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Abstract: In this study, we provide a systems biology method to investigate the carcinogenic mech-
anism of oral squamous cell carcinoma (OSCC) in order to identify some important biomarkers as
drug targets. Further, a systematic drug discovery method with a deep neural network (DNN)-based
drug–target interaction (DTI) model and drug design specifications is proposed to design a potential
multiple-molecule drug for the medical treatment of OSCC before clinical trials. First, we use big
database mining to construct the candidate genome-wide genetic and epigenetic network (GWGEN)
including a protein–protein interaction network (PPIN) and a gene regulatory network (GRN) for
OSCC and non-OSCC. In the next step, real GWGENs are identified for OSCC and non-OSCC by
system identification and system order detection methods based on the OSCC and non-OSCC mi-
croarray data, respectively. Then, the principal network projection (PNP) method was used to extract
core GWGENs of OSCC and non-OSCC from real GWGENs of OSCC and non-OSCC, respectively.
Afterward, core signaling pathways were constructed through the annotation of KEGG pathways, and
then the carcinogenic mechanism of OSCC was investigated by comparing the core signal pathways
and their downstream abnormal cellular functions of OSCC and non-OSCC. Consequently, HES1,
TCF, NF-κB and SP1 are identified as significant biomarkers of OSCC. In order to discover multiple
molecular drugs for these significant biomarkers (drug targets) of the carcinogenic mechanism of
OSCC, we trained a DNN-based drug–target interaction (DTI) model by DTI databases to predict
candidate drugs for these significant biomarkers. Finally, drug design specifications such as adequate
drug regulation ability, low toxicity and high sensitivity are employed to filter out the appropriate
molecular drugs metformin, gefitinib and gallic-acid to combine as a potential multiple-molecule
drug for the therapeutic treatment of OSCC.

Keywords: oral squamous cell carcinoma (OSCC); deep neural network-based drug–target interaction
(DNN-based DTI) model; genome-wide genetic and epigenetic network (GWGEN); significant
biomarkers; drug design specifications

1. Introduction

In recent years, oral cancer has been the eighth most common malignancy of the head
and neck, with more than 145,500 deaths worldwide each year [1,2], and oral squamous
cell carcinoma (OSCC) accounts for approximate 90% of all cancers in the oral cavity [3].
Despite many advancements in cancer treatment, the 5-year survival rate for OSCC patients
is 50% [4], which has remained unchanged over the past decade. In recent years, various
environmental factors, such as smoking and chewing betel nut, are the main causes of
OSCC [5]. However, not everyone exposed to these triggers will develop oral cancer. Many
studies have shown that the occurrence of oral cancer is the result of oncogene activation
or tumor suppressor gene inactivation. Therefore, a better understanding of the regulatory
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networks between molecular interactions and signaling pathways is crucial for identifying
new prognostic markers or therapeutic targets for OSCC.

Chronic inflammation can promote tumor formation. The long-term chronic inflam-
matory stimulation of periodontal tissue can form an inflammatory microenvironment
that is conducive to the development of OSCC [6]. Inflammation activates NF-κB through
intracellular signaling pathways, induces the cytokines tumor necrosis factor-α (TNF-α)
expression of cytokines and can form an inflammatory microenvironment that promotes
tumor growth and progression [7]. Long-term inflammatory damage induces cell renewal
and the repair of defective tissues. During the repair process, carcinogens or macrophages
can cause cell DNA damage, cell proliferation and differentiation. Disruption occurs, creat-
ing conditions for the formation and metastasis of OSCC [8]. NF-κB can also upregulate
vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) expression [9,10],
inducing tumor angiogenesis involved in the invasion and metastasis of OSCC.

In this study, based on big data mining, the system identification method and genome-
wide microarray data of patients of OSCC, a systems biology method is proposed to help
us analyze macroscopically systematic relationships among proteins, genes and microenvi-
ronments in cancer. As shown in Figure 1, the systems biology method including system
identification, system order detection and principle network projection (PNP) [11,12] has
been widely used to construct core signal pathways to investigate the pathogenesis of
diseases such as cancer [13] and virus infection [14] in recent years. Therefore, based on
genome-wide microarray data of OSCC and non-OSCC, a systems biology method is used
to find the carcinogenic mechanism of OSCC by comparing core signal pathways and their
downstream abnormal cellular functions of OSCC and non-OSCC in this study. First, a
systems biology method was employed to identify real GWGENs of OSCC and non-OSCC
by prune false positives from the candidate GWGEN by their microarray data. Then, with
the PNP approach, the core GWGENs of OSCC and non-OSCC were extracted from their
real GWGENs, respectively. By the annotation of KEGG pathways, we could obtain core
signal pathways of OSCC and non-OSCC from their corresponding core GWGENs. Then,
we can investigate the carcinogenic mechanism of OSCC by comparing the discrepancy
between core signal pathways and their downstream cellular disfunctions in the non-OSCC
and OSCC. According to the investigated carcinogenic mechanism and cellular disfunctions
in the core signaling pathways of OSCC, HES1, TCF, NF-κB and SP1 were identified as
the significant carcinogenic biomarkers contributing to unnormal cellular functions such
as inflammatory-dependent cell apoptosis, angiogenesis, tumor metastasis and tumor
invasion, which were considered as drug targets for the systematic drug discovery design
of OSCC.

