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Bladder cancer is a common malignant disease characterized by
frequent recurrences1,2. The stage of disease at diagnosis and
the presence of surrounding carcinoma in situ are important in
determining the disease course of an affected individual3.
Despite considerable effort, no accepted immunohistological or
molecular markers have been identified to define clinically rele-
vant subsets of bladder cancer. Here we report the identifica-
tion of clinically relevant subclasses of bladder carcinoma using
expression microarray analysis of 40 well characterized bladder
tumors. Hierarchical cluster analysis identified three major
stages, Ta, T1 and T2-4, with the Ta tumors further classified
into subgroups. We built a 32-gene molecular classifier using a
cross-validation approach that was able to classify benign and
muscle-invasive tumors with close correlation to pathological
staging in an independent test set of 68 tumors. The classifier
provided new predictive information on disease progression in
Ta tumors compared with conventional staging (P < 0.005). To
delineate non-recurring Ta tumors from frequently recurring Ta
tumors, we analyzed expression patterns in 31 tumors by
applying a supervised learning classification methodology,
which classified 75% of the samples correctly (P < 0.006). Fur-
thermore, gene expression profiles characterizing each stage
and subtype identified their biological properties, producing
new potential targets for therapy.
Parallel gene-expression monitoring is a powerful tool for ana-
lyzing relationships between tumors, discovering new tumor
subgroups, assigning tumors to pre-defined classes, identifying
co-regulated or tumor stage–specific genes and predicting dis-
ease outcome4–17. In a recent study of bladder cancer, we identi-
fied functional groups of genes whose co-regulation formed the
basis for separating bladder tumors into superficial and muscle-
invasive tumors18. Here, we used microarrays to analyze gene
expression and to predict tumor classes in 40 bladder tumors
from a clinical specimen bank holding more than 35,000 samples
selected on the basis of disease course, stage, grade, concomitant
carcinoma in situ (CIS) and recurrence frequency (number of
new tumors per year; Table 1 and Web Table A online). We
labeled RNA from tumors and from four normal tissue samples
and hybridized it to Affymetrix oligonucleotide microarrays. We
then subjected the 1,767 genes (26%) that were expressed at dif-

ferent levels in tumor tissue versus normal urothelium to a two-
way hierarchical cluster analysis. This separated all 40 tumors
according to conventional pathological stages and grades with
only a few exceptions (Fig. 1a). The distinct separation of the
tumor groups according to stage with practically no overlap
between groups was also shown by multidimensional scaling
analysis (Fig. 1b).

To reduce the number of genes needed for class prediction, we
identified the 88 genes that varied most between tumor samples
(s.d. ≥ 4) and that were considered to be cancer-related by the
Cancer Genome Anatomy Project (CGAP; at the US National
Cancer Institute). Hierarchical clustering using only these genes
was almost identical to that using the 1,767 genes (Fig. 1c), indi-
cating that the tumor clustering does not simply reflect larger
amounts of stromal components in the invasive tumor samples.
Many cell types are present in the biopsy samples, however, and
the specific origin of the transcript cannot be determined.

The clustering of the 1,767 genes identified several characteris-
tic profiles that differed between the tumor groups (Fig. 1d).
Cluster A was highly expressed in all the Ta grade 3 tumors
(Fig. 2) and contains genes encoding eight transcription factors
and other nuclear genes related to transcriptional activity. Cluster
C contains genes that were upregulated in Ta grade 3 tumors with
high recurrence rate and CIS and in T2+ and some T1 tumors.
This cluster showed a tight co-regulation of genes related to cell-
cycle control and mitosis (Fig. 2), and thus may be associated with
increased cellular proliferation and may serve as new targets for
small-molecule therapy19. Cluster F showed a tight cluster of
genes related to keratinization (Fig. 2). Two tumors (875-1 and
1178-1) highly expressed these genes, and a re-evaluation of the
pathology slides indicated that these were the only two samples to
show squamous metaplasia, a characteristic not infrequently seen
in invasive bladder tumors by light microscopy. Cluster G con-
tains genes related to angiogenesis and connective tissue that were
upregulated in T2+ tumors and in the Ta grade 3 tumors with CIS
that clustered in the invasive branch (Fig. 2). Increased transcrip-
tion of these genes may indicate a profound remodeling of the
stroma, and thus they may also serve as new targets for drug ther-
apy20. Notably, these genes most clearly separated the Ta grade 3
tumors surrounded by CIS from all other Ta grade 3 tumors. This
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indicates that analysis of stroma-remodeling genes in Ta tumors
could replace the present invasive procedure for diagnosing CIS.

