma, lung Mac-neutrophil trans® 6.6 0.002 0.006 CCL20, IL6, GPR183

For each notable enrichment, we report the GWAS disease/trait, tissue source for scRNA-seq data, cell type, enrichment score (E-score), one-sided S-LDSC P value for positive E-score and top
genes driving the enrichment. Multiple testing correction was performed across cell types and traits at the level of each tissue. Blood pressure (dia.), diastolic blood pressure; mac-neutrophil
trans., macrophage-neutrophil transition.*Cellular process programs specific to disease states. The full list of genes driving these associations is provided in Supplementary Data 4.°Cellular

process programs shared across healthy and disease states.

in CD4" T cells compared with CD8" T cells. The IL-2 signaling cellular
process program in T and B cells was significantly enriched for both
eczema and celiac disease, although the genes driving the enrich-
ment were not significantly overlapping (P=0.21). In addition, the
complement cascade cellular process programin plasma, B cells and
hematopoietic stem cells was most highly enriched amongallintercel-
lular programs for celiac disease. For AD, there was a strong enrich-
ment in both classic and nonclassic, monocyte intracell-type cellular
programs, and in major histocompatibility complex class Il (MHC-II)
antigen presentation (intercell type: dendritic cells (DCs) and B cells)
and prostaglandin biosynthesis (intercell type: monocytes, DCs, B
cellsandT cells) programs. Among the notable driver genes were /L7R
(ranked 1) and NDFIPI (ranked 3) for CD4" T cells in eczema, which
respectively play key roles in helper T cell 2 differentiation®®' and in
mediating peripheral CD4 T cell tolerance and allergic reactions®*®*,
and CD33 (ranked 1) in MHC-II antigen processing in AD, a microglial
receptor strongly associated withincreased risk in previous GWASs®*%,

Linking GABA-ergic and glutamatergic neurons to psychiatric
disease

We next focused on brain cells and psychiatric disease, by analyz-
ing 9 cell-type programs (Fig. 3a) and 12 cell process programs

(Fig.3e;10intra- and 2 intercell-type programs) from scRNA-seq data
of healthy brain prefrontal cortex (k =73,191, n =10)*® (Supplemen-
tary Table 1) with 11 psychiatric or neurological diseases and traits
(Supplementary Table 2).

Notably, we observed enrichments of major depressive disorder
(MDD) and body mass index (BMI) specifically in y-aminobutyric acid
(GABA)-ergic neurons, whereas insomnia, schizophrenia and intel-
ligence were highly enriched, specifically in glutamatergic neurons,
and neuroticism was highly enriched in both. GABA-ergic neurons
regulate the brain’s ability to control stress levels, which is the most
prominentvulnerability factorinMDD® (Fig. 3b,c, Table1and Extended
DataFig.2c). Amongthetop genes driving this enrichment were TCF4
(ranked1),acritical component for neuronal differentiation that affects
neuronal migration patterns®®®, and PCLO (ranked 4), which isimpor-
tant for synaptic vesicle trafficking and neurotransmitter release®.
Although predominant therapies for MDD target monoamine neu-
rotransmitters, especially serotonin, the enrichment for GABA-ergic
neurons is independent of serotonin pathways, suggesting that they
might include other therapeutic targets for MDD. These results were
robustly detectedinanindependent brain scRNA-seq dataset, in both
the gene programs (average correlation: 0.77 for the same cell type and
—-0.21otherwise) and the disease enrichments (0.77 correlation of the
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E-scoreover all cell-type and -trait pairs), including GABA-ergic neurons
in MDD and BMI as well as glutamatergic neurons in insomnia and
schizophrenia. Enrichment results for the remaining 49 diseases and
traitstogether with brain cell-type programs are reported in Extended
DataFig. 3.

Tissue specificity of both the cell-type program and the enhancer-
gene strategy was important for successful linking, which we found by
comparingthe enrichment of all four possible combinations ofimmune
or brain cell-type programs withimmune- or brain-specificenhancer-
gene-linking strategies, meta-analyzed across 11 immune-related
diseases or 11 psychiatric/neurological diseases and traits (Fig. 3d).
This highlights the importance of leveraging the tissue specificity of
enhancer-gene strategies.

The12brain cellular process programs showed that the significant
enrichment of brain-related diseases in the neuronal cell types above
is primarily driven by finer programs reflecting neuron subtypes (Fig.
3f, Table 1and Supplementary Note). For example, the enrichment of
GABA-ergic neurons for BMIwas driven by programs reflecting LAMPS*
and VIP* cell subsets with higher expression of LAMPS and VIP, respec-
tively. Furthermore, the enrichment of GABA-ergic neurons for MDD
reflects SST" and PVALB" cell subsets with higher expression of SSTand
PVALB, respectively. We also observed enrichment in more specific cell
subsets within glutamatergic neurons (for example, inferior temporal
(IT) neurons were enriched for neuroticism).

Linking cell types from diverse human tissues to disease

Analysis of kidney, liver, heart, skin and adipose tissuse cell types
(Supplementary Table 1) and corresponding relevant traits (Supple-
mentary Table 2) revealed therole of particularimmune, stromal and
epithelial cellular compartments across different diseases/traits. For
example, kidney and liver cell-type programs (Extended Data Fig. 1)
highlighted relations with urine biomarker traits (Fig. 4a and Extended
DataFigs.3and 5a,b), such as enrichment for creatinine level inkidney
proximal and connecting tubule cell types, but notin liver cell types,
as expected’®”, or a significant enrichment for bilirubin level only in
liver hepatocytes (driven by ANGPTL3; ranked 4)”>7. In heart (Fig. 4b,
Extended DataFigs. 3 and 5c and Table 1), atrial cardiomyocytes were
enriched for atrialfibrillation, and pericytes and smooth muscle cells
for blood pressure, consistent with their respective rolesin determin-
ing heartrhythm through activity” of ion channels (top genes included
theion channelgenes PKD2L2 (ranked 2), CASQ2 (ranked 7) and KCNN2
(ranked18)) and blood pressure regulation through vascular tone” (top
driving genes included adrenergic pathway genes PLCEI (ranked 1),
CACNAIC (ranked 21) and PDESA (ranked 23)). In skin (Fig. 4¢, Extended
DataFig.3 and Table1), both brain-derived neurotrophic factor sign-
aling and Langerhans’ cells were enriched for eczema. Langerhans’
cells have been implicated in inflammatory skin processes related to
eczema’® (top driving genes included IL-2-signaling pathway genes
(FCERIG (ranked 3), NR4A2 (ranked 26) and CD52 (ranked 43)), which
modulate eczema pathogenesis”™). In adipose (Fig. 4d and Extended
DataFigs. 3 and Se), adipocytes were enriched for BMI, driven by adi-
pogenesis pathway genes’® (STATSA (ranked 15), EBFI (ranked 29), LIPE

(ranked 45)) and triglyceride biosynthesis genes’ (GPAM (ranked 14),
LIPE (ranked 45), both of which contribute to the increase in adipose
tissue mass in obesity’**).

