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Abstract

Background: Knowledge graphs can represent the contents of biomedical literature and databases as subject-
predicate-object triples, thereby enabling comprehensive analyses that identify e.g. relationships between diseases.
Some diseases are often diagnosed in patients in specific temporal sequences, which are referred to as disease
trajectories. Here, we determine whether a sequence of two diseases forms a trajectory by leveraging the predicate
information from paths between (disease) proteins in a knowledge graph. Furthermore, we determine the added
value of directional information of predicates for this task. To do so, we create four feature sets, based on two
methods for representing indirect paths, and both with and without directional information of predicates (i.e.,
which protein is considered subject and which object). The added value of the directional information of predicates
is quantified by comparing the classification performance of the feature sets that include or exclude it.

Results: Our method achieved a maximum area under the ROC curve of 89.8% and 74.5% when evaluated with
two different reference sets. Use of directional information of predicates significantly improved performance by 6.5
and 2.0 percentage points respectively.

Conclusions: Our work demonstrates that predicates between proteins can be used to identify disease trajectories.
Using the directional information of predicates significantly improved performance over not using this information.

Keywords: Knowledge graph, Disease trajectories, Predicates, Temporal relationships, Directionality of predicates,
Protein-protein interactions

Background
Knowledge graphs can be used to represent the biomed-

ical knowledge published in literature and databases [1].

Knowledge is formalized as subject-predicate-object tri-

ples, where pairs of entities are related to each other by

predicates [2]. By integrating triples from a variety of

sources, knowledge graphs can be used to perform com-

putational analyses on the comprehensive body of bio-

medical knowledge [3]. Previous work has used such

analyses to identify new relationships between pairs of

entities, e.g., between drugs and diseases [4, 5], genes

and phenotypes [6, 7], or between diseases [8, 9].

Much research has been performed with knowledge

graphs that only consist of proteins, commonly referred

to as protein-protein interaction networks. Through the

involvement of proteins in metabolic, signaling, immune,

and gene-regulatory networks, protein-protein inter-

action networks can help to mechanistically explain dis-

ease and physiological processes [10–12]. Even though

predicates further specify the types of interactions be-

tween proteins, thereby providing additional information

that can be analyzed, protein-protein interaction net-

works usually do not use them. Instead, most methods

analyze the network topology of proteins [12]. However,
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we have recently shown that analyses that are performed

on protein knowledge graphs benefit from predicate in-

formation [13].

By using the predicates that specify the mechanisms

by which proteins interact, temporal pathobiological re-

lationships may also be identified, although this has not

been demonstrated yet. A key application for such tem-

poral analyses is the identification of disease trajectories,

which are commonly occurring temporal sequences of

diseases diagnosed in patients [14, 15]. An example of a

disease trajectory found in a study by Jensen et al. [14] is

rheumatoid arthritis-precedes-heart failure, where pre-

cedes is defined as “occurs earlier in time. […]” [16]. The

occurrence of the reverse, heart failure-precedes-

rheumatoid arthritis, was found to occur significantly

less frequently in the same study, and therefore was not

classified as a trajectory.

Identifying relationships between diseases is an im-

portant and popular research topic for protein-protein

interaction networks (see Related work section). In such

analyses diseases are represented by so-called disease

proteins, which are proteins encoded by genes that are

associated with a disease [17, 18]. Often cited benefits

include an improved understanding of the biological

mechanisms underlying disease interactions [8, 19, 20],

and the ability to anticipate the next disease, thereby

providing the knowledge necessary to improve treatment

plans and interventions [14, 21]. However, the temporal

aspects of relationships between diseases still require

further investigation. We therefore aim to automatically

determine whether a given sequence of two diseases

forms a trajectory. We do so by leveraging the predicate

information from paths between (disease) proteins in a

knowledge graph. We also determine whether there is

added value in using directional information of predi-

cates for this task.

Related work
Previous authors have mostly focused on identifying un-

directed relationships between diseases with protein net-

works [19–23]. For example, Kontou et al. created a

disease-disease graph, where an edge between diseases

indicated that they shared at least one disease gene [23].

Sun et al. calculated the similarity between diseases

based on their shared disease proteins, shared physio-

logical processes associated with these proteins, or the

graph structures between the proteins [20]. Li and Agar-

wal identified which biological pathways were associated

with diseases via their disease proteins, and identified re-

lationships between diseases based on the number of

shared pathways [19]. Menche et al. identified so-called

disease modules, which are clusters of closely interre-

lated disease proteins [22]. They found that short dis-

tances between the modules of diseases were predictive

for pathobiological relationships. Contrary to Kontou

et al., they demonstrated that sharing disease proteins is

not a requirement for diseases to be related to each

other.

To our knowledge, Bang et al. were the only ones to

use a directed protein-protein interaction network to

identify disease trajectories [21]. The disease proteins of

pairs of diseases were used to identify shared biomolecu-

lar pathways, after which the locations of the disease

proteins within these pathways were determined. The

disease with most upstream disease proteins was classi-

fied as the first within the sequence of diseases. Add-

itionally, 13 million Medicare records were used to

calculate two relative risk scores for each pair of dis-

eases, corresponding with the two possible temporal se-

quences of the disease pair. If the sequence determined

with the protein pathways concurred with the sequence

that generated the largest relative risk, that sequence

was identified as a trajectory. Between a total of 2604

diseases, their method suggested 61 trajectories. These

were evaluated with the biomedical literature, where fur-

ther leads were found for 16 of them. Because the au-

thors only evaluated the trajectories that were suggested

by their method, it is unclear how many trajectories the

method failed to identify.