Clusters B, D, E, H, I and J contain genes related to nuclear
proteins, cell adhesion, growth factors, stromal proteins,
immune system and proteases, respectively (see Web Fig. A
online). A summary of the stage-related gene expression is
shown in Table 2. The gene clusters are based on tumor biopsy
samples, which contain contributions from many cell types as
well as malignant cells.

An objective prediction of classes of bladder tumors using a
limited set of genes could be of potential clinical use. We therefore
built a maximum-likelihood classifier using only those tumors
(35 of 40) that showed a group-specific expression pattern (see

Web Fig. B online). We evaluated the classifier using a ‘leave one
out’ cross-validation scheme11,12 and selected for classification
those predictive genes that showed the largest possible separation
of the three groups. Each tumor was classified according to its
proximity to the mean of the three groups (Fig. 3a). We tested the
classifier’s performance using 1–200 genes in cross-validation
loops, and obtained the best correlation to pathologic staging by
using a 38-gene cross-validation scheme (see Web Fig. C online).
We selected 32 genes that were used in at least 75% of the cross-
validations (27 times) to constitute our final classifier model (see
Web Table B online). Notably, some of the Ta tumors surrounded
by CIS were classified as T2, thus adding new information to clin-
ical and pathologic classification.

Table 1 • Clinical data on disease courses and results of molecular classification

Sample Previous Tumor Subsequent Carcinoma Reviewed Classifierc

tumors analyzed tumors in situa histologyb

Ta grade II tumors – no progression

709-1 Ta gr2 no Ta gr3 Ta
968-1 Ta gr2 1 Ta no Ta
934-1 Ta gr2 no Ta
928-1 Ta gr2 no Ta/T1
930-1 Ta gr2 no Ta

Ta grade III tumors – no prior T1 tumor or CIS

989-1 Ta gr3 no Ta
1264-1 Ta gr3 3 Ta no Ta
876-5 4 Ta Ta gr3 no Ta
669-7 5 Ta Ta gr3 4 Ta no Ta gr2 Ta
716-2 1 Ta Ta gr3 2 Ta no Ta

Ta grade III tumors – no prior T1 tumor but CIS in selected site biopsies

1070-1 Ta gr3 1 Ta subsequent visit Ta
956-2 Ta gr3 1 Ta sampling visit T2
1062-2 Ta gr3 1 T1 sampling visit Ta
1166-1 Ta gr3 sampling visit Ta
1330-1 Ta gr3 sampling visit T2

Ta grade III tumors – a prior T1 tumor and CIS in selected site biopsies

747-7 5 Ta, 1 T1 Ta gr3 3 Ta sampling visit Ta
112-10 7 Ta, 2 T1 Ta gr3 2 Ta, 4 T1 previous visit Ta
320-7 1 Ta, 2 T1 Ta gr3 2 Ta sampling visit Ta
967-3 2 T1 Ta gr3 1 T1 sampling visit Ta

T1 grade III tumors – no prior muscle-invasive tumor

625-1 T1 gr3 no T1
847-1 T1 gr3 no T1
1257-1 T1 gr3 sampling visit T1
919-1 T1 gr3 no T1
880-1 T1 gr3 4 Ta no T1
812-1 T1 gr3 no T1
1269-1 T1 gr3 no no review T1
1083-2 1 Ta T1 gr3 no no review T1
1238-1 T1 gr3 1 Ta, 1 T2+ no T1
1065-1 T1 gr3 subsequent visit no review T1
1134-1 T1 gr3 3 T1 sampling visit T2 gr3 T1