We expanded our analysis to evaluate all cell-type programs
for all diseases, irrespective of the tissue locus of disease, aiming
to identify cell-type enrichments involving ‘mismatched’ cell-type
disease/trait pairs (Supplementary Fig.5). As expected, in most cases,
‘mismatched’ cell-type programs and disease/trait pairs do not yield
significant association. Notable exceptionsincluded enrichments of
skin Langerhans’ cells for AD (E-score:15.2, P=10"*), M cells (in colon)
for asthma (E-score: 2.2, P=10"*) and heart smooth muscle cells for
lung capacity (E-score: 5.6, P=3 x107*). In some cases, the association
may indicate a direct relationship, whereas in others the associated
cell type may only ‘tag’ the causal cell type in the disease tissue, as
cell-type programs derived from cells of the same type across tissues
were found to be highly correlated (Fig. 4e), with consistent enrich-
mentinthese correlated cell-type programs (Extended DataFig. 3 and
Supplementary Note).

Linking neuronal cells to MS and AD progression
We next turned to cases where both healthy and disease tissue have
been profiled, allowing us to link disease GWASs to programs associ-
ated with disease-specific biology. Such understanding is especially
important foridentifying therapeutic targets associated with disease
development rather than disease-onset mechanisms.

We first examined disease-dependent programs in MS and AD,
where aberrant interactions between neurons and immune cells are
thought to play animportant role. We analyzed MS and AD GWAS data
(Supplementary Table 2) along with cell-type, disease-dependent and
cellular process programs from scRNA-seq of brains of healthy and MS*®
or AD* individuals (Fig. 5a,e and Supplementary Table1). We considered
brainenhancer-genelinks,immune enhancer-gene links (because MS
and AD are associated with both tissue types) and nontissue-specific
enhancer-genelinks (Extended Data Fig. 6) and detected the strongest
enrichmentresults for theimmune enhancer-gene links. Inboth MSand
AD, disease-dependent programsin each cell type differed substantially
from cell-type programs constructed from cells from healthy (average
Pearson’sr=0.16) or disease (average Pearson’sr = 0.29) samples alone
(Extended DataFig. 7). Furthermore, we confirmed that disease GWASs
matched tothe corresponding disease-dependent programs produced
the strongest enrichments, although there was substantial cross-disease
enrichment (Extended Data Figure 8).

In MS, there was enrichment in disease-dependent programs in
GABA-ergic neurons and microglia (Fig. 5b and Extended Data Fig.
9), as well as in layer 2 and 3 glutamatergic neurons and the comple-
ment cascade (in multiple cell types; Fig. 5d). The specific enrich-
ment of the GABA-ergic neuron, disease-dependent program (but
not the healthy cell-type program) for MSis consistent with the obser-
vation that inflammation inhibits GABA transmission in MS®'. The
GABA-ergic disease-dependent program was enriched with hydro-
gen ion transmembrane transporter activity genes, whereas the
GABA-ergic cell-type program was enriched in genes with general

Fig.3|Linking neuron cell subsets and cellular processes to brain-related
diseases and traits. a,b, Major brain cell types. UMAP embedding of brain
scRNA-seq profiles (dots) colored by cell-type annotations (a) or expression

of cell-type-specific genes (b). ¢, Enrichments of brain cell-type programs for
brain-related diseases and traits. Magnitude (E-score, dot size) and significance
(-log,,(P), dot color) of the heritability enrichment of brain cell-type programs
(columns) are shown for brain-related diseases and traits (rows). d, Comparison
ofimmune versus brain cell-type programs, enhancer-gene-linking strategies
and diseases/traits. Magnitude (E-score and s.e.m.) of the heritability enrichment
ofimmune versus brain cell-type programs (columns) is constructed using
immune versus brain enhancer-gene-linking strategies (left and right panels) for
immune-related (n = 11) versus brain-related (n = 11) diseases and traits (top and

bottom panels). Data are presented as mean values + s.e.m. e, Examples of inter-
and intracell-type cellular processes. UMAP (asin a) is colored by each program
weight (color bar) from NMF. f, Enrichments of brain cellular process programs
for brain-related diseases and traits. Each of the cellular process programsis
constructed using NMF to decompose the cells using a genes matrix into two
matrices, cells by programs and programs by genes (NP = neural progenitor,

CT = corticothalamic). Magnitude (E-score, dot size) and significance (-log,o(P),
dot color) of the heritability enrichment of cellular process programs (columns)
are shown for brain-related diseases and traits (rows). In cand f, the size of each
corresponding SNP annotation (percentage SNPs) is reported in parentheses.
Numerical results are reported in Supplementary Dataland 3. Further details of
all diseases and traits analyzed are provided in Supplementary Table 2.
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neuronal functions (Supplementary Data 10). The enrichment of the
microglia disease-dependent program for MS is consistent with the
role of microgliaininflammation and demyelinationin MS lesions
and highlights a contribution of microglia to both disease onset and
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Fig. 4 |Linking cell types from diverse human tissues to disease. a-d,
Enrichments of cell-type programs for corresponding diseases and traits.
Magnitude (E-score, dot size) and significance (-log,(P), dot color) of the
heritability enrichment of cell-type programs (columns) are shown for diseases
and traits relevant to the corresponding tissue (rows) for kidney and liver (a),
heart (b), skin (c) and adipose tissue (d). The size of each corresponding SNP

annotation (percentage SNPs) is reported in parentheses. WHR, Waist:hip ratio.
The numerical results are reported in Supplementary Data 1. Further details of all
traits analyzed are provided in Supplementary Table 2. e, Correlation ofimmune
cell-type programs across tissues. Pearson’s correlation coefficients (color bar)
of gene-level program memberships forimmune cell-type programs are shown
across different tissues (rows, columns), grouped by cell type (labels).