Materials & methods
Reference sets

The ability of our method to identify disease trajectories

was evaluated with two reference sets, which have iden-

tified disease trajectories by different means. The first

reference set consisted of statistically-derived disease tra-

jectories from a large retrospective study of Danish hos-

pital data, while the second set consisted of literature-

validated disease trajectories that were based on a small

prospective study of Dutch general-practitioner data.

Jensen reference set

The first reference set was based on a study of Jensen

et al. [14]. They retrospectively identified 4014 disease

trajectories from 6.2 million electronic patient records of

Danish hospitals based on diagnoses assigned over 14.9

years. All diagnoses in these patient records were repre-

sented as International Statistical Classification of Dis-

eases and Related Health Problems 10th Revision (ICD-

10) codes. Jensen used the hierarchy within the ICD-10

to aggregate all diagnoses to a high abstraction level,

resulting in 681 two-digit codes, such as “Malignant neo-

plasm of breast” (C50) or “Type 2 diabetes mellitus”

(E11).

Jensen derived the disease trajectories from the Danish

hospital data in a two-step process. First, they identified

sequences of two diseases that were diagnosed within 5

years from each other in at least 10 patients, and which
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had a relative risk higher than 1. Subsequently, the direc-

tion of each sequence had to be corroborated by a bino-

mial test that compared the frequency of the sequence to

the frequency of its reversed sequence. Sequences that ful-

filled both criteria were classified as disease trajectories.

To represent the diseases in the Jensen set on the pro-

tein level, we used the expert-annotated associations be-

tween proteins and diseases from the manually curated

subset of DisGeNet [18]. The Unified Medical Language

System (UMLS) MRCONSO table was used to map the

ICD-10 codes of the Jensen trajectories to the UMLS

identifiers that are used in DisGeNet. Two diseases, “Ac-

cidental poisoning by and exposure to other gases and

vapours” (E47) and “Influenza due to identified zoonotic

or pandemic influenza virus” (J09), were lost because

their ICD-10 codes could not be mapped to a UMLS

identifier. Because only 25% of the high-level diseases in

the Jensen set were represented within DisGeNet, we

used the “narrower” and “child” relationships from the

UMLS MRREL table to identify subclasses of all diseases.

By expanding the diseases with their subclasses, the per-

centage of diseases to which disease proteins could be

assigned was increased to 68% (465 of 679 diseases).

From the 4014 disease trajectories in the Jensen set,

there were 2530 trajectories where disease proteins

could be assigned to both diseases (63%). These 2530

trajectories, which were used as positive cases in this ref-

erence set, contained 453 of the 465 diseases to which

disease proteins could be assigned (97%). On average,

diseases had 90 disease proteins assigned to them (me-

dian: 29, interquartile range: 7–94). Disease proteins

were on average assigned to 6.2 diseases (median: 3,

interquartile range: 2–8).

A set of 168,870 non-trajectories was constructed by

creating all possible sequences of the 453 included dis-

eases, minus the trajectories that were described by Jen-

sen. The set of non-trajectories thereby included

random pairs of diseases, the reversed temporal se-

quences of these random pairs, as well as the reversed

temporal sequences of the trajectories. In the following,

we will refer to the trajectories and non-trajectories as

positive and negative cases to align with common ter-

minology in the machine learning field.

Van den Akker reference set

The second reference set was based on a prospective co-

hort study on disease susceptibility by Van den Akker

et al. [24]. They followed a Dutch cohort of 3460

patients over 2 years, during which their general practi-

tioner notes were examined for sequences of Inter-

national Classification of Primary Care (ICPC) codes

that represent chronic, permanent, and recurrent dis-

eases. In the Netherlands, each citizen is registered with

a general practitioner, who acts like a gatekeeper for

secondary and tertiary medical care, and is responsible

for maintaining a complete medical history of the

patient.

A total of 473 unique sequences of diseases were

found in this cohort, containing 122 distinct diseases.

Each sequence was manually evaluated using the pub-

lished biomedical literature and medical handbooks.

There were 65 sequences of diseases where the literature

stated that the first disease increased the susceptibility of

acquiring the second disease, and 408 sequences where

no evidence of increased susceptibility was found. To

maintain consistent terminology, we will refer to se-

quences with increased susceptibility as trajectories or

positives and to sequences without increased susceptibil-

ity as non-trajectories or negatives.

To assign disease proteins to these 122 diseases we

followed the same procedure as for the Jensen set by

using the MRCONSO table to map the ICPC codes to

UMLS identifiers, after which the MRREL table was used

to group them with their subclasses. Disease proteins

could be assigned to 97 diseases, which formed 55 tra-

jectories and 316 non-trajectories. On average, diseases

had 137 disease proteins assigned to them (median: 49,

interquartile range: 17–167). Disease proteins were on

average assigned to 3 diseases (median: 2, interquartile

range: 1–4).

To determine whether our method could also identify

the correct temporal sequence of the trajectories, 54

additional non-trajectories were created by reversing the

sequence of the diseases in the literature-supported tra-

jectories (the reverse sequence of one trajectory was

already included as a non-trajectory in the data from the

general practitioners).