T2+ grade III/IV tumors – only primary tumors

1164-1 T2+ gr4 no T2+ gr3 T1
1032-1 T2+ gr? nd no review T2
1117-1 T2+ gr3 nd T2
1178-1 T2+ gr3 nd T2
1078-1 T2+ gr3 nd T2
875-1 T2+ gr3 no T2
1044-1 T2+ gr3 1 T2+ nd T2
1133-1 T2+ gr3 nd T2
1068-1 T2+ gr3 no T2
937-1 T2+ gr3 nd no review T1

aCarcinoma in situ detected in selected site biopsies at the time of sampling tumor tissue for the arrays or at previous or subsequent visits. bTumors were
reviewed by a single uropathologist, and any difference from the routine classification is listed. cMolecular classification in the training set using 38 genes in
cross-validation loops. nd, not determined.
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We applied the classifier to an independent test set of 68
samples (see Web Table C online) analyzed on a different
oligonucleotide array platform with other probes and different
probe-set format. In light of the different array format, it was
notable that the classifier ‘correctly’ classified (that is, included
the histopathological classification) 84% of the Ta tumors,
50% of the T1 tumors and 74% of the T2+ tumors (see Web
Table D online). Although some tumors from all stages were

classified differently from conventional histopathological clas-
sification, this seems at least for Ta tumors to provide addi-
tional predictive information. Samples that the classifier
grouped as T1 or T2 but that were classified histopathologi-
cally as Ta had a significantly (P < 0.005, Fisher’s exact test)
higher likelihood of disease progression or solid-tumor growth
compared with those classified correctly (Table 3). This predic-
tive property of the gene set may have considerable clinical

Fig. 1 Two-way hierarchical clustering and multidimensional scaling analysis of gene expression data from 40 bladder tumor biopsy samples. a, Tumor cluster
dendrogram based on the 1,767-gene set. The presence of CIS is noted after the sample names. Tumor recurrence rates are shown to the right of the dendrogram
as + and ++, indicating medium and high recurrence rates, respectively; no sign indicates no recurrence or moderate recurrence. b, Two-dimensional plot of mul-
tidimensional scaling analysis of the 40 tumors based on the 1,767-gene set. The color code identifies the tumor samples from the cluster dendrogram (Fig. 1a).
c, Tumor cluster dendrogram based on 88 cancer-related genes from CGAP. d, Two-way cluster analysis diagram of the 1,767-gene set. Each row in the diagram
represents a gene and each column a tumor sample. The color saturation represents differences in gene expression across the tumor samples; yellow indicates
higher than the median expression (black), and blue indicates lower than median expression. The color intensity indicates degree of gene regulation. The side-
bars to the right of the diagram represent gene clusters a–j. Normal 1–3 on the left side indicate the three normal biopsy samples, and normal 4 indicates the
pool of biopsy samples from 37 individuals. There were two principal branches, one containing the superficial Ta tumors and the other containing the invasive T1
and T2+ tumors. In the superficial branch, two sub-clusters of tumors were identified, one containing eight tumors that had frequent recurrences and one con-
taining three of the five Ta grade 2 tumors that had no recurrences. In the invasive branch, four Ta grade 3 tumors clustered tightly with the muscle-invasive T2+
tumors. These tumors showed concomitant CIS in the surrounding mucosa, indicating that this sub-fraction of Ta tumors had some of the more aggressive fea-
tures of muscle-invasive tumors.

a

b

c d
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importance. Stage T1, which is an intermediate stage having
both superficial and submucosa invasive components, seems
difficult to classify using expression profiling.