(P=2x107*, Fisher’s exact test) and a significant decrease in number
of glutamatergic neurons (P=8 x 107) in MS lesions (Fig. 5c and Sup-
plementary Data1l).

In AD, all associations highlighted the central role of microglia,
suggesting that different processes may be at play in microglia or
microglia subsets in healthy brains and after disease initiation: only
the microglia disease-dependent program was enriched out of eight
disease-dependent programs tested (Fig. 5e,f and Extended Data Fig.
10), along with the healthy microglia program and the apelin signaling
pathway, disease-specific cellular process program (intercell type:
GABA-ergic neurons and microglia). The microglia program enrich-
ments are consistent with the contribution of microglia-mediated
inflammation to AD progression®. Supporting this finding, there is
asignificant increase in the number of microglia in AD, brain (Fig. 5g
and Supplementary Data11).

Thus, in both MS and AD, heritability was enriched in distinct
ways in microglia cell-type, disease-dependent and cellular process
programs, suggesting therapeutic opportunities to combat the role
of microgliain varying contexts for disease risk.

Linking enterocytes and M cells to UC

We next examined the role of cell-type, disease-dependent and cel-
lular process programs in UC, where failure to maintain the colon’s
epithelial barrier results in chronic inflammation. We analyzed UC
and IBD GWAS data (Supplementary Table 2) with healthy cell-type,
UCdisease-dependent and UC cellular process programs constructed
from scRNA-seq of healthy colon and from matched uninflamed and
inflamed colon of UC patients (Fig. 6a and Supplementary Table1). We
compared colon enhancer-gene links (Fig. 6) and nontissue-specific
enhancer-genelinks (Extended Data Fig. 6) and detected the strongest
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UMAP 1

Fig.5|Linking MS and AD disease-dependent and cellular process programs
toMS and AD. a, UMAP embedding of scRNA-seq profiles (dots) from MS and
healthy brain tissue, colored by cell-type annotations (top) or disease status
(bottom). b, Enrichments of MS disease-dependent programs for MS. Magnitude
(E-score, dot size) and significance (—log,,(P), dot color) of the heritability
enrichment of MS disease-dependent programs (columns) are shown, based
onthe Roadmap-ABC-immune enhancer-gene-linking strategy. ¢, Proportion
(mean and s.e.m.) of the corresponding cell types (columns) in healthy (blue)
and MS (red) (n =21 biologically independent brain samples). P value is by
one-sided Fisher’s exact test. d, Enrichments of MS cellular process programs
for MS. Magnitude (E-score, dot size) and significance (-log,,(P), dot color) of
the heritability enrichment of intracell (left) or intercell (right) type cellular
processes (healthy specific (H), MS specific (D) or shared (H + D)) (columns) are
shown, based on the Roadmap-ABC-immune enhancer-gene-linking strategy.
e, UMAP embedding of scRNA-seq profiles (dots) from AD and healthy brain
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tissue, colored by cell-type annotations (top) or disease status (bottom).f,
Enrichments of AD disease-dependent programs for AD. Magnitude (E-score,
dotsize) and significance (-log,,(P), dot color) of the heritability enrichment of
AD disease-dependent programs (columns) are shown, based on the Roadmap-
ABC-immune enhancer-gene-linking strategy. g, Proportion (mean and s.e.m.)
of the corresponding cell types (columns) are shown in healthy (blue) and AD
(red) samples (n = 48 biologically independent brain samples). Pvalue is by
one-sided Fisher’s exact test. h, Enrichments of AD cellular process programs
for AD. Magnitude (E-score, dot size) and significance (-log,,(P), dot color) of
the heritability enrichment of intercell-type cellular processes (AD specific (D)
orshared (H + D)) (columns) are shown, based on the Roadmap-ABC-immune
enhancer-gene-linking strategy. dev., development.Inb, ¢,d and f-h, the

size of each corresponding SNP annotation (percentage SNPs) is reported in
parentheses. Numerical results are reported in Supplementary Data 2 and 3.
Further details of all traits analyzed are provided in Supplementary Table 2.

enrichment results for the colon enhancer-gene links. As in MS and
AD, UC disease-dependent programs in each cell type differed sub-
stantially from the corresponding healthy or disease colon cell-type
programs (average Pearson’s r = 0.24; Extended Data Fig. 7 and
Supplementary Data12).

Inaddition to previously observed enrichmentsin healthy immune
cell-type programs, our analysis highlighted healthy cell-type pro-
grams of enteroendocrine and endothelial cells, disease-dependent
programs of enterocytes and M cells, as well as the complement cascade
(in plasma, B cells, enterocytes and fibroblasts), MHC-Il antigen pres-
entation (macrophages, monocytes and DCs) and epidermal growth

factor receptor 1 (EGFR-1) signaling (macrophages and enterocytes)
inboth healthy and disease cells (Fig. 6, Extended Data Fig. 3 and Sup-
plementary Datal). The strong enrichmentin endothelial cells, which
comprise the gut vascular barrier, is consistent with their rapid changes
in UC¥’; the top driving genes included members of the tumor necrosis
factor-a signaling pathway (EFNA1, NFKBIA and CD40, ranked 18, 26
and 29, respectively), akey pathway in UC®,