Knowledge graph

The predicates between proteins were extracted from

the Euretos Knowledge Platform (EKP), a commercially

available knowledge graph (http://www.euretos.com). In

the EKP, information from more than 200 knowledge

sources from a wide variety of domains in the life sci-

ences is represented as triples. The biomedical entities

such as proteins, drugs, or diseases that form the sub-

jects and objects of these triples are represented in the

knowledge graph as vertices, each of which has one or

more identifiers associated with it from external data-

bases. Mappings between the entities described in the

different knowledge sources underlying the knowledge

graph were made by matching their identifiers. The

predicate and provenance of each triple are specified as

part of an edge between the two vertices that represent

the subject and object. The direction of the predicate

goes from subject to object. The predicates in the under-

lying knowledge sources were matched to a standardized

set of 203 predicates. If an exact match was not
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available, a predicate was manually mapped. If there

were no explicit predicates in a database that was used

as a knowledge source, the predicates were manually de-

rived from the database schema. A path between two

vertices is defined as a sequence of triples, or possibly a

single triple, connecting the vertices.

The contents of the EKP are represented as documents

in a NoSQL database, which allows them to be flexibly

modelled and indexed. The EKP can be run on a

reasonably-powered server, requiring an 8-core proces-

sor and 60GB of memory as a minimum. It has previ-

ously been used in pre-clinical research for drug efficacy

screening [13], prioritizing existing drugs as repurposing

candidates for autosomal dominant polycystic kidney

disease [25], and pathway enrichment [26].

Feature sets & machine learning

The paths between the disease proteins were extracted

from the EKP. To keep our graph comprehensible, we

only extracted paths that consisted of one or two triples,

i.e., paths where two disease proteins are connected by

at most one intermediate protein. Within this range,

three scenarios for the paths between the disease proteins

of two diseases A and B were distinguished (Fig. 1.):

1) Overlap, where A and B share a disease protein,

optionally with a path to itself, e.g. a disease protein

of which two copies bind with each other

(homodimerization).

2) Direct path, where a disease protein of A and a

disease protein of B are part of one triple.

3) Indirect path, where one intermediate protein

connects the disease proteins of A and B, requiring

a sequence of two triples.

Two different methods to represent indirect paths be-

tween disease proteins were compared. The first method

constructed so-called metapaths [5], where the sequence

of predicates in an indirect path was used as single feature.

The second method, which we refer to as split paths, con-

sidered each predicate in the indirect paths as a separate

feature [13]. Each method was tested both with and with-

out directional information of predicates. Predicates were

either considered to all be undirected, or predicates were

categorized as being directed or undirected based on ex-

pert assessment (described in the Assessment of predicate

directionality section below), which we refer to as the

Mixed variation. In the overlap scenario, where the subject

and the object were the same protein, predicates were al-

ways considered to be undirected.

All features were binary. Figure 2 shows the four

feature sets that are derived from the example

shown in Fig. 1. We also experimented with feature

sets where all predicates were directed as indicated

by the subject and object of the triple in the EKP.

However, because some predicates are explicitly de-

fined as being undirected, using any directional in-

formation from triples with these predicates would

contradict these definitions. Nonetheless, for the

sake of completeness we have chosen to present

these results in Additional file 1.

Random forests were trained to classify the sequences of

diseases as positive or negative. Classification performance

Fig. 1 Schematic overview of the overlap, direct, and indirect scenarios that were extracted from the knowledge graph. Both diseases A and
disease B have three disease proteins (DP) associated with them according to the manually curated subset of DisGeNet. DisGeNet describes that
DP1 is known to be associated with both diseases, while the knowledge graph describes that it has a “binds with” relationship to itself. DP2 and
DP4 have a direct “inhibits” relationship, and DP3 and DP5 are connected through an indirect path, by an intermediate protein (IP). The arrows
between the proteins indicate which protein is the subject of the “inhibits” predicate, and which one its object. The “binds with” predicate was
considered to be undirected by the experts, and therefore does not have a direction. Based on the paths in the knowledge graph, four feature
sets are created, based on two methods to represent indirect paths, and both with and without the directional information of predicates
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was measured with the area under the receiver operator

characteristic curve (AUC) of a 10-fold cross-validation

experiment [27, 28]. We report the mean and standard de-

viation of the AUCs of 10 repeated cross-validation exper-

iments. The same folds that were used in the experiments

with undirected predicates were also used in the experi-

ments with directed predicates, after which the differences

between the test folds were tested for significance with a

two-sided, paired t-test.

To control for the differences in prevalence and num-

ber of cases between the two reference sets, we also re-

port the classification performance after undersampling

the number of positive and negative cases in the Jensen

set to match those in the Van den Akker set.

For the best performing classifiers we also report sensi-

tivity and specificity at the probability cutoff for which the

Youden index (sensitivity + specificity – 1) is largest [29].

Machine learning and evaluation of results were per-

formed in R [30] with the packages caret [31], ranger

[32], and pROC [33].

Assessment of predicate directionality

Three experts with a strong biomedical background and

familiarity with knowledge graphs assessed the direction-

ality of 47 distinct predicates that were found in the ex-

tracted paths. They were provided with definitions of

these predicates which were obtained from the Pathway

Commons resource [34]. If not available, definitions

were sought through the National Library of Medicine

[35], or the OBO foundry [36]. The assessors could

categorize each predicate as “directed”, “undirected”, or

“don’t know”. To establish directionality, a predicate had

to be categorized as directed or undirected by a majority

(i.e., two or three) of the assessors. Predicates that con-

tain a negation (e.g., “does not interact with”) were auto-

matically categorized the same as the corresponding

predicate without negation (“interacts with”), and there-

fore not presented to the assessors. For some predicates

the categorization was straightforward. For example,

Pathway Commons defines the predicate “interacts with”

as “This is an undirected relation between participant

Fig. 2 The four feature sets that were derived from the paths between the disease proteins in Fig. 1. All features are binary: Black fields indicate a
“True” value, while empty fields indicate a “False” value. For the “Mixed” feature sets, the “Binds with” predicate is assessed to be undirected by
experts, while the “Inhibits” predicate is assessed to be directed
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proteins of a molecular interaction. […]” , and the predi-

cate “catalysis precedes” as “This relation defines di-

rected interactions between proteins. […]” [34]. Six

predicates did not reach a majority in the first round

and were anonymously commented upon by the asses-

sors to motivate their categorization. These comments

were shared between the assessors, after which they

could update their initial choice. Each predicate was

then categorized with a majority.