The development process of a new drug is an arduous task because of the highly
expensive cost and time-consuming investment. Moreover, it is estimated that it takes about
12–15 years and more than USD one billion to develop a new drug [15]. Pharmaceutical
companies need to spend a large amount of time and effort on executing experiments to
understand the properties and the possible bindings of the drug and selected targets. In
addition, the efficacy and potency of the drug as well as the adverse influences on body
should be considered. Therefore, researchers conduct a number of animal and clinical trials
to check the safety and stability [16]. These complicated procedures vastly increase the risk
of failure in designing drugs. Most failures are due to the poor clinical outcomes, and the
results are usually lower than expected [17]. On the contrary, drug repurposing (also known
as drug repositioning) has been employed to identify new therapeutic uses of approved
or investigational drugs as a feasible and advantageous strategy [18]. Recently, deep
learning schemes have been widely applied for some phenomenon predictions of molecular
biological systems [19–21]. For these reasons, we developed systematic drug discovery
and design strategies based on a DNN-based DTI model to predict candidate molecular
drugs for biomarkers (drug targets) of OSCC. Then, these candidate molecular drugs of
each drug target were sieved by drug design specifications of drug–target interaction
(docking), adequate drug regulation ability, low toxicity and high sensitivity to select
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adequate molecular drugs for biomarkers, which are combined as a multiple-molecular
drug of OSCC, from the perspective of system engineering. As seen in the flowchart of
the systematic drug design procedure in a DNN-based DTI model was trained by DTI
databases in advance. Then, the well-trained DNN-based DTI model could predict a set
of candidate molecular drugs for each biomarker (drug target). Eventually, with the help
of the above drug design specifications, we chose and combined metformin, gefitinib and
gallic-acid among the set of candidate molecular drugs as the multiple-molecule drug to
target the biomarkers HES1, TCF, NF-κB and SP1 for OSCC. Taken together, we expect
that the proposed systematic medicine discovery and design procedure can provide an
efficient way to design a multiple-molecule drug as a new therapy for OSCC treatment
before clinical trials.
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Figure 1. Flowchart of the systems biology method and the outline of the systematic drug discovery
design. The candidate GWGEN consists of a gene regulation network (GRN) and protein–protein
interaction network (PPIN), where the candidate GRN was constructed through integrating gene
regulation databases, and candidate PPI was constructed via protein–protein interaction databases.
The candidate GWGEN was identified to obtain real GWGEN by OSCC microarray data from
GSE30784 and GSE17913 through system identification and system order detection, and core GWGEN
was extracted from real GWGEN by the PNP method. The core signaling pathways of non-OSCC and
OSCC are obtained by core GWGENs of non-OSCC and OSCC via the denotation of KEGG pathways,
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respectively. The carcinogenic biomarkers were identified by comparing the core signaling pathways
and their down streaming abnormal cellular functions of non-OSCC and OSCC. The DNN-based DTI
model can be employed to predict candidate molecular drugs for these carcinogenic biomarkers, and
drug design specifications are used to select a multiple-molecule drug for OSCC.

2. Results
2.1. Overview of the Systems Biology Method and the Systematic Drug Discovery and Design
of OSCC

In order to obtain insight into the carcinogenic mechanism to identify significant
carcinogenic biomarkers as drug targets of OSCC, we search for potential molecular drugs
to target these significant biomarkers by a deep neural network (DNN)-based DTI model
and drug design specifications from the viewpoint of system engineering. The first step
is to construct a candidate GWGEN of non-OSCC and OSCC by big data mining from
the databases DIP [22], IntAct [23], BioGRID [24], MINT [25] HTRIdb [26], ITFP [27],
TRANSFAC [28], CircuitDB [29], TargetScanHuman [30] and starBase 2.0 [31]. Then, the
system identification method in Equations (1)–(24) by the microarray data of non-OSCC
and OSCC and the system order detection method in Equations (25)–(32) are employed
to construct real GWGENs of non-OSCC and OSCC in Figure 2 by pruning off the false
positives from candidate GWGEN, respectively. Since, at most, 6000 molecules in real
GWGENs can be annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, the principal network projection method (PNP) in Equations (33)–(40) is used
for extracting the core GWGENs in Figure 3, i.e., the core GWGEN network of non-OSCC
and the core GWGEN network of OSCC are at the maximum with 6000 significant nodes.
The core GWGENs extracted by the PNP method from the real GWGENs can also simplify
the investigation of the carcinogenic mechanism of OSCC. The numbers of proteins, TFs,
Receptors, LncRNAs and miRNAs of core GWGENs are also indicated. The core signaling
pathways of non-OSCC and OSCC are constructed by projecting the corresponding core
GWGENs to KEGG significant pathways in Figure 4. By comparing the core signaling
pathways and the downstream abnormal cellular functions between non-OSCC and OSCC
in Figure 4, we could investigate the carcinogenic mechanism of OSCC, from which the
significant biomarkers were identified as drug targets for the therapeutic treatment of
OSCC. Furthermore, the deep neural network of the drug–target interaction (DTI) model is
trained in Figure 5 to predict candidate molecular drugs, which are selected by drug design
specifications such as adequate drug regulatory ability, low toxicity and high sensitivity as
potential molecular drugs that can be combined as a multiple-molecule drug of OSCC.
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for the carcinogenic mechanism analysis of OSCC. The numbers denote the node numbers of proteins,
TFs, Receptors, LncRNAs and miRNAs, respectively. The purple lines indicate the protein–protein
interactions, and the orange lines denote the gene regulations.
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Figure 4. The core signaling pathways in three blocks represent specific OSCC, common non-OSCC
and specific non-OSCC core signaling pathways from left to right, respectively. The core signaling
pathways of non-OSCC and OSCC are based on the annotation of core GWGENs of non-OSCC and
OSCC in Figure 3, respectively. For investigating the genetic and epigenetic carcinogenic mechanism
of OSCC, the core signaling pathways and the downstream abnormal cellular functions of non-
OSCC and OSCC are compared. The genes and proteins in the core signaling pathways were
chosen from core GWGENs of the non-OSCC and OSCC by the annotation of KEGG pathways. The
gene regulations and protein interactions were constructed based on the edges in core GWGENs of
non-OSCC and OSCC. The low and high expression arrow-head marks are relative to non-OSCC.