The disease-dependent programs (Fig. 6¢c, Table 1 and Extended
DataFigs.9and10) highlighted M cells, arare cell type in healthy colon
thatincreases in UC** (Fig. 6d and Supplementary Data11). M cells sur-
veilthe lumenfor pathogens and play akey roleinimmune-microbiome
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Fig. 6 | Linking UC disease-dependent and cellular process programs to UC
and IBD. a, UMAP embedding of scRNA-seq profiles (dots) from UC and healthy
colontissue, colored by cell-type annotations (top) or disease status (bottom)
(TA =Transit Amplifying, MThi = mitochondrial high, ILCs = immune-like cells). b,
Enrichments of healthy colon cell types for disease. Magnitude (E-score, dot size)
and significance (-log;,(P), dot color) of the heritability enrichment of colon cell-
type programs (columns) are shown for IBD or UC (rows). Results for additional
celltypes, includingimmune cell typesin the colon, are reported in Extended
DataFig.3 and Supplementary Data 1. ¢, Enrichments of UC disease-dependent
programs for disease. Magnitude (E-score, dot size) and significance (-log,o(P),
dot color) of the heritability enrichment of UC disease-dependent programs
(columns) are shown for IBD or UC (rows). d, Proportion (mean and s.e.m.) of

the corresponding cell types (columns) in healthy (blue) and UC (red) samples is
shown (n =36 biologically independent colon samples). Pvalue is by one-sided
Fisher’s exact test. e, Examples of shared (healthy and disease), healthy-specific
and disease-specific cellular process programs. UMAP (asin a) is colored by each
program weight (color bar) from NMF. TGF-B, transforming growth factor-p. f,
Enrichments of UC cellular process programs for disease. Magnitude (E-score,
dotsize) and significance (-log,,(P), dot color) of the heritability enrichment
ofintercell-type cellular processes (shared (H + D), healthy specific (H) or
disease specific (D)) (columns) are shown for IBD or UC (rows). Inb-d and f, the
size of each corresponding SNP annotation (percentage SNPs) is reported in
parentheses. Numerical results are reported in Supplementary Data 1-3. Further
details of all traits analyzed are provided in Supplementary Table 2.

homeostasis®’. Supporting this finding, mutations in FERMTI, a top
drivinggeneinthe M-cell disease-dependent program (ranked 3), cause
Kindler’'s syndrome, amonogenic form of IBD with UC-like symptoms.
Notably, there was no enrichmentin M-cell healthy cell-type programs
(Fig. 6b), emphasizing that M cells are activated specifically in UC
disease, as their proportions increase (P=0.008; Fig. 6d).

Immune and connective tissue cell types linked to asthma

We analyzed GWAS data for asthma, idiopathic pulmonary fibro-
sis (IPF), COVID-19 (both general COVID-19 and severe COVID-19)
and lung capacity (Supplementary Table 2) with healthy cell-type,
disease-dependent and cellular process programs from asthma,
IPF, COVID-19 and healthy® (lower lung lobes) tissue scCRNA-seq
(Fig. 7a,c,f, Supplementary Figs. 13d-f and 15 and Supplementary
Data12), using either lung enhancer orimmune enhancer-gene links.

For asthma, there was significant enrichment for healthy cell-type and
disease-dependent programsin T cells (Supplementary Note). For lung
capacity (height-adjusted forced expiratory volume in1s (FEV,,y),
relaxed vital capacity (RVC)), there was significant enrichment for
healthy cell-type and disease-dependent programs in fibroblasts (Fig.
7b and Supplementary Datal) and the MAPK cellular process program
(inbasal, club, fibroblast and endothelial cells) (Fig. 7f,g and Table 1).
Genes driving these enrichments and enrichment results for IPF and
COVID-19 are detailed in Supplementary Note.

Discussion

Previous work on identifying disease-critical tissues and cell types by
combining expression profiles and human genetics signals has largely
focused on the direct mapping of the expression of individual genes**
and genome-wide polygenic signals'®*° to discrete cell categories. Our
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Fig.7|Linking asthma disease-dependent and cellular process programs
to asthma and lung capacity. a, UMAP embedding of healthy lung scRNA-seq
profiles (dots) colored by cell-type annotations. b, Enrichments of healthy lung
cell types for disease. Magnitude (E-score, dot size) and significance (-log,,(P),
dot color) of the heritability enrichment of healthy lung cell-type programs
(columns) are shown for lung capacity or asthma (rows). ¢, UMAP embedding
of scRNA-seq profiles (dots) from asthma and healthy lung tissue, colored by
cell-type annotations (top) or disease status (bottom) (AT1 = Alveolar Type1l,
AT2=Alveolar Type 2, EM = effector memory T cell, EMRA = effector memory
re-expressing CD45RA T cell, TMC =tissue migratory CD4" T cells, CM = central
memory T cells, TRM =tissue resident memory T cell). d, Enrichments of
asthma disease-dependent programs for disease. Magnitude (E-score, dot
size) and significance (-log,,(P), dot color) of the heritability enrichment of
asthma disease-dependent programs (columns) are shown for lung capacity
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or asthma (rows). e, Proportion (mean and s.e.m.) of the corresponding cell
types (columns), in healthy (blue) and asthma (red) samples (n = 54 biologically
independent lung samples). Pvalue is by one-sided Fisher’s exact test. f,
Examples of shared (healthy and disease), healthy-specific and disease-specific
cellular process programs. sig., signaling. UMAP (as in ¢) is colored by each
program weight (color bar) from NMF. g, Enrichments of asthma cellular
process programs for disease. Magnitude (E-score, dot size) and significance
(-log,,(P), dot color) of the heritability enrichment of intracell (left) and intercell
(right)-type cellular processes (shared (H + D), healthy specific (H) or disease
specific (D)) (columns) are shown for lung capacity and asthma GWAS summary
statistics (rows).Inb, d, eand g, the size of each corresponding SNP annotation
(percentage SNPs) is reported in parentheses. Numerical results are reported
inSupplementary Data1-3. Further details of all traits analyzed are provided in
Supplementary Table 2.
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study demonstrates that thereis much to be gained by linking inferred
representations of the underlying biological processes beyond cell types
indifferent cell and tissue contexts with genome-wide polygenic disease
signals, by integrating scRNA-seq, epigenomic and GWAS datasets.

Our work introduces three main conceptual advances: first,
by integrating scRNA-seq data and GWAS summary statistics using
tissue-specific enhancer-gene-linking strategies, we detect sub-
tle differences in SNP-to-gene mapping between tissues which, on
aggregation over the full GWAS signal, produce strong differences
in disease heritability across cell types. Second, by constructing
disease-dependent programs comparing cells of the same type
in disease versus healthy tissue, we project GWAS signals across
disease-specific cell states. Third, by using non-negative matrix fac-
torization (NMF) to construct cellular process programs that do not
rely on known cell-type categories, we identify cellular mechanisms
thatvary acrossacontinuum of cells of one type or are shared between
cells of different types, such as the mitogen-activated protein kinase
(MAPK) signaling pathway identified in the lung.