Table 1 shows the 12 predicates that were categorized

as undirected by the three experts. The other 35 predi-

cates were categorized as directed. A complete overview

of the predicates can be found in Additional file 2.

Results
Extracted paths

In total, 6859 distinct disease proteins were assigned to

the diseases in both reference sets, three of which could

not be mapped to the EKP. Another 430 (6.3%) of the

disease proteins were not found in any of the extracted

paths. From these disease proteins, 314 had no relation-

ship to any other protein in the EKP.

The remaining 6426 disease proteins were involved in

1,338,310 direct paths and 833,546,575 indirect paths,

while 2581 disease proteins had 7354 paths to them-

selves. All paths were based on 2,015,738 distinct triples,

which contained 17,132 different proteins and 47 differ-

ent predicates.

The overlap scenario, where the two diseases in the

trajectory share at least one disease protein (scenario 1,

Feature sets & Machine learning section), occurred in

58% of the positive cases of the Jensen set, and 95% of

the positive cases of the Van den Akker set. No indirect

paths (scenario 3, Feature sets & Machine learning sec-

tion) were found between the disease proteins of 119

positive cases (4.7%), and 18,217 negative cases of the

Jensen set (10.8%), and one positive case (1.8%) and 15

negative cases (4.1%) of the Van den Akker set.

Classification results

The classification performance for both reference sets is

shown in Table 2. Mixed metapaths performed best,

achieving mean AUCs of 89.8% for the Jensen set and

74.5% for the Van den Akker set. Overall, classification

performance on the Van den Akker set was 9.9 to 15.3

percentage points lower than on the Jensen set, while

standard deviations were 9.6 to 11.3 percentage points

higher. Metapaths performed 4.1 to 7.0 percentage

points better than split paths. The performance of the

mixed feature sets was 1.9 to 6.5 percentage points

higher than the undirected feature sets. All differences

between mixed and undirected feature sets were signifi-

cant (p-values for Jensen metapaths and split paths: <

0.001; Van den Akker metapaths: 0.02, split paths 0.001).

To quantify how much of the difference in AUC be-

tween the two reference sets could be attributed to their

difference in size, the Jensen set was undersampled to

the same number of positive and negative cases as the

Van den Akker set. With the exception of the mixed

metapaths, performance dropped below the performance

that was achieved with the Van den Akker set. The

standard deviations also increased from 0.9–1.7% to 8.4–

12.3%. The latter values are comparable to the standard

deviations on the Van den Akker set.

Figure 3 shows the receiver operating characteristic

(ROC) curves of the mixed metapath classifiers that per-

formed best. For the Jensen set, sensitivity and specificity

at the maximum Youden index were 79.2% and 82.4%,

respectively, while for the Van den Akker set these were

73.6% and 64.3%.

Error analysis

For our best classifier (mixed metapath features, trained

on the Jensen set), we analyzed the top-15 false-positive

and the top-15 false-negative cases, searching the litera-

ture for information that might explain the errors. The

results of our analysis of the false positives are shown in

Table 3. Overall, the first 10 out of the top 15 false posi-

tives appear to be omissions from the Jensen set rather

than misclassifications. For two false-positive cases, po-

tential mechanisms have been suggested, but the current

evidence is inconclusive on whether those mechanisms

are valid. For the remaining three false-positive cases no

literature could be found, which may therefore be inter-

esting leads for further investigation.

Table 4 shows the results for the top-15 false nega-

tives. For six false negatives, the second disease was

likely to be caused by the treatment of the first disease.

For example, the radiation that is used to treat the ma-

lignant neoplasm of the larynx may compromise the

Table 1 Predicates categorized as undirected as a result of the
assessment process

Undirected Predicates

binds with

coexists with

does not coexist with

forms protein complex with

interacts with

does not interact with

is associated with

is compared with

is functionally related to

is spatially related to

is the same as

ortholog is associated with

Vlietstra et al. Journal of Biomedical Semantics            (2020) 11:9 Page 6 of 11



immune system around the throat and mouth, thereby

increasing susceptibility to oropharyngeal candidiasis

[54]. Two false-negative trajectories are likely to have

mechanical causes, rather than molecular pathways. The

trajectory from malignant neoplasms of the ovary to nu-

trient deficiency can be explained by the blocking of the

intestines by the ovarian tumor, thereby blocking the en-

tire digestive system [53]. For four of the false-negative

trajectories, no description could be found in the litera-

ture, making their assessment impossible. Assessment of

the three remaining false negatives is speculative. For ex-

ample, the trajectory from transient ischemic attacks

(TIA) to vitamin B12 deficiencies may be an artifact of

the medical record keeping. Vitamin B12 is known to

protect against TIAs [52], so what may often happen is

that a vitamin B12 deficiency is only diagnosed after the

more acute TIA has been treated in an emergency room.

Discussion
Our work demonstrates that disease trajectories can be

identified with the predicates between proteins in a know-

ledge graph. To do so, our machine-learning based meth-

odology needed to successfully identify both the correct

pairs of diseases, as well as their correct temporal se-

quences. Overall, representing indirect paths as metapaths

performed superior as compared to representing them as

split paths. Using the directional information of predicates

significantly improved performance over not using this

information. Undersampling the Jensen set to the same

number of positive and negative cases as the Van den

Akker set showed that its lower performance and higher

standard deviations could partially be explained by its small

size.