The collected microarray data were classified into non-OSCC and OSCC groups, as
shown in Table 1.

Table 1. Samples of microarray data from GSE30784 and GSE17913.

Microarray Data Non-OSCC OSCC

GSE30784 and GSE17913 102 167

Based on protein interaction and gene regulation databases, since the candidate GW-
GEN was constructed due to different biological conditions and computational predictions
in these databases, there are many false positives in the candidate GWGEN. Therefore,
the system identification method in Systems Biology [32,33] is employed to identify the
protein interactions and gene regulations by the microarray data of OSCC and non-OSCC.
Systems order detection is employed to prune off the false positive protein interactions out
of the interaction order of each protein and the gene regulations out of the regulation order
of each gene in candidate GWGEN to obtain the real GWGENs of OSCC and non-OSCC.
The real GWGENs were too complex and large for analyzing the carcinogenesis of OSCC
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by the annotation of KEGG pathways. To solve this problem, the core GWGENs were
extracted from the real GWGENs of OSCC and non-OSCC by the PNP method to reduce
the network size in order to simplify the following carcinogenic analysis of OSCC by the
annotation through KEGG pathways. In Table 2, the sizes of the core GWGENs of OSCC
are smaller than real OSCC GWGENs. Both the real OSCC GWGEN and the real non-OSCC
were plotted by Cytoscape software in Figure 2. The corresponding core GWGENs for
non-OSCC and OSCC were plotted by Cytoscape software in Figure 3. Moreover, the core
signaling pathways were obtained by the annotation of core GWGENs by KEGG pathways
to investigate the carcinogenic mechanism by comparing core signaling pathways. The
KEGG pathway enrichment analyses of the core signaling pathways of OSCC and non-
OSCC are given in Tables 3 and 4, respectively. The core signaling pathways for OSCC
and non-OSCC are given in Figure 4. Then, based on the core signal pathways and their
downstream abnormal cellular functions of OSCC and non-OSCC in Figure 4, we will
investigate the genetic and epigenetic carcinogenic mechanism of OSCC in the following.

Table 2. The statistics of the nodes in real GWGEN and core GWGEN of OSCC.

Real GWGEN of OSCC Core GWGEN of OSCC

Protein 13,855 4621

Receptor 2112 672

TF 1492 620

miRNA 31 2

LncRNA 419 85

Total nodes 17,909 6000

Table 3. KEGG pathway enrichment analysis of core OSCC signaling pathways.

KEGG Pathway Enrichment Analysis of OSCC Core Signaling Pathways

Pathway Gene number p-value

Cell cycle 91 8.3 × 10−20

Pathways in cancer 267 3.1 × 10−19

MAPK signaling pathway 149 3.6 × 10−11

Apoptosis 80 3.2 × 10−10

Proteoglycans in cancer 120 1.0 × 10−14

Table 4. KEGG pathway enrichment analysis of core non-OSCC signaling pathways.

KEGG Pathway Enrichment Analysis of Non-OSCC Core Signaling Pathways

Pathway Gene number p-value

Cellular senescence 95 2.3 × 10−13

MAPK signaling pathway 166 2.4 × 10−18

Human T-cell leukemia virus 1 infection 134 3.2 × 10−18

Cell cycle 84 4.2 × 10−15

P53 signaling pathway 46 1.6 × 10−7

The content in the table shows the number of nodes. The rows of the table contain
different types of nodes.

2.2. Investigating the Genetic and Epigenetic Carcinogenic Mechanism of OSCC

Cancer is a disease mainly caused by abnormal signaling pathways. Smoking and
drinking can cause changes in the microenvironment of the human body [34,35]. In our
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study, adverse factors such as JAG1, Wnt, ECM, EGF and IGF1 produced by the human
microenvironment ultimately lead to cellular dysfunctions. From comparing the core
signaling pathways of OSCC and non-OSCC in Figure 4, the core signaling pathways of
OSCC and their downstream abnormal cellular functions need to be investigated into the
genetic and epigenetic carcinogenic mechanism of OSCC. The core signal pathways and
their downstream cellular functions of OSCC are investigated as follows:

(i) Abnormal MAPK signaling pathway in OSCC

In Figure 4, the ligand epithelial growth factor (EGF) in the micro-environment of
OSCC targets the EGF receptor (EGFR), activates the phosphorylation of its downstream
signaling proteins Src and PI3K and then leads to the well-known estrogen-mediated
Ras/Raf/MEK/ERK pathway [36]. Several mutations in the MAPK/ERK pathway have
been identified in human cancers. The mitogen-activated protein kinase (MAPK) cascade
is a critical pathway for human cancer cell survival, dissemination and resistance to drug
therapy. The extracellular signal-regulated kinase (ERK) pathway is a convergent signal-
ing node that receives input from numerous stimuli, including internal metabolic stress
and DNA damage pathways and altered protein concentrations, as well as from external
growth factors, cell–matrix interactions and communications from other cells. Mutated
genes responsible for regulating cell fate, genome integrity and survival can overactivate
this pathway by causing increased protein amplification and altering the tumor microenvi-
ronment. These mutations can occur upstream of membrane receptor genes [37]. Current
and future drug development efforts will require altering and modulating tumor signal-
ing in this complex network of codependent pathways. ERK ultimately redirects to the
transcription factor SP1, which is abnormally upregulated in patients with OSCC, and SP1
promotes the expression of CCND1 and COX-2 [38,39]. COX-2 has been reported to be
involved in cancer cell migration, cancer cell proliferation, lymph-angiogenesis and metas-
tasis. There was a significant positive correlation between angiogenesis and apoptosis [40].
CCND1 was negatively correlated with apoptosis and an accelerated cell cycle [41,42].