Leveraging these advances, we identified notable enrichments
(Table1) that have not previously beenidentified using GWAS dataand
arebiologically plausible but not clearly expected, thus supporting the
potential of the sc-linker to identify new knowledge. We also observed
patterns across datasets that offer additional insights. For example, we
observed that disease-dependent programs, but not healthy cell-type
programs, of epithelial cells (M cells and basal cells) tend to be enriched
in autoimmune diseases (UC and asthma). In contrast, for immune
cells, healthy and disease-dependent programs tended to be similarly
enriched. We posit that this suggests arole for epithelial cellsindevel-
opment, rather thaninitiation, of disease. Future studies are required
to experimentally validate these hypotheses.

Our work has several limitations that highlight directions for
futureresearch.First, the cell types and states covered in thiswork are
notexhaustive, and there will continue to be other cell types and more
granular cell states uncovered as the scale of sequencing continues
to grow. Second, the enhancer-gene-linking strategies can continue
to be improved beyond the Roadmap and ABC models incorporated
here. Finally, we focus ongenome-wide disease heritability (rather than
a particular locus); however, our approach can be used to implicate
specificgenes and gene programs. Additional limitations are discussed
inSupplementary Note.

Looking forward, the gene program-disease links identified by our
analyses can be used to guide downstream studies, including designing
systematic perturbation experiments®?in cell and animal models for
functional follow-up. In the long term, with the increasing success of
phenome-wide association studies and the integration of multimodal
single-cell resolution epigenomics, this framework will continue to
be useful in identifying biological mechanisms driving a broad range
of diseases.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, extended data, supplementary information, acknowledge-
ments, peer review information; details of author contributions and
competinginterests; and statements of data and code availability are
available at https://doi.org/10.1038/s41588-022-01187-9.
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Methods

Ethical approval

This research complies with all relevant ethical regulations, and the
research protocols are approved by the Harvard School of Public
Health.

ScRNA-seq data pre-processing

All scRNA-seq datasets in the present study are publicly
available cell-by-gene expression matrices that are aligned to the hg38
human transcriptome (Supplementary Table1). Each datasetincluded
metadata information for each cell, describing the total number of
readsinthe celland whichsample the cell corresponds to and, if appli-
cable, its disease status. We transformed each expression matrix to a
count matrix by reversing any log(normalization) processing (because
each downloaded dataset contained (1) raw counts, (2) normalized
log,(TP10K) or (3) normalized log,,(TP10K), where TP10K is transcripts
per10,000 transcripts) and standardized the normalization approach
across all datasets to account for differences in sequencing depth
across cells by normalizing the total number of unique molecular
identifiers (UMIs) per cell, converting to TP10K and taking the log of the
result to obtainlog(10,000 x UMlIs/total UMIs +1), with ‘log,(TP10K +1)’
as the final expression unit.

25-30,34,42-48

Dimensionality reduction, batch correction, clustering and
annotation of scRNA-seq

Thelog,(TP10K +1) expression matrix for each dataset was used for the
following downstream analyses. For each dataset, we identified the top
2,000 highly variable genes across the entire dataset using Scanpy’s”
v.1.7.1 highly_variable_genes function with the sample ID as input for
the batch. We then performed a principal component analysis (PCA)
withthetop 2,000 highly variable genes and identified the top 40 prin-
cipal components (PCs), beyond which negligible additional variance
was explainedinthe data (the analysis was performed with 30,40 and
50 PCs and was robust to this choice). We used Harmony®* v.0.1.1 for
batch correction, where each sample was considered its own batch.
Subsequently, we built a k-nearest neighbors graph of cell profiles
(k=10) based on the top 40 batch-corrected components computed
by Harmony and performed community detection on this neighbor-
hood graph using the Leiden graph clustering method” with resolu-
tion 1. For each dataset, individual single-cell profiles were visualized
using the Uniform Manifold Approximation and Projection (UMAP).
If previous annotations were available, they are used as areference to
annotate each cell in each dataset. If previous annotations were not
available, we used established cell-type-specific expression signatures
and gene markers described in the data source to annotate cells at the
resolution of Leiden clusters.

Cell-type gene programs

We constructed cell-type programs for every cell type inagiven tissue
by applying anonparametric Wilcoxon’s rank-sum test for differential
expression (DE) between each cell type versus other cell types and
computed a Pvalue for each gene. Using a previously published strat-
egy”, we transform these P values to X =-2log(P), which follows a 2
distribution; these transformed values are converted to a grade
between 0 and 1 using the minimum/maximum (min/max) normaliza-
tiong = (X - min(X))/(max(X) - min(X)), resultingin arelative weighting
of genes in each program. We note that these scores do not formally
represent probabilities. Inbrief, cell-type programs constructed from
healthy cells were termed healthy cell-type programs, and similarly
cell-type programs constructed from disease cells were termed disease
cell-type programs.

Disease-dependent gene programs
We constructed disease-dependent programs for each cell type
observed in both healthy and matching disease tissue. For each

cell type, we computed a gene-level, nonparametric, Wilcoxon’s
rank-sum DE test between cells from healthy and those from dis-
ease tissues of the same cell type. The P values for each gene were
transformed to a grade between 0 and 1 using the same strategy as
inthe cell-type programto form arelative weighting of genesin each
program.Inthe COVID-19 BAL scRNA-seq, we also constructed viral
progression programs based on DE between virally infected and
uninfected cells of the same cell type in individuals with COVID-19. We
observed low correlation between healthy cell-type gene programs
and disease-dependent gene programs (Supplementary Fig. 13 and
Supplementary Data12).

Cellular process gene programs

Using latent factors derived from NMF*”’ (see below), we defined a cel-
lular process program based on genes with high correlation (across
cells) between their expression in each cell and the contribution of
the factor to each cell (collapsing latent factors with high correla-
tion). The correlations were transformed to a continuous-valued
scale (between O and 1) by scaling their values (negative correlations
are assigned to 0). We then annotated each factor (program) by the
pathway most enriched in the top driving genes for the factor and
labeled each as an ‘intracell type’ or ‘intercell type’ latent factor if
the pathway was highly correlated with only one or multiple cell-type
programs, respectively.