In previous work, Bang et al. [21] identified disease trajec-

tories by calculating the relative risk between two diseases

and combining this with the relative position of disease pro-

teins in biomolecular pathways. Their method is fully

dependent on shared disease proteins between the two dis-

eases, whereas our method also works when there are only

(in) direct paths between disease proteins. In the Jensen set,

this holds for 42% of the trajectories. Performance compari-

son of the methods is difficult because Bang et al. only vali-

dated the disease trajectories that were suggested by their

method, but did not validate the non-trajectories. Thus,

only the precision of their method can be calculated but no

insight is provided in the number of false-negative trajec-

tories. A final complication for the comparison between the

two methods is the claim of Bang et al. to discover causal

relationships between diseases, rather than only temporal

ones. Unfortunately, they refer to an example to define

causal relationships between diseases, making it difficult to

pinpoint how these differ from disease trajectories.

Although we do not foresee direct clinical application

of our work, our high performance may persuade ex-

perts to further examine the protein paths underlying

some positively classified trajectories, either known or

Table 2 Classification results for the four feature sets for both reference sets

Jensen set Jensen set - undersampled Van den Akker set

Metapaths Split paths Metapaths Split paths Metapaths Split paths

Undirected 83.3 (1.7) 78.3 (1.7) 64.2 (12.1) 61.9 (12.3) 72.5 (11.8) 68.4 (13.0)

Mixed 89.8 (0.9) 82.8 (1.2) 82.3 (8.4) 69.6 (13.1) 74.5 (10.5) 70.3 (11.4)

The values in the columns indicate the mean AUC and its standard deviation in % of 10 cross-validation experiments

Fig. 3 ROC curves of the mixed metapaths classifiers for the Jensen set and the Van den Akker set
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newly suggested. Interpreting these protein paths might

provide additional clues about the mechanism through

which the first disease leads to the second. Identifying

and understanding these mechanisms is likely to im-

prove prevention, prediction of disease progression,

intervention, and drug development, thereby indirectly

supporting clinical practice and health-care policy. For

now, such detailed examinations of the protein paths

were beyond the scope of this project.

A downside of working on the protein level was that not

all disease trajectories could be studied. More than a third

of the trajectories of the Jensen set, and a fifth of the Van

den Akker set was lost because disease proteins could not

be assigned to one or both of the diseases in a trajectory.

Even when disease proteins could be assigned to both dis-

eases, alternative explanations were sometimes more

plausible. For example, our analysis of the false-negative

cases suggested that some trajectories could be explained

mechanically, or were likely due to a side effect of the

treatment for the first disease. To determine the true per-

formance of our method, a validated set of trajectories that

are caused by biomolecular mechanisms would be needed.

Alternatively, the range of trajectories that can be analyzed

may be broadened by linking diseases to other types of

disease information available in the EKP, e.g., information

about drugs or physiological processes.

The two reference sets that were used in this research

were both based on patient data, but differed in many

other respects. The sequences of diseases in the Jensen

set were classified as trajectories based on statistics

calculated from 15 years of nationwide hospital data.

Despite this large volume of data, our analysis of the

false-positive cases showed that the set of trajectories

was incomplete. The literature evaluation underlying the

Van den Akker set ensures that such omissions are un-

likely to occur there. Furthermore, the negatives in the

Van den Akker set either were observed in patients, or

were reversals of literature-supported trajectories. Be-

cause the negative cases in the Jensen set were based on

randomization, this set is likely to contain pairs of dis-

eases that never co-occur within patients. Finally, the

types of diagnoses within the trajectories differ between

the two reference sets. The hospital patients in the

Jensen set are more likely to suffer from more serious

and complicated diseases than patients visiting a general

practitioner in the Van den Akker set. On the other

hand, the Van den Akker set only included chronic, per-

manent, and recurring diseases, thereby excluding dis-

eases that are acute and rapidly treatable.

Only the definitions from Pathway Commons stated

whether the predicate was directed or not. The defini-

tions of predicates from other knowledge sources,

Table 3 Assessment of the top 15 false-positive trajectories

First disease ICD-10 Second disease ICD-10 Assessment

Mental and behavioural disorders due to
use of alcohol

F10 Alzheimer’s disease G30 Described in literature [37]

Essential (primary) Hypertension I10 Alzheimer’s disease G30 Described in literature [38]

Osteoporosis without pathological fracture M81 Alzheimer’s disease G30 Described in literature [39]

Non-insulin-dependent diabetes mellitus E11 Alzheimer’s disease G30 Described in literature [40]

Other disorders of pancreatic internal
secretion

E16 Alzheimer’s disease G30 Described in literature [41]

Schizophrenia F20 Other septicaemia A41 Described in literature, but commonly
occurs via intermediate diseases such
as agranulocytosis and pneumonia [42]

Lupus erythematosus L93 Other disorders of
urinary system

N39 Described in literature [43]

Disorders of vestibular function H81 Alzheimer’s disease G30 Described in literature [44]

Lupus erythematosus L93 Respiratory failure, not
elsewhere classified

J96 Described in literature [45]

Unspecified Dementia F03 Dementia in Alzheimer’s
Disease

F00 Further specification of diagnosis

Retinal vascular occlusions H34 Cystitis N30 No relationship found in literature

Chronic ischaemic heart disease I25 Other septicaemia A41 Cardiac troponins are suggested to be
biomarkers for sepsis [46]

Hyperplasia of prostate N40 Alzheimer’s disease G30 No relationship found in literature

Hyperparathyroidism and other disorders
of parathyroid gland

E21 Alzheimer’s disease G30 Suggested in literature (via calcium) [47]

Asthma J45 Umbilical hernia K42 No relationship found in literature
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including the National Library of Medicine, left room

for interpretation. As a result, six predicates required a

second round of assessment before a majority was

achieved between the assessors. With ontologies playing

increasingly important roles in data standardization and

sharing [58], the directionality of predicates should al-

ways be clear. The Relationship Ontology already sup-

ports categorization of predicates as directed or

undirected, which it refers to as asymmetric or symmet-

ric predicates, but unfortunately is far from complete

and did not cover the predicates in our set [59].