(ii) The impact of the Wnt signaling pathway on OSCC

The ligand Wnt is common in embryonic development and cancer [43]. Wnts are
secreted glycoproteins that bind to frizzled class 1 (FZD1) receptors, which may be coupled
to heterotrimeric G proteins. Intracellularly, signal transduction passes through GBP,
glycogen synthase kinase 3β (GSK3β) and tumor suppressor gene product (APC) and then
activates a key protein (β-catenin). Consequentially, stable β-catenin enters the nucleus and
interacts with TF TCF/LEF, leading to the transcription of the Wnt target genes C-Myc and
CCND1 [44]. According to reports and studies [45], there is a regulation of underexpressed
TF TCF/LEF on C-Myc and CCND1. CCND1 was positively correlated with apoptosis and
an accelerated cell cycle. C-Myc was positively correlated with proliferation and negatively
correlated with apoptosis [46].

(iii) Notch signaling pathway in OSCC

In Figure 4, the cell surface receptor Notch is activated and causes mutation by the
microenvironmental factor JAG1 of OSCC [47,48]. The constitutive activation of the Notch
pathway has been demonstrated in various types of malignancies [49]. In this study, the
Notch pathway was also found to be extremely important in OSCC. The Notch signaling
cascade affects several key aspects of normal development through proliferation and
apoptosis [50]. All the signaling pathways transduce down to the TF HES1 [51]. Finally,
the signal is transmitted to the proto-oncogene C-Myc [52]. According to reports and our
study, HES1 is underexpressed and upregulates C-Myc and then promotes cell apoptosis
and proliferation in OSCC patients [50].

(iv) Key transcription factor NF-κB on OSCC

Integrin subunit alpha (ITGA) also plays a crucial role in OSCC. In Figure 4, it can be
seen that, after the receptor ITGA is affected by the extrinsic factor extra cellular matrix
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(ECM) in the micro-environment of OSCC [53], it will then successively affect the down-
stream signaling transduction proteins Src/PI3K/PKB/AKT. Insulin-like growth factor
1 (IGF-1R) signaling is partially mediated by the Src pathway. The activation of Src and
IGF-1R also activates Akt. It is a key effector of the PI3K/Akt pathway. It is abnormally
activated in most malignant tumors, promoting cell growth, proliferation and survival [54].
In many reports, AKT is underexpressed and phosphorylated in OSCC patients [55]. It then
affects the TFs IKK and NF-κB. NF-κB affects numerous target genes. Many reports indicate
that the genes COX-2 and VEGF are particularly important in OSCC patients [55,56]. The
genes NF-κB, COX-2 and VEGF are abnormally up-regulated to promote angiogenesis,
lympha-angiogenesis, migration, proliferation and apoptosis [55,56].

According to the description of OSCC above, poor diet and living habits can lead
to changes in the human microenvironment. Then, a series of pathway signaling leads
to downstream cellular dysfunction, among which abnormal apoptosis, proliferation,
migration and angiogenesis play crucial roles on the carcinogenesis of OSCC.

2.3. Significant Biomarkers as Drug Targets for the Therapeutic Treatment of OSCC Utilizing the
Systematic Drug Discovery Approach

After investigating the carcinogenic mechanism of OSCC from the core signaling
pathways and their downstream abnormal cellular functions, the significant biomarkers
of the carcinogenic mechanism of OSCC will be identified as drug targets for therapeu-
tic treatment.

According to the investigation of carcinogenic mechanisms, OSCC suffers from prolifer-
ation and apoptosis. Based on the above core signaling pathways and their downstreaming
abnormal cellular functions, we properly selected significant biomarkers that were related
to carcinogenically abnormal inflammation, apoptosis, proliferation, angiogenesis and cell
cycles. Consequently, we selected HES, TCF, NF-κB and SP1 as significant biomarkers
and aimed to reverse their expression levels, i.e., to restore them to normal inflammation,
apoptosis, proliferation, angiogenesis and cell cycles. HES plays an important role in the
NOTCH pathway. TCF is also a main character in the Wnt pathway. NF-κB is involved in
cellular responses to many stimuli. Sp1 has been shown to be involved in apoptosis.

After identifying the significant biomarkers as drug targets, we considered the chemi-
cal properties of drugs and targets to select candidate molecular drugs for these drug targets
(biomarkers) based on their drug–target bindings (dockings) predicted by the DNN-based
DTI model and to design a multiple-molecule drug for OSCC treatment before clinical
trials based on some suitable drug design specifications, i.e., adequate drug regulation
ability, low toxicity and high sensitivity. The flowchart of the systematic drug discovery
and design method is described in Figure 5.
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Figure 5. The flowchart of the systematic drug discovery and design procedure for OSCC. The
drug–target binding datasets were obtained from the binding database BindingDB, which integrates
the information of drugs and targets from several databases. Then, the drug and target features were
preprocessed respectively, including descriptor transformation, standardization and PCA dimension
reduction. Afterwards, the processed data were split into the training data for DNN-based DTI
model training and the testing data for DTI model performance validation in Figures 5 and 6. We
updated the model parameters through the model error between the true binding label and the
predicted binding label of drug–target pairs. The well-trained DNN-based DTI model was used to
predict the binding probability between drugs and targets (biomarkers). Therefore, candidate drugs
were predicted for each biomarker in Table 5 by the well-trained DNN-based DTI model from the
drug databases and further filtered as potential drugs by the drug design specifications of suitable
regulation ability, low toxicity and high sensitivity, which are combined as a multiple-molecule drug
for OSCC in Table 6.
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Table 5. Some candidate drugs for biomarkers of OSCC and their regulability, toxicity and sensitiv-
ity information.