We constructed cellular process programs using an unsupervised
approach, by applying NMF*” to the scRNA-seq cells-by-genes matrix.
The solution to this formulation can be identified by solving the fol-
lowing minimization problem:

2
argmin{% Xom — Epj Winpy X Hp || + 01— a)% ” Wopll + %(l —-a) HH,,,,,,“
F

+a ||vec(W,,‘,,)H1 +a ||VeC(Hp,m)||1 }
(o)

where X, ,, represents the log(normalized) expression of gene min
sample n, W, , denotes the grade of membership of latent factor p
in sample nand H, , represents the factor weight of factor p in gene
m. NMF identifies cellular processes as latent factors with a grade of
contribution to each cell. For each dataset, we specified the number
of latent factors pto be the number of annotated cell typesin the data-
set +10. For each latent factor, we define a cellular process gene pro-
gram by identifying genes with high correlation (across cells) between
expression in a cell and the contribution of each factor to each cell.
Latent factors with correlation >0.8 are collapsed to only consider a
single latent factor. We annotated each cellular process program by
the pathway most enriched (calculated with the Enrichr database and
Fisher’s exact test Pvalue) in the genes with highest correlation (across
cells) between expression levels and factor weights (H) underlying the
cellular process program (not necessarily the most highly expressed
genes; Supplementary Fig. 17) and labeled it as an ‘intracell-type’ or
‘intercell-type’ cellular process programif highly correlated with only
one or multiple cell-type programs, respectively.

Cellular process gene programs constructed from healthy and
disease tissues

For scRNA-seq from healthy and disease tissue contexts, we proposed
amodified NMF approach to construct gene programs that are shared
across both tissues, specific to either healthy tissue or disease tissue.
Let Hp,y, be the observed gene expression data for a tissue T from a
healthy individual and Dp,,be the observed gene expression data for
the corresponding tissue froma disease individual. Pis the number of
features (genes), and N, and N, denote the number of samples from the
healthy and disease tissues, respectively.
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We assume an NMF for Hand D as follows:

LCH LUH

~ CH JUH
Hpxn, N[ PxKc PXKH]F?KC+KH)><N1 where L&, LU, P > 0 @

Dpw, ~ [LCD LYp ]FD where LCP, LU D 5 0 3)

PXKc"PxKp | * (Kc+Kp)XN,
where K. is the number of shared programs between the healthy and
the disease samples, K, is the number of healthy specific programs and
K, is the number of disease-specific programs. L and L°° are used to
denotethe shared programs between healthy and disease states. There-
fore, we assume that L is very close to L“° but not exact to account for
other factors such asexperimental conditions perturbing the estimates
slightly. On the other hand, L"" and L*" are used to denote the healthy
specific and disease-specific programs, respectively. F*and F° denote
the program weightsin the healthy and disease samples, respectively.
This framed in the form of the following optimization problem:

grgmin 30w ]+ oo

2 2 2 2
(ke + 5 (et - e=l)

— |7CH UH — |7€D ubD
where [ = [LgH 1% | andLP = [L5R, LLD

that controls how close L™ is to L“° and u represents a tuning parameter
that controls for the size of the loadings and the factors.

To determine the multiplicative updates of the NMF optimization
problemin equation (4), we compute the derivatives of the optimiza-
tion criterion with respect to each parameter of interest. We call the
optimization criterion Q:

] and yisatuning parameter

VQ(LH) = —HFY 4+ [HFRFHT 4 g H _ y[1CPO] (5)
VQ(LP) = —DFP" + [PFPFY” 4 I P — y[LCHO] (6)
VQ(FY) = LW H + [ @)
VQ(FP) = —LP"D + LPTLPFP (8)

Following the multiplicative update rules of NMF as per Lee and
Seung”, weget the following iterative updates and assume convergence
has been achieved after 100 iterations or when the reconstruction
error is below a user-specified error threshold (here the threshold is
takentobe1x107):

HFY 4+ y[LCPO])
[H—H Q 9)
UV (IHPART 4 M)
(DF*" +ylLMo])
LY | —— (10)
v Y (LPFD DT +,uLD)l.j

(L"H).
F';, . ffj!—” (11)
/ ) (LHTLHFH)U

L°'D)

(t”D), »

R B o
iy y (LDTLDFD)ij

Enhancer-gene-linking strategies
We define an enhancer-gene-linking strategy as an assignment of O,
1or more genes to each SNP with a minor allele count >5 in the 1000

Genomes Project European reference panel®. In the present study, we
primarily considered an enhancer-gene-linking strategy defined by the
union of the Roadmap?*’ and ABC**' strategies. Roadmap and ABC
enhancer-genelinks are publicly available for abroad set of tissues and
have been shown to outperform other enhancer-gene-linking strate-
giesin previous work'”". We consider tissue-specific Roadmap and ABC
enhancer-gene-linking strategies for gene programs corresponding
to any of the biosamples (cell types or tissues) associated with the
relevant tissue. Based on analysis in immune cell types, 87% of genes
expressed in the scRNA-seq were observed to have enhancer-gene
links. We also consider nontissue-specific Roadmap and ABC strategies
(Supplementary Fig.12). Besides this enhancer-gene-linking strategy,
we also considered a standard 100-kb window-based strategy™>'®.

Genomic annotations and the baseline-LD models

We define an annotation as an assignment of a numeric value to each
SNP in a predefined reference panel (for example, 1000 Genomes
Project’®; see Dataavailability). Binary annotations can have a value of
Oorlonly, continuous-valued annotations can have any real value and
our focusis on continuous-valued annotations with values between O
and 1. Annotations that correspond to known or predicted functions
are referred to as functional annotations. The baseline-LD model***!
(v.2.1) contains 86 functional annotations (Data availability), including
binary coding, conserved and regulatory annotations (for example,
promoter, enhancer, histone marks, transcription factor-binding site)
and continuous-valued LD-related annotations.

S-LDSC

S-LDSC assesses the contribution of agenomic annotation to disease
and complex trait heritability". It assumes that the per-SNP heritability
or variance of effect size (of standardized genotype on trait) of each
SNPis equal to the linear contribution of each annotation.

c
var () = act. (14)

where a; is the value of annotation cat SNP/, with the annotation either
continuous or binary (0/1), and ¢, is the contribution of annotation ¢
to per-SNP heritability conditional on the other annotations. S-LDSC
estimates ¢, for each annotation using the following equation:

E(X)=NY G0t +1 (15)

where [(j,¢) = 3, aqr’is thestratified LD score of SNPjwith respect to
annotationc, ry is tl£|e genotypic correlation between SNPsj and k
computed using 1000 Genomes Project, and N is the GWAS
samplesize.