A potential new application for our method would be

to identify trajectories for rare and low-prevalence dis-

eases, where insufficient patient data is available for

studies such as those performed by Jensen or Van den

Akker. Because our method identifies trajectories based

on a protein network, it is independent of the prevalence

of a disease. Furthermore, many of the estimated 5 to 8

thousand rare diseases have well known genetic causes

[60], making them highly suitable to be analyzed with

our method.

A possible extension of our work would be the identi-

fication of longer disease trajectories, e.g. the trajectories

consisting of sequences of four diseases that were also

described by Jensen et al. [14]. However, as far as we are

aware all available knowledge-graph methods limit

themselves to identifying relationships between two en-

tities. Expanding the current methods to identify longer

sequences should therefore be a separate investigation.

Conclusions
Our work demonstrates that disease trajectories can be

identified with the predicate information from a know-

ledge graph. We also demonstrate and quantify the

added value of using directional information of predi-

cates for this task. Our work thereby enables the discov-

ery of temporal relationships with predicate information

from knowledge graphs.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13326-020-00228-8.

Additional file 1. Description and results of the directed variation
feature sets. This file describes the feature sets and classification results of
the variation where all predicates in the feature sets have a direction as
specified by their triples in the knowledge graph. Their categorization as
directed or undirected by the assessors was not used in this variation.
Figure S1 shows an example of the feature sets derived from Fig. 1, with

Table 4 Assessment of the top 15 false-negative trajectories

First disease ICD-10 Second disease ICD-10 Assessment

Thyrotoxicosis [hyperthyroidism] E05 Other disorders of eye
and adnexa

H57 Likely side effect of treatment [48]

Irritable bowel syndrome K58 Spondylosis M47 No relationship found in literature

Vitamin B12 deficiency anaemia D51 Other septicaemia A41 Vitamin B12 has been hypothesized as treatment
for sepsis [49]

Mental and behavioural disorders due
to use of alcohol

F10 Acute and transient
psychotic disorders

F23 Described in literature, but no clear role for protein
interactions [50]

Gonarthrosis [arthrosis of knee] M17 Erysipelas A46 No relationship found in literature

Senile cataract H25 Other disorders of lens H27 Likely side effect of treatment [51]

Transient cerebral ischaemic attacks
and related syndromes

G45 Vitamin B12 deficiency
anaemia

D51 Only reverse described in literature, that vitamin B12
protects against stroke [52]

Malignant neoplasm of ovary C56 Deficiency of other
nutrient elements

E61 Likely mechanical cause [53]

Malignant neoplasm of larynx C32 Candidiasis B37 Likely side effect of treatment [54]

Other intervertebral disc disorders M51 Somatoform disorders F45 No relationship found in literature

Gonarthrosis [arthrosis of knee] M17 Other local infections
of skin and subcutaneous
tissue

L08 No relationship found in literature

Benign neoplasm of brain and other
parts of central nervous system

D33 Other septicaemia A41 Likely intermediate through infection, which follows
surgery or weakening of the immune system after
(radiation) treatment

Insulin-dependent diabetes mellitus E10 Other disorders of eye
and adnexa

H57 Diabetes is a risk factor for many eye diseases [55],
but it is not clear whether these fall under this ICD-10
code

Noninflammatory disorders of ovary,
fallopian tube and broad ligament

N83 Ventral hernia K43 Likely side effect of treatment [56]

Other intervertebral disc disorders M51 Other polyneuropathies G62 Likely mechanical cause [57]
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the difference that in this variation the “Binds with” predicate also is
directed. Table S1 shows the classification performance of the directed
feature sets along with the performances of the undirected and the
mixed variations. Table S2 shows the p-values of the two-sided paired t-
tests between all variations.

Additional file 2. Overview of predicates that were found in the paths.
This file contains Table S3, which shows the 47 predicates that connect
proteins in the knowledge graph and were used to construct the
features.

Abbreviations

AUC: Area under the receiver operator characteristic curve; DP: Disease
Protein; EKP: Euretos Knowledge Platform; ICD-10: International Statistical
Classification of Diseases and Related Health Problems 10th Revision;
ICPC: International Classification of Primary Care; IP: Intermediate Protein;
ROC: Receiver Operating Characteristic curve; TIA: Transient Ischemic Attack;
UMLS: Unified Medical Language System

Acknowledgements

We would like to thank Euretos B.V. for providing access to the Euretos
Knowledge Platform, and Drs. Anneke M. Sijbers and Solène Grosdidier for
their help in assessing the predicates.

Authors’ contributions

WV, RV, EvM, and JK designed the study. WV created the feature sets,
performed the error analysis, and drafted the manuscript. WV and RV
performed the data analyses. MvdA and RV supplied the Van den Akker
reference set. RV, EvM and JK supervised the study and critically revised the
manuscript. All authors read and approved the final manuscript.

Funding

No funding was received for this project.