We also tested whether the protein products of the classifying
genes had similar classifying potential using immunohistochem-

istry, and compared our molecular classifier to the expression of
the tumor stage–related proteins p53, Her2 and Ki-67. We
immunostained a bladder tumor tissue array (n = 137) for
Smad6 and cyclin G2 (Ta/T1 classifiers). Cyclin G2 was expressed
at a lower level in T2 than in Ta tumors at both the RNA

(P < 0.0006) and the protein
levels (P < 0.0009). Fewer sam-
ples in the T2 group stained
strongly for Smad6 than in the
Ta group (see Web Fig. D
online). For both cyclin G2 and
Smad6, individual samples did
not always show a correlation
between RNA and protein
level, as previously addressed21.
The molecular tumor classifi-
cations correlated significantly
to the expression of Ki-67 by
immunohistochemistry (P <
0.02), but not significantly to
p53 or Her2 staining (see Web
Figs. E and F online).

We further tested an out-
come predictor to determine if
it was able to identify the like-
lihood of recurrence in indi-
viduals with superficial Ta
tumors (see Web Table E
online). We found that the
optimal number of genes in
cross-validation loops was 39
(75% of the samples were cor-
rectly classified, P < 0.006; see
Web Fig. G and Web Table F
online). From this group, we
selected 26 genes (Fig. 3b) that
were used in at least 75% of
the cross-validation loops to
constitute our final recurrence
predictor. We tested the
strength of the predictive
genes by permutation analysis
(see Web Table G online).

Our data on expression pat-
terns that classify the benign
and muscle-invasive bladder
carcinomas can identify sub-
groups of bladder cancer such
as Ta tumors with surrounding
CIS, Ta tumors with a high
probability of progression as
well as recurrence and T2
tumors with squamous meta-
plasia. This could have impli-
cations for epithelial cancers
in general, as these may be
subdivided into a larger num-
ber of subclasses than has pre-
viously been expected. We
found that the matrix-remod-
eling gene cluster was specifi-
cally expressed in tumors with
the worst prognosis, namely
the T2 tumors and tumors
surrounded by CIS. For some

Fig. 2 Enlarged view of gene clusters A, C, F and G. The dendrogram at the top is identical to Fig. 1a. Cluster A, tran-
scription factors and other nuclear genes; cluster C, genes involved in proliferation and cell-cycle control; cluster F, gene
expression pattern and corresponding area with squamous metaplasia in urothelial carcinoma (yellow color indicates
genes upregulated in samples 1178-1 and 875-1, the only two samples with squamous cell metaplasia); cluster G, genes
involved in angiogenesis and matrix remodeling.
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of these genes, new small-molecule inhibitors already exist22.
Introducing the presented classifiers for stage, progression and
recurrence as well as the CIS-defining gene set into clinical
routine requires a three-year prospective study, which we are
currently carrying out based on custom microarrays holding
the informative gene sets.

Methods
Biological material. We acquired 66 bladder tumor biopsy samples after
the amount of tissue necessary for routine pathology examination had
been removed. We froze the tumor samples immediately after surgery
and stored them at –80 °C in a guanidinium thiocyanate solution. We
graded each tumor according to previously published criteria23, and a
single pathologist then re-evaluated them. For normal urothelial refer-
ence samples, we used a pool of biopsy samples (from 37 individuals) as
well as three single bladder biopsy samples from individuals with pro-
static hyperplasia or urinary incontinence. Informed consent was
obtained in all cases, and protocols were approved by the scientific ethi-
cal committee of Aarhus county.

RNA purification and cDNA preparation. We isolated total RNA from
crude tumor biopsy samples using a Polytron homogenizer and the RNA-
zol B RNA isolation method (WAK-Chemie Medical GmbH). We used
10 µg total RNA as starting material for the cDNA preparation. We carried
out the first- and second-strand cDNA synthesis using the SuperScript
Choice System (Life Technologies) according to the manufacturer’s
instructions, except we used an oligo-dT primer containing a T7 RNA
polymerase promoter site. We prepared labeled cRNA using the BioArray

Table 2 • Summary of stage-related gene expression for functional gene clustersa

Tumor Nuclear Matrix Extracellular Immune
stage Transcription processes Proliferation remodeling matrix system