We assess the informativeness of an annotation c using two met-
rics. Thefirst metricis the enrichment score (E-score), whichrelies on
theenrichment of annotation c (£,), defined for binary annotations as
follows (for binary and continuous-valued annotations only):

R2(0)
kg
Zj Tjc
M

E = (16)

where hZ (c)is the heritability explained by the SNPs in annotation c,
weighted by the annotation values where Mis the total number of SNPs
onwhich this heritability is computed (5,961,159 in our analyses). The
E-scoreis defined as the difference between the enrichment for annota-
tion ccorrespondingtoaparticular programagainst an SNP annotation
for all protein-coding genes with a predicted enhancer-gene link in
therelevanttissue. The E-score metric generalizes to continuous-valued
annotations with values between 0 and 1 (ref. 12). We primarily focus
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on the Pvalue for nonzero E-score >2. We chose the threshold of 2
becauseitisaround number thatis roughly the geometric mean of the
value of 1 (no enrichment) and the median value of 3.7 among the
notable enrichments highlighted in Table 1.

The second metricis standardized effect size (r'), the proportion-
ate change in per-SNP heritability associated with a1s.d. in the value
of the annotation, conditional on other annotations included in the
model*’:

7.sd,
L e 17)
< RyM
where sd. is the s.e.m. of annotation ¢, £ is the total SNP heritability
and Mis asdefined previously. z}is the proportionate change in per-SNP
heritability associated with an increase of 1s.d. in the value of a
annotation.

We assessed the statistical significance of the enrichment score
and 7’ via block-jackknife, as in previous work", with significance
thresholds determined via false discovery rate (FDR) correction
(g-value < 0.05)'. The FDR was calculated over all relevant relatively
independent traits for a tissue and all programs of a particular type
(cell-type programs, disease-dependent programs, cellular process
programs) derived from that tissue. We used the P value for nonzero
enrichmentscore as our primary metric, because 7' is often nonsignifi-
cant for small cell-type-specific annotations when conditioned on the
baseline-LD model'**.

MAGMA gene-level and GSEAs

MAGMA assesses the enrichment of genes and gene sets with disease.
MAGMA v.1.08 was run using a 0-kb window around each gene to link
SNPs to genes, using all default MAGMA parameters for running the
gene-level analysis, and using the 1000 Genomes reference panel for
the genotype LD reference. For the gene-set-level analysis, two types
of analysis were performed: (1) a binary gene-set analysis by thresh-
olding the gene programs at different thresholds of program score
(ranging from 0.2 to 0.95) (using the --set-annot flag in MAGMA) and
(2) acontinuous variable-based analysis by treating the gene program
probabilisticgrade or —log(odds) of the probabilistic grade as continu-
ous gene-level variables (using the --gene-covar flagin MAGMA).

GWAS summary statistics

We analyzed publicly available GWAS summary statistics for 60 unique
diseases and traits with genetic correlation <0.9. Each trait passed the
filter of being well powered enough for heritability studies (z-score
for observed heritability >5 as in previous work including Finucane
et al.'®). We used the summary statistics for SNPs with minor allele
count >5in a1000 Genomes Project European reference panel®®. The
lung FEV :forced vital capacity (FVC) trait was corrected for height data.
For COVID-19, we analyzed two phenotypes: general COVID-19 (Covid
versus population, liability scale heritability, A= 0.05, s.e.m.=0.01)
and severe COVID-19 (hospitalized Covid versus population, liability
scale heritability, i*=0.03, s.e.m. = 0.01)'* (meta-analysis round 4, 20
October 2020: https://www.covidl9hg.org/).

Computing a sensitivity/specificity index

We define a sensitivity/specificity index to benchmark (1) sc-linker
versus MAGMA gene-set enrichment analysis (GSEA) and (2) differ-
ent versions of the sc-linker corresponding to varying ways to define
cell-type programs and SNP-to-gene linking strategies.

For the comparison of the sc-linker with MAGMA, we define the
sensitivity/specificity index as the difference of (1) the average of -
log,,(P) of enrichment score (association) using the sc-linker (MAGMA)
for ‘expected enrichments’ (gene program, trait) combinations (sen-
sitivity) and (2) the average of —log;,(P) of GSEA (association) using
the sc-linker (MAGMA) for ‘other enrichments’ (gene program, trait)

combinations (specificity). In Fig. 4e, the expected enrichment com-
binationsincludeimmune programs for blood cell traits and immune
diseases, and brain programs for brain-related traits**°; all other com-
binations are considered to be other enrichments. In Supplementary
Fig. 8, the expected enrichment combinations include B and T cells
for lymphocyte percentage, monocytes for monocyte percentage,
megakaryocytes for platelet count, erythroid for red blood cell (RBC)
countsand RBC distribution width; all other combinations of cell types
and traits are considered to be other enrichments**°. A limitation
of the sensitivity/specificity index is that other enrichments may be
biologically real in some cases; thus, we also consider sensitivity to
detect expected enrichments.

For the comparison of the different versions of the sc-linker
approachusingeither varying definitions of cell-type programs (Sup-
plementaryFigs. 6 and 7) or different ways to link SNPs to genes beyond
Roadmap-ABC enhancer-gene-linking strategy (Fig. 3d,e and Sup-
plementary Fig. 3), we use a slightly different definition of sensitivity/
specificity index. Instead of the —log,,(P) value, we use the * metric
from the S-LDSC method, which evaluates conditional informationin
the SNP annotation corresponding to a gene program, corrected for
the annotation size. This metric is preferred when comparing across
cell-type programs or enhancer-gene-linking strategies that are widely
differentin their corresponding SNP annotationsizes, asis the casein
these comparisons (we note that use of this metric is not possible in
comparisons involving MAGMA, which does not estimate 7*).

Identifying genes driving heritability enrichment

Foreachgene program, wefirst subset the full gene list to only consider
genes with>80% probability grade of membership inthe gene program.
Subsequently, we ranked all remaining genes using MAGMA (v.1.08)
gene-levelsignificance score and considered the top 50 ranked genes
for further downstream analysis, which is different from the top 200
genes used for a ‘baseline’ method for scoring cell-type enrichments
for disease that we used as abenchmark for sc-linker.