Availability of data and materials

The datasets and scripts that are used in this study are available at
https://github.com/Wytz/DiseaseTrajectories

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Medical Informatics, Erasmus University Medical Center, Dr.
Molewaterplein 50, 3015 GE Rotterdam, the Netherlands. 2Department of
Methodology & Statistics, Maastricht University, PO Box 616, 6200 MD
Maastricht, the Netherlands. 3Institute of General Practice, Johann Wolfgang
Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
4Department of Family Medicine, Maastricht University, PO Box 616, 6200 MD
Maastricht, the Netherlands.

Received: 14 February 2020 Accepted: 12 August 2020

References

1. Antezana E, Kuiper M, Mironov V. Biological knowledge management: the
emerging role of the semantic web technologies. Brief Bioinform. 2009;10:
392–407.

2. Manola F, Miller E. W3C.org Triple specification. W3C.org. 2004 [cited 2018
Jun 4]. Available from: https://www.w3.org/TR/rdf-concepts/#dfn-rdf-triple.

3. Chen H, Ding L, Wu Z, Yu T, Dhanapalan L, Chen JY. Semantic web for
integrated network analysis in biomedicine. Brief Bioinform. 2009;10:177–92.

4. Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current
trends in computational drug repositioning. Brief Bioinform. 2016;17:2–12.

5. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al.
Systematic integration of biomedical knowledge prioritizes drugs for
repurposing. eLife. 2017;6:1–35.

6. Bebek G, Koyutürk M, Price ND, Chance MR. Network biology methods integrating
biological data for translational science. Brief Bioinform. 2012;13:446–59.

7. Kiefer RC, Freimuth RR, Chute CG, Pathak J. Mining genotype-phenotype
associations from public knowledge sources via semantic web querying.
AMIA Jt Summits Transl Sci Proc. 2013;2013:118–22.

8. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based
approach to human disease. Nat Rev Genet. 2011;12:56–68.

9. Il GK, Choi IG. Exploring the human diseasome: The human disease
network. Brief Funct Genomics. 2012;11:533–42.

10. Titz B, Schlesner M, Uetz P. What do we learn from high-throughput protein
interaction data? Expert Rev Proteomics. 2004;1:111–21.

11. Kann MG. Protein interactions and disease: computational approaches to
uncover the etiology of diseases. Brief Bioinform. 2007;8:333–46.

12. Furlong LI. Human diseases through the lens of network biology. Trends
Genet. 2013;29:150–9.

13. Vlietstra WJ, Vos R, Sijbers AM, van Mulligen EM, Kors JA. Using predicate
and provenance information from a knowledge graph for drug efficacy
screening. J Biomed Semantics. 2018;9:23.

14. Jensen AB, Moseley PL, Oprea TI, Ellesøe SG, Eriksson R, Schmock H, et al.
Temporal disease trajectories condensed from population-wide registry data
covering 6.2 million patients. Nat. Commun. 2014;5:4022.

15. Giannoula A, Gutierrez-Sacristán A, Bravo Á, Sanz F, Furlong LI. Identifying
temporal patterns in patient disease trajectories using dynamic time
warping: a population-based study. Sci Rep. 2018;8:1–14.

16. Kilicoglu H, Shin D, Fiszman M, Rosemblat G, Rindflesch TC. SemMedDB: a
PubMed-scale repository of biomedical semantic predications.
Bioinformatics. 2012;28:3158–60.

17. Collins A. The genomic and functional characteristics of disease genes. Brief
Bioinform. 2013;16:16–23.

18. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno
E, et al. DisGeNET: a comprehensive platform integrating information on human
disease-associated genes and variants. Nucleic Acids Res. 2017;45:D833–9.

19. Li Y, Agarwal P. A pathway-based view of human diseases and disease
relationships. PLoS One. 2009;4:e4346.

20. Sun K, Gonçalves JP, Larminie C, Przulj N. Predicting disease associations via
biological network analysis. BMC Bioinformatics. 2014;15:304.

21. Bang S, Kim JH, Shin H. Causality modeling for directed disease network.
Bioinformatics. 2016;32:i437–44.

22. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et al.
Disease networks. Uncovering disease-disease relationships through the
incomplete interactome. Science. 2015;347:1257601.

23. Kontou PI, Pavlopoulou A, Dimou NL, Pavlopoulos GA, Bagos PG.
Network analysis of genes and their association with diseases. Gene.
2016;590:68–78.

24. van den Akker M, Vos R, Knottnerus JA. In an exploratory prospective study
on multimorbidity general and disease-related susceptibility could be
distinguished. J Clin Epidemiol. 2006;59:934–9.

25. Malas TB, Vlietstra WJ, Kudrin R, Starikov S, Charrout M, Roos M, et al. Drug
prioritization using the semantic properties of a knowledge graph. Sci Rep.
2019;9:1–10.

26. Toonen LJA, Overzier M, Evers MM, Leon LG, Van Der Zeeuw SAJ, Mei H,
et al. Transcriptional profiling and biomarker identification reveal tissue
specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3
mouse model. Mol Neurodegener. 2018;13:1–18.

27. Bradley AP. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recogn. 1997;30:1145–59.

28. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. The use of receiver operating
characteristic curves in biomedical informatics. J Biomed Inform. 2005;38:404–15.

29. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.
30. R Core Team. R: A Language and Environment for Statistical Computing.

Vienna, Austria. 2019.
31. Kuhn M. Building predictive models in R using the caret package. J Stat

Softw. 2008;28:1–26.
32. Wright MN, Ziegler A. Ranger : a fast implementation of random forests for

high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17.
33. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an

open-source package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics. 2011;12:1–8.