HES1 (-)

Drug Regulation Ability
(L1000) Sensitivity (PRISM) Toxicity

(LC50, mol/kg)

capsaicin 0.1690 −0.1217 4.202

gabazine 0.3716 −0.6103 3.079

phenolphthalein −0.6116 −0.4833 5.297

tetramisole 0.1036 0.1136 4.111

gefitinib 0.2750 −0.5144 5.068

TCF (-)

Drug Regulation Ability
(L1000) Sensitivity (PRISM) Toxicity

(LC50, mol/kg)

carvedilol −0.0787 −0.0906 5.014

fipronil −0.1207 −0.0939 5.534

metformin 0.0770 −0.0789 2.039

diethylcarbamazine 0.0501 −0.0848 2.008

dyphylline 0.1372 0.0356 2.022

NF-κB (+)

Drug Regulation Ability
(L1000) Sensitivity (PRISM) Toxicity

(LC50, mol/kg)

sirolimus −0.0866 −0.2058 3.486

terfenadine −0.7665 −0.7406 5.437

metformin −0.2607 −0.0789 2.039

gallic-acid −1.0620 0.6208 3.262

gefitinib −0.3428 −0.5144 5.068

SP1 (+)

Drug Regulation Ability
(L1000) Sensitivity (PRISM) Toxicity

(LC50, mol/kg)

niridazole −0.6456 −0.1400 2.746

chlorambucil −0.0559 −0.1424 3.249

bepridil 0.7249 0.2789 5.083

gallic-acid −0.5239 0.6208 3.262

disopyramide −0.3694 −0.1440 3.316
(+), abnormal overexpression; (-), abnormal low expression.

For our DNN-based DTI model in Figure 5, DNN was set with four hidden layers, and
each of them is connected with a ReLU activation function layer after it. ReLU activation
function could avoid vanishing gradient problems and converge much faster than the other
activation functions. Although ReLU is not the best activation function, it is useful for the
classification issue. Additionally, the dropout layer is incorporated after each hidden layer
to prevent overfitting. The input layer has 996 nodes, and 512, 256, 128 and 64 neurons are
embedded, respectively, in four hidden layers. Before the output layer, a sigmoid activation
function is used to restrict the output value in the range of 0 to 1 as a probability value.
In general, the sigmoid function is usually used for binary classification. The outcome of
DTI is a probability value, where a higher value corresponds to a more reliable interaction
(docking) between the drug and the target. The loss and accuracy during the training
process are separately recorded in Figures 6 and 7, respectively.
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Table 6. A potential multiple-molecule drug for OSCC from the candidate molecular drugs in Table 5
by the drug design specifications of suitable regulation ability, low toxicity and high sensitivity.

Drugs
Targets

HES1 TCF NF-κB SP1
Toxicity

(LC50, mol/kg)
Sensitivity
(PRISM)

metformin 3(0.0770) 3(−0.2607) 2.039 −0.0789

gefitinib 3(0.2750) 3(−0.3428) 5.068 −0.5144

gallic-acid 3(−1.0620) 3(−0.5239) 3.262 0.6208

metformin gefitinib
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Furthermore, we also plot the receiver operating characteristic (ROC) curve measure of
the probability of the prediction accuracy of the DNN-based DTI model. The visualization
of the ROC curve comparison is denoted in Figure 8. From Figure 8, the prediction perfor-
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mance of our proposed DTI model indicates that the deep learning concept is promising to
adapt to the large and complicated drug–target interaction data.
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To find suitable drug candidates, predictions are made based on the high probability
of the candidate drug binding (docking) to the selected biomarker. At the same time, since
powerful drugs are often associated with a high risk of damage, attention should also
be paid to the balance between drug efficacy and adverse effects. Correspondingly, we
guarantee the stability and safety of the drug in clinical trials, taking into account the drug
design specifications, such as regulatory ability, toxicity and sensitivity.

To measure the regulatory ability of drug candidates, available regulatory capacity data
were downloaded from the L1000 level5 dataset [57,58], which contains 978 genes treated
with 19,811 small molecule compounds in 78 different cell lines. In the accommodation
ability data, positive values indicate up-regulations and negative values indicate down-
regulations. Based on this criterion, we searched for molecular drugs in suitable cell lines
that could reverse the expression of carcinogenic biomarkers in OSCC to restore their
normal expressions to remedy their down streaming cellular dysfunctions of OSCC. In
addition, a lower drug toxicity has the effect of reducing side effect by referring to the
median lethal dose (LD50) value in DrugBank [59]. LD50 is often considered for disease
and cancer drug design. The lower the LD50 value, the greater the toxicity. In addition, a
higher drug sensitivity (lower EC50 value) can reduce the drug dosage. Drug susceptibility
data were obtained from the PRISM dataset [60], which includes 4518 drugs tested in
578 human cell lines based on the half-maximal effective concentration (EC50). EC50 is a
measure of the potency of a drug, where a lower EC50 indicates that the drug works best at
lower doses. As mentioned above, aberrant expression in a disease can be well reversed by
choosing the right drug. Some candidate drugs predicted by the DNN-based DTI model
for identified biomarkers and their regulability, toxicity, and sensitivity information are
shown in Table 5. The potential drugs metformin, gallic-acid and gefitinib are selected by
the three above-mentioned drug design specifications (i.e., suitable regulation ability, high
sensitivity and low toxicity) and are combined as a multiple-molecule drug for therapeutic
treatment of OSCC in Table 6.
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3. Discussion
Potential Multiple-Molecule Drug for the Identified Biomarkers of OSCC