Ta gr2 ↑ nc nc nc ↓↓ ↓
Ta gr3 ↑↑↑ ↑↑ ↑↑ nc ↓↓ ↓
T1 gr3 ↑b nc ↑↑ b nc ↓ ↑ b

T2 gr3 ↑ nc ↑↑↑ ↑↑↑ ↑ ↑
Ta gr3 + CIS ↑↑↑ ↑↑ ↑↑↑ ↑↑↑ ↑ ↑
aFor a detailed description of gene clusters, see Web Fig. A online. bAn increase in gene expression was only found in about half of the samples analyzed.
nc, no change.

a b

Fig. 3 Molecular classification of bladder tumor stages and identification of
genes that predict recurrence. a, Molecular classification of tumor samples in
the training set using 38 predictive genes in each cross-validation loop. Each
classification is based on the proximity to the mean in the three classes. Sam-
ples marked with an asterisk were not used to build the classifier. The scale
indicates the distance from the samples to the classes in the classifier, mea-
sured in weighted squared Euclidean distance. b, Gene expression patterns of
the 26 genes that we found to be optimal for prediction of superficial tumor
recurrence. The best predictors of recurrence are listed at the top and bottom
of the diagram. For each gene, the number of times it was used in the 31 cross-
validation loops is listed to the right together with the Unigene (Ug) cluster
number (see Web Table G online).

High Yield RNA Transcript Labelling Kit (Enzo). We used biotin-labeled
CTP and UTP (Enzo) and unlabeled NTPs in the reaction. After the in vit-
ro transcription reaction, we removed the unincorporated nucleotides
using RNeasy columns (Qiagen).

Array hybridization and scanning. We fragmented 15 µg of cRNA at
94 °C for 35 min in a fragmentation buffer containing 40 mM Tris-acetate
pH 8.1, 100 mM potassium acetate and 30 mM magnesium acetate. Before
hybridization,we heated the fragmented cDNA in a 6×SSPE-T hybridiza-
tion buffer (1 M NaCl, 10 mM Tris pH 7.6, 0.005% Triton) to 95 °C for
5 min and then to 45 °C for 5 min before loading onto the Affymetrix
probe array cartridge (HuGeneFL). We then incubated the probe array for
16 h at 45 °C at constant rotation (60 r.p.m.). We carried out the washing
and staining procedure in the Affymetrix Fluidics Station. We washed the
probe array ten times in 6×SSPE-T at 25 °C and then four times in
0.5×SSPE-T at 50 °C. We stained the biotinylated cRNA with a strepta-
vidin-phycoerythrin conjugate (final concentration 2 µg µl–1; Molecular
Probes) in 6×SSPE-T for 30 min at 25 °C and then washed it ten times in
6×SSPE-T at 25 °C. We scanned the probe arrays at 560 nm using a confo-
cal laser-scanning microscope (Hewlett Packard GeneArray Scanner
G2500A). We analyzed the readings from the quantitative scanning using
the Affymetrix Gene Expression Analysis Software. We then amplified the
signals using normal goat IgG as blocking reagent (final concentration
0.1 mg ml–1; Sigma) and biotinylated goat antibody against streptavidin
(final concentration 3 µg ml–1; Vector Laboratories). We stained the sam-
ples with a streptavidin-phycoerythrin conjugate (final concentration 2 µg
µl–1; Molecular Probes) in 6×SSPE-T for 30 min at 25 °C and washed it 10
times in 6×SSPE-T at 25 °C. We then subjected the arrays to a second scan
under similar conditions as described above.©
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Class discovery using hierarchical clustering. We scaled all microarray
results to a global intensity of 150 units using the Affymetrix GeneChip
software. Other ways of array normalization exist24, but using the dCHIP
approach did not change the expression profiles of the obtained classifier
genes in this study (results not shown). For hierarchical cluster analysis
and molecular classification procedures, we used expression-level ratios
between tumors and the normal urothelium reference pool, which were
calculated using the comparison analysis implemented in the Affymetrix
GeneChip software. To avoid expression ratios based on saturated gene
probes, we used the antibody-amplified expression data for genes with a
mean Average Difference value across all samples below 1,000 and the non-
amplified expression data for genes with mean Average Difference value
across all samples equal to or above 1,000. We applied different filtering
criteria to the expression data to avoid including in the data analysis those
genes that did not vary or that were not highly expressed. First, we selected
only genes whose expression was significantly different between the nor-
mal reference pool and at least three tumor samples. Second, we selected
only genes with at least three ‘Present’ calls across all samples. Third, we
eliminated genes with variation of less than 2 s.d. across all samples. The
filtered gene set contained 1,767 genes. We carried out two-way hierarchi-
cal agglomerative cluster analysis using the Cluster software25. We used
average linkage clustering with a modified Pearson correlation as similarity
metric. Genes and arrays were median-centered and normalized to the
magnitude of 1 before cluster analysis. We used the TreeView software for
visualization of the cluster analysis results25. We carried out multidimen-
sional scaling on median-centered and normalized data using an imple-
mentation in the SPSS statistical software package.