Identifying statistically significant differences in cell-type
proportions

To identify changes in cell-type proportions between healthy and
disease tissue, we used a multinomial regression test to jointly test
changesacrossall cell types simultaneously. This helps account for all
cell-type changes simultaneously, because anincrease in the number
of cellsof one cell type implies that fewer cells of the other cell type will
be captured. This regression model and the associated P values were
calculated using the multinom functionin the nnetv.7.3-17R package.

Statistics and reproducibility

Alldatausedinthe present study were generated and designed by the
original studies in which they appear. No statistical method was used
topredetermine sample size. No datawere excluded from the analyses.
The experiments were not randomized. The Investigators were not
blinded to allocation during experiments and outcome assessment.
Allsc-linker heritability enrichment and significance Pvalues are com-
puted using a one-sided S-LDSC test. Multiple hypothesis correction
was performed atthe level of each scRNA-seq dataset across all cell-type
and disease pairs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All postprocessed scRNA-seq data (except for AD; see below) are
available through the original publications with PMIDs: 28091601,
33208946, 31316211, 31097668, 31042697, 31348891, 32832598,
31209336, 31604275,33654293,32403949 and 30355494. In addition,
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gene programs, enhancer-gene-linking annotations, supplementary
data files and high-resolution figures are publicly available online at
https://data.broadinstitute.org/alkesgroup/LDSCORE/Jagadeesh_
Dey sclinker. The AD scRNA-seq data’® are available exclusively at
https://www.radc.rush.edu/docs/omics.htm perits data usage terms.
This work used summary statistics from the UK Biobank study (http://
www.ukbiobank.ac.uk). The summary statistics for UK Biobank used
in this paper are available at https://data.broadinstitute.org/alkes-
group/UKBB. The 1000 Genomes Project Phase 3 data are available
at ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/2013050. The
baseline-LD annotations are available at https://data.broadinstitute.
org/alkesgroup/LDSCORE. We provide a web interface to visualize
the enrichment results for different programs used in our analysis
at https://share.streamlit.io/karthikj89/scgenetics/www/scgwas.py.

Code availability

This work uses the S-LDSC software (https://github.com/bulik/Idsc)
to process GWAS summary statistics as well as S-LDSC software and
MAGMA v.1.08 (https://ctg.cncr.nl/software/magma) for post-hoc
analysis. Code for constructing cell-type, disease-dependent and cel-
lular process gene programs from scRNA-seq data and performing the
healthy and disease-shared NMF can be found at https://github.com/
karthikj89/scgenetics (https://doi.org/10.5281/zenod0.6516048)'°.
Code for processing gene programs and combining with enhancer-
gene links can be found at https://github.com/kkdey/GSSG
(https://doi.org/10.5281/zenodo.6513166)'”.
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Extended Data Fig. 1| Single-cell RNA-seq datasets. UMAP embedding of scRNA-seq profiles (dots) colored by cell type annotations from 12 datasets (labels on top).
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Extended DataFig. 2 | Standardized effect sizes ofimmune and brain
cell type programs. Standardized effect size (7') (dot size) and significance
(-log,o(P-value), dot color) of the heritability enrichment of immune (a,b)
or brain (c) cell type programs (columns) for blood cell traits (a), immune
disease traits (b), or neurological/psychological related traits (c), based
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on SNP annotations generated with the RoadmapuABC-immune (a,b) or
RoadmapuABC-brain (¢) enhancer-gene linking strategy. Numerical results
arereported in Supplementary Data 1. Details for all traits analyzed are in
Supplementary Table 2.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|Z| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|Z| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

O00OX O OO0 000F%

|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection  No software was used for data collection.

Data analysis We used the Harmony python package for single cell batch correction, the scanpy python package for single cell data analysis, the nnet R
package, the LDSC package available on github at https://github.com/bulik/Idsc for computing genetic heritability, and the MAGMA gene/
gene set prioritization software. Additionally, all custom code developed in this study for analysis of single cell data is available at github at:
https://github.com/kkdey/GSSG and https://github.com/karthikj89/scgenetics.

This work uses the S-LDSC software (https://github.com/bulik/Idsc) to process GWAS summary statistics as well as S-LDSC software and
MAGMA v1.08 (https://ctg.cncr.nl/software/magma) for post-hoc analysis. Code for constructing cell type, disease-dependent and cellular
process gene programs from scRNA-seq data and performing the healthy and disease shared NMF can be found at https://github.com/
karthikj89/scgenetics (DOI 10.5281/zenodo.6516048). Code for processing gene programs and combining with enhancer-gene links can be
found at https://github.com/kkdey/GSSG (DOI 10.5281/zenodo.6513166).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All postprocessed scRNA-seq data (except for Alzheimer’s disease; see below) are available through the original publications with PMIDs: 28091601, 33208946,
31316211, 31097668, 31042697, 31348891, 32832598, 31209336, 31604275, 33654293, 32403949, 30355494. Additionally, gene programs, enhancer-gene linking
annotations, supplementary data files and high-resolution figures are publicly available online at https://data.broadinstitute.org/alkesgroup/LDSCORE/
Jagadeesh_Dey_sclinker. The Alzheimer’s disease scRNA-seq data8 is available exclusively at https://www.radc.rush.edu/docs/omics.htm per its data usage terms.
This work used summary statistics from the UK Biobank study (http://www.ukbiobank.ac.uk/). The summary statistics for UK Biobank used in this paper are available
at https://data.broadinstitute.org/alkesgroup/UKBB/. The 1000 Genomes Project Phase 3 data are available at ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/
release/2013050. The baseline-LD annotations are available at https://data.broadinstitute.org/alkesgroup/LDSCORE/. We provide a web interface to visualize the
enrichment results for different programs used in our analysis at: https://share.streamlit.io/karthikj89/scgenetics/www/scgwas.py.
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Life sciences study design
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Sample size We broadly analyzed across 60 available GWAS data that were picked based on relevance to the scRNA-seq data analyzed.
Data exclusions  We analyzed only autosomes based on pre-established exclusion criteria as seen in Finucane et al 2018.

Replication Where possible, we replicated our computational results using independent scRNA-seq data sets from the same tissue.
Randomization  We did not allocate samples in experimental groups.

Blinding There was no group allocation.
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