Recently, Cisplatin has been the most common drug for the treatment of OSCC [61,62],
but its powerful side effects are daunting; for example, renal toxicity, nausea, vomiting
and neurotoxicity [63]. In this study, we tried to find novel multiple-molecular drugs to
treat OSCC. With the consideration of sensitivity, toxicity and regulation ability as drug
specifications, we combined deep learning and systems biology methods to find the right
molecular drugs for the identified biomarkers of OSCC. Ultimately, the molecular drugs
metformin, gefitinib and gallic-acid are detected and combined as a multi-molecule drug in
Table 6 for the therapeutic treatment of OSCC.

Gefitinib is a drug that acts on the tyrosine kinase domain of the epidermal growth
factor receptor [64]. EGFR is overexpressed in certain human cancers, such as breast
and lung cancer [65,66]. The excessive activation of EGFR by the ligand EGF in the
microenvironment of OSCC leads to the abnormal activation of anti-apoptotic Ras cell
signaling, resulting in uncontrolled cell division [67,68]. Gefitinib binds covalently to the
enzyme adenosine triphosphate (ATP) and inhibits the epidermal growth factor receptor
tyrosine kinase [69].

Metformin, a low-cost antidiabetic drug [70], has been widely used to treat diabetes by
inhibiting hepatic gluconeogenesis and enhancing glucose uptake by skeletal muscle [71].
Several studies have shown that metformin is being repurposed as an anticancer therapeutic
for different types of cancer [72]. The insulin receptor transmits signals through growth
factor receptor binding protein 2 (GRB2) to the Ras/Raf/ERK pathway that drives cell
growth. There is evidence that these pathways play an important role in the changes
in cellular metabolism that are typical of tumor cells. Elevated circulating insulin/IGF1
levels and the upregulation of insulin/IGF receptor signaling have been implicated in the
development of various cancers. Metformin was found to reduce insulin levels, inhibit the
insulin/IGF signaling pathway and alter cellular metabolism in normal and cancer cells [73].
Interestingly, metformin can increase the sensitivity of oral cancer cells to chemotherapeutic
drugs such as gefitinib [74,75], improving therapeutic efficacy and reducing dose and
toxicity [76]. Overall, metformin in combination with gefitinib may be a potential drug for
the development of new therapeutic strategies for human OSCC.

Gallic-acid is a phenolic compound widely found in the plant kingdom [77], such as
green vegetables, fruits and other plants [78]. The toxicity of gallic-acid to normal cells
of humans is very low [79]. It is highly toxic to bad cells such as fibrotic cells and cancer
cells [80,81] and can kill these harmful cells; but when it encounters normal cells, the
toxicity will become weaker [82].

In summary, the molecular drugs metformin, gefitinib and gallic-acid are selected and
combined as a multi-molecule drug of OSCC in Table 6 from the proposed systematic drug
discovery and design perspectives.

4. Materials and Methods
4.1. A General Review of Constructing Core Genome-Wide Genetic and Epigenetic Networks
(GWGENs) of OSCC and Non-OSCC

At first, we divided the data into a disease group and a control group. The disease group
data came from GSE30784, and the control group data came from GSE30784 and GSE17913.
Then, we used the following steps to construct core GWGENs of OSCC and non-OSCC.

(1) Constructing the candidate GWGEN: We use big database mining to construct a
candidate PPIN and a candidate GRN, including genes, miRNAs and lncRNAs. Note
that the candidate GWGEN includes a candidate PPIN and a candidate GRN.

(2) Identifying real GWGENs: We identify the parameters of PPIN and GRN through the
system identification method by solving the corresponding constrained linear least
squares estimation problems with the help of the microarray data of OSCC and non-
OSCC. After performing system modeling and parameter identification for proteins,
genes, miRNAs and lncRNAs in the candidate GWGEN, we used the system order
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detection method AIC to prune the false positives in the regulation and interactions
in the candidate GWGEN to obtain the real GWGENs of OSCC and non-OSCC.

(3) Extracting the core GWGENs: To extract the core GWGENs of OSCC and non-OSCC,
we applied the PNP approach. By doing this, we could compute a projection value for
each node in the real GWGENs to 85% significant network structures of real GWGENs.
The top 6000 nodes of real GWGENs with the highest projection values have remained
as core GWGENs.

(4) Building and comparing the core signaling pathways: The core signaling pathways
for cells of OSCC and non-OSCC can be constructed by the annotation of the KEGG
pathways of core GWGENs of OSCC and non-OSCC, respectively. We investigated
the molecular mechanisms of carcinogenesis of OSCC by comparing the upstream
microenvironmental factors, core signaling pathways and their corresponding down-
stream abnormal cellular functions of OSCC and non-OSCC.