Vlietstra et al. Journal of Biomedical Semantics            (2020) 11:9 Page 10 of 11

https://github.com/Wytz/DiseaseTrajectories
http://w3c.org
http://w3c.org
https://www.w3.org/TR/rdf-concepts/#dfn-rdf-triple


34. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, et al.
Pathway commons, a web resource for biological pathway data. Nucleic
Acids Res. 2011;39:D685–90.

35. Kilicoglu H, Rosemblat G, Fiszman M, Rindflesch TC. Constructing a semantic
predication gold standard from the biomedical literature. BMC
Bioinformatics. 2011;12:486.

36. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. The OBO
foundry: coordinated evolution of ontologies to support biomedical data
integration. Nat Biotechnol. 2007;25:1251–5.

37. Venkataraman A, Kalk N, Sewell G, Ritchie CW, Lingford-Hughes A. Alcohol
and Alzheimer’s disease-does alcohol dependence contribute to beta-
amyloid deposition, neuroinflammation and neurodegeneration in
Alzheimer’s disease? Alcohol Alcohol. 2017;52:151–8.

38. Faraco G, Iadecola C. Hypertension: a harbinger of stroke and dementia.
Hypertension. 2013;62:810–7.

39. Chen YH, Lo RY. Alzheimer’s disease and osteoporosis. Tzu-chi Med J. 2017;
29:138–42.

40. Haan MN. Therapy insight: type 2 diabetes mellitus and the risk of late-
onset Alzheimer’s disease. Nat Clin Pract Neurol. 2006;2:159–66.

41. Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyperinsulinemia and risk of
Alzheimer disease. Neurology. 2004;63:1187–92.

42. Li KJ, Greenstein AP, Delisi LE. Sudden death in schizophrenia. Curr Opin
Psychiatry. 2018;31:169–75.

43. Hidalgo-Tenorio C, Jiménez-Alonso J, De Dios LJ, Tallada M, Martínez-Brocal
A, Sabio JM. Urinary tract infections and lupus erythematosus. Ann Rheum
Dis. 2004;63:431–7.

44. Wei EX, Oh ES, Harun A, Ehrenburg M, Agrawal Y. Vestibular loss predicts
poorer spatial cognition in patients with Alzheimer’s disease. J Alzheimers
Dis. 2018;61:995–1003.

45. Pego-Reigosa JM, Medeiros DA, Isenberg DA. Respiratory manifestations of
systemic lupus erythematosus: old and new concepts. Best Pract Res Clin
Rheumatol. 2009;23:469–80.

46. Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104:3–11.
47. Berridge MJ. Calcium hypothesis of Alzheimer’s disease. Eur J Phys. 2010;

459:441–9.
48. Li HX, Xiang N, Hu WK, Jiao XL. Relation between therapy options for

graves’ disease and the course of graves’ ophthalmopathy: a systematic
review and meta-analysis. J Endocrinol Investig. 2016;39:1225–33.

49. Wheatley C. A scarlet pimpernel for the resolution of inflammation? The
role of supra-therapeutic doses of cobalamin, in the treatment of systemic
inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or
traumatic shock. Med Hypotheses. 2006;67:124–42.

50. Jordaan GP, Emsley R. Alcohol-induced psychotic disorder: a review. Metab
Brain Dis. 2014;29:231–43.

51. Yi K, Chen TC. Aphakic glaucoma after congenital cataract surgery. Int
Ophthalmol Clin. 2008;48:87–94.

52. Spence J. Nutrition and Risk of Stroke. Nutrients. 2019;11:647.
53. Gadducci A, Cosio S, Fanucchi A, Genazzani AR. Malnutrition and cachexia

in ovarian cancer patients: Pathophysiology and management. Anticancer
Res. 2001:2941–7.

54. de Freitas EM, Nobre SAM, de Oliveira Pires MB, Faria RVJ, Batista AUD,
Bonan PRF. Oral Candida species in head and neck cancer patients treated
by radiotherapy. Auris Nasus Larynx. 2013;40:400–4.

55. Jeganathan VSE, Wang JJ, Wong TY. Ocular associations of diabetes other
than diabetic retinopathy. Diabetes Care. 2008;31:1905–12.

56. Lok IH, Sahota DS, Rogers MS, Yuen PM. Complications of laparoscopic surgery
for benign ovarian cysts. J Am Assoc Gynecol Laparosc. 2000;7:529–34.

57. Kamradt T, Rasch C, Schuld C, Böttinger M, Mürle B, Hensel C, et al. Spinal
cord injury: association with axonal peripheral neuropathy in severely
paralysed limbs. Eur J Neurol. 2013;20:843–8.

58. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A,
et al. The FAIR guiding principles for scientific data management and
stewardship. Sci Data. 2016;3:160018.

59. Smith B, Rosse C, Ceusters W, Neuhaus F, Mungall CJ, Kumar A, et al.
Relations in biomedical ontologies. Genome Biol. 2005;6:R46.

60. Aymé S, Schmidtke J. Networking for rare diseases: a necessity for Europe.
Bundesgesundheitsblatt - Gesundheitsforsch - Gesundheitsschutz. 2007;50:1477–83.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Vlietstra et al. Journal of Biomedical Semantics            (2020) 11:9 Page 11 of 11


	Abstract
	Background
	Results
	Conclusions

	Background
	Related work
	Materials & methods
	Reference sets
	Jensen reference set
	Van den Akker reference set

	Knowledge graph
	Feature sets & machine learning
	Assessment of predicate directionality

	Results
	Extracted paths
	Classification results
	Error analysis

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