Tumor-stage classifier. We based the classifier on the log-transformed
expression-level ratios. For these transformed values, we used a normal
distribution with the mean dependent on the gene and the group (Ta, T1
and T2) and the variance dependent on the gene only. For each gene, we
calculated the variation within the groups (W) and the three variations
between two groups (B(Ta/T1), B(Ta/T2), B(T1/T2)) and used the three
ratios B/W to select genes that had at least one high B/W ratio. To classify a
sample, we calculated the sum over the genes of the squared distance from

the sample value to the group mean, standardized by the variance. Thus,
we calculated a distance to each of the three groups and classified the sam-
ple as belonging to the closest group. When calculating these distances, we
estimated the group means and the variances from all the samples in the
training set excluding the sample being classified.

Validation of the tumor-stage classifier. We validated the performance of
the classifier using another set of bladder tumor expression data obtained
from customized oligonucleotide Affymetrix GeneChips carrying PM
probes only. First, we translated all accession numbers on both oligonu-
cleotide microarrays into Unigene clusters and selected those gene probes
present on both arrays (4,416 probe-sets). To make comparisons between
the two microarray types, we used only the PM probe values from the orig-
inal data set. We rescaled all the log (average PM) values and used the pool
of normal bladder biopsy samples from 37 individuals, which were ana-
lyzed on both array platforms, to calculate log fold-change expression val-
ues. We recalculated the group means and the variances for each gene used
in the classifier and based the classification on 29 genes from the optimal
classifier in the cross-validation step for the original data set. We calculated
the distances to each of the three groups for the new samples and classified
them as belonging to the closest group.

Recurrence prediction using a supervised-learning method. We generat-
ed Average Difference values using the Affymetrix GeneChip software and
set all values below 20 to 20 to avoid very low and negative numbers. We
only included genes that had a ‘Present’ call in at least seven samples and
genes that showed intensity variation of max–min > 100 and max/min > 2.
The values were log-transformed and rescaled. We used a supervised-
learning method essentially as described11. We selected genes using t-test
statistics and cross-validation and classified samples as described above.

Immunohistochemistry. We prepared tumor tissue microarrays essential-
ly as described26, with four representative 0.6-mm paraffin cores from each
study case. We carried out immunohistochemical staining using standard
highly sensitive techniques after appropriate heat-induced antigen
retrieval. Primary polyclonal goat antibodies against Smad6 (S-20) and
cyclin G2 (N-19) were from Santa Cruz Biotechnology. Antibodies to p53
(monoclonal DO-7) and Her-2 (polyclonal anti-c-erbB-2) were from
Dako A/S. Ki-67 monoclonal antibody (MIBI) was from Novocastra Labo-
ratories. An experienced pathologist who was unaware of array results
scored the staining intensity at four levels (negative, weak, moderate and
strong), considering both color intensity and number of stained cells.

GEO accession numbers. Array data was deposited at the Gene Expression
Omnibus (National Center for Biotechnology Information) with accession
numbers GSM2474 through GSM2544. The array data is also found in
series with accession number GSE89 (tumor stage classification) and
GSE88 (recurrence prediction).

Note: Supplementary information is available on the Nature
Genetics website.
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