4.2. Data Preprocessing for Constructing the Candidate GWGEN

In this research, we downloaded the dataset with accession numbers GSE30784 and
GSE17913 from the National Center for Biotechnology Information (NCBI). We divided the
data into a disease group and a control group. The disease group data came from GSE30784,
and the control group data came from GSE30784 and GSE17913. Note that the candidate
GWGEN included a candidate PPIN and a candidate GRN. The candidate GWGEN matrix
is a binary matrix. If two nodes have an interaction or regulation, we assigned value one for
it; otherwise, we assigned a value zero for it. For building the candidate PPIN, we referred
to the following databases: DIP [22], IntAct [23], BioGRID [24] and MINT [25]. Moreover,
to construct the candidate GRN, we considered the following databases: HTRIdb [26],
ITFP [27], TRANSFAC [28], CircuitDB [29], TargetScanHuman [30] and StarBase 2.0 [31].

4.3. System Modeling of the Candidate GWGEN

To model the candidate GWGEN, we build system modeling for proteins, genes,
miRNAs and lncRNAs. First, in the candidate GWGEN, the following interactive equation
describes the q-th protein interaction with its Gq neighboring proteins in the candidate PPIN:

pq[n] =
Gq

∑
r = 1

κqr pq[n]pr[n] + λq,PPIM + µq,PPIM[n], for q = 1, . . . , Q, n = 1, . . . , N

where pq[n] means the expression level of the q-th protein in the n-th sample and pr[n] is the
expression level of the r-th protein in the n-th sample; κqr indicates the interaction ability
between the q-th protein and the r-th protein; Gq represents the total number of proteins
that interact with the q-th protein in the candidate PPIN; Q expresses the total number
of proteins in the candidate PPIN; N denotes the total number of samples; λq,PPIM is the
basal level in the model of the q-th protein for unknown protein interactions of histone
modifications such as phosphorylation, acetylation and ubiquitination; µq,PPIM[n] denotes
the environment and measurement noise of the q-th protein.

Second, the transcriptional regulation of the x-th gene in GRN is described by the
following equation:

gx[n] =
Ux
∑

u = 1
αxutu[n] +

Vx
∑

v=1
βxvlv[n]−

Wx
∑

w=1
γxwmw[n]gx[n] + λx,GRM + µx,GRM[n]

, for x = 1, . . . , X, n = 1, . . . , N

where gx[n] means the gene expression level of the x-th gene in the n-th sample;
tu[n], lv[n] and mw[n] individually indicate the gene expression level of the u-th TF, the

v-th lncRNA and the w-th miRNA in the n-th sample; Ux, Vx and Wx individually denote the
total binding number of TFs, lncRNAs and miRNAs; αxu is the transcriptional regulatory
ability of the u-th TF on the x-th gene; βxv expresses the transcriptional regulatory ability
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of the v-th lncRNA on the x-th gene; γxw ≥ 0 denotes the post-transcriptional regulatory
ability of the w-th miRNA on the x-th gene; X means the total number of genes in the
candidate GWGEN; N denotes the total number of samples; λx,GRM means the basal level
of the x-th gene because of the unknown gene regulations such as methylation and genetic
mutation; µx,GRM[n] represents the environment or measurment noise.

Third, TFs, lncRNAs and miRNAs also have a potential impact on the i-th lncRNA,
and we can depict this behavior by the lncRNA model (LRM) in the candidate GWGEN.
The regulatory equation is described as follows:

li[n] =
Ui
∑

u=1
σiutu[n] +

Vi
∑

v = 1
ςivlv[n]−

Wi
∑

w=1
τiwmw[n]li[n] + λi,LRM + µi,LRM[n]

, for i = 1, . . . , I, n = 1, . . . , N

where li[n] means the expression level of the i-th lncRNA; tu[n], lv[n] and mw[n] indicate
the expression level of the u-th TF, the v-th lncRNA and the the w-th miRNA of the n-th
sample, respectively; Ui, Vi and Wi individually represent the total binding number of
TFs, lncRNAs and miRNAs on the i-th lncRNAs, respectively; σiu is the transcriptional
regulatory ability from the u-th TF on the i-th lncRNA; ςiv expresses the transcriptional
regulatory ability from the v-th lncRNA on the i-th lncRNA; τiw ≥ 0 denotes the post-
transcriptional regulatory ability from the w-th miRNA on the i-th lncRNA; I denotes the
total number of lncRNAs and N means the total number of samples; λi,LRM indicates the
basal level of the i-th lncRNA; µi,LRM[n] is the data noise.

Fourth, the expression of the j-th miRNA is also affected by the TFs, lncRNAs and
miRNAs. Furthermore, we can illustrate the regulation of miRNA in the miRNA model
(MRM) of the candidate GWGEN through the following equation:

mj[n] =
Uj

∑
u=1

ωjutu[n] +
Vj

∑
v = 1

ξ jvlv[n]−
Wj

∑
w=1

ψjwmw[n]mj[n] + λj,MRM + µj,MRM[n]

, for j = 1, . . . , J, n = 1, . . . , N

where mj[n] means the expression level of the j-th miRNA; tu[n], lv[n] and mw[n] separately
represent the expression level of the u-th TF, the v-th lncRNA and the w-th miRNA, re-
spectively; Uj, Vj and Wj are the binding total numbers of TFs, lncRNAs and miRNAs,
respectively; ωju expresses the transcriptional regulatory ability from the u-th TF on the
j-th miRNA; ξ jv denotes the transcriptional regulatory ability from the v-th lncRNA on the
j-th miRNA; ψjw denotes the post-transcriptional regulatory ability from the w-th miRNA
on the j-th miRNA; J indicates the total number of miRNAs and N is the total number
of samples; λj.MRM represents the basal level of the j-th miRNA; µj,MRM[n] means the
data noise.

4.4. The System Identification and System Order Detection Methods for Real GWGENs of OSCC
and Non-OSCC from the Candidate GWGEN

According to the interaction and regulation models we described above, the candidate
PPIN is generated from PPI models in (1); the candidate GRN is described and combined
by the corresponding regulation models in (2)–(4). We obtain the real GWGENs of OSCC
and non-OSCC through pruning the false positive interactions and regulations by system
identification and system order detection methods based on the microarray data of OSCC
and non-OSCC, respectively. To identify the parameters of the above interactive and
regulatory models, Equations (1)–(4) could be respectively expressed by the following
linear regression forms.
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pq[n] =
[

pq[n]p1[n] pq[n]p2[n] · · · pq[n]pGq [n] 1
]
×


κq1
κq2

...
κqGq

λq,PPIM

+ µq,PPIM[n] (1)

gx[n] =
[
t1[n] · · · tUx l1[n] · · · lVx m1[n]gx[n] · · · mWx [n]gx[n] 1

]
×



αx1
...

αxUx

β1
...

βxVx

−γ1
...

−γxWx
λx,GRM



+ µx,GRM[n] (2)

li[n] =
[
t1[n] · · · tUi l1[n] · · · lVi m1[n]li[n] · · · mWi [n]li[n] 1

]
×



αi1
...

αiUi
β1
...

βiVi
−γ1

...
−γiWi
λi,LRM



+ µi,LRM[n] (3)

mj[n] =
[
t1[n] · · · tUj l1[n] · · · lVj m1[n]mj[n] · · · mWj [n]mj[n] 1

]
×



αj1
...

αjUj

β1
...

β jVj

−γ1
...

−γjWj

λj,MRM



+ µj,MRM[n] (4)

for q = 1, . . . , Q, x = 1, . . . , X, i = 1, . . . , I, j = 1, . . . , J, n = 1, . . . , N, where (5)–(8) are
individually the regression forms for the protein interactions in PPIN and the regulations in
GRN in the candidate GWGEN. Q, X, I and J are, respectively, the total number of proteins,
genes, lncRNAs and miRNAs in the candidate GWGWN, and N means the total number
of samples.

The linear regression equations in (5)–(8) could be simply expressed as the follow-
ing equations:

pq[n] = φq,PPIM[n] · θq,PPIM + εq,PPIM, for q = 1, . . . , Q (5)

gx[n] = φx,GRM[n] · θx,GRM + εx,GRM, for x = 1, . . . , X (6)



Int. J. Mol. Sci. 2022, 23, 10409 18 of 29

li[n] = φi,LRM[n] · θi,LRM + εi,LRM, for i = 1, . . . , I (7)

mj[n] = φj,MRM[n] · θj,MRM + ε j,MRM, for j = 1, . . . , J (8)

where φq,PPIM[n], φx,GRM[n], φi,LRM[n] and φj,MRM[n] individually mean the regression
vectors of proteins, genes, lncRNAs and miRNAs in the candidate GWGEN in the n-th
sample; θq,PPIM is the parameter vector of the protein–protein interaction abilities and the
protein basal levels; θx,GRM, θi,LRM and θj,MRM respectively express the parameter vectors of
the transcriptional regulatory abilities and basal levels of the genes, lncRNAs and miRNAs;
εq,PPIM, εx,GRM, εi,LRM and ε j,MRM are separately the noises for protein interactions and
regulations in the candidate GWGEN.

The above linear regression forms for N samples are denoted, respectively, as the
following:

pq[1]
pq[2]

...
pq[N]

 =


φq,PPIM[1]
φq,PPIM[2]

...
φq,PPIM[N]

 · θq,PPIM +


εq,PPIM[1]
εq,PPIM[2]

...
εq,PPIM[N]

, for q = 1, . . . , Q (9)


gx[1]
gx[2]

...
gx[N]

 =


φx,GRM[1]
φx,GRM[2]

...
φx,GRM[N]

 · θx,GRM +


εx,GRM[1]
εx,GRM[2]

...
εx,GRM[N]

, for x = 1, . . . , X (10)


li[1]
li[2]

...
li[N]

 =


φi,LRM[1]
φi,LRM[2]

...
φi,LRM[N]

 · θi,LRM +


εi,LRM[1]
εi,LRM[2]

...
εi,LRM[N]

, for i = 1, . . . , I (11)


mj[1]
mj[2]

...
mj[N]

 =


φj,MRM[1]
φj,MRM[2]

...
φj,MRM[N]

 · θj,MRM +


ε j,MRM[1]
ε j,MRM[2]

...
ε j,MRM[N]

, for j = 1, . . . , J (12)

The above equations could be individually expressed as the following algebraic
equations:

Pq = Φq,PPIM ·Θq,PPIM + Eq,PPIM, for q = 1, . . . , Q (13)

Gx = Φx,GRM ·Θx,GRM + Ex,GRM, for x = 1, . . . , X (14)

Li = Φi,LRM ·Θi,LRM + Ei,LRM, for i = 1, . . . , I (15)

Mj = Φj,MRM ·Θj,MRM + Ej,MRM, for j = 1, . . . , J (16)

where Φq,PPIM, Φx,GRM, Φi,LRM and Φj,MRM separately express the regression matrix of
proteins, genes, lncRNAs and miRNAs of N samples. Θq,PPIM, Θx,GRM, Θi,LRM and Θj,MRM
individually mean the corresponding interactive and regulatory parameter vectors. Eq,PPIM,
Ex,GRM, Ei,LRM and Ej,MRM respectively denote the corresponding data noise vectors.

To identify the interactive and regulatory parameter of the candidate GWGEN, we
estimate the parameter vectors θq,PPIM, θq,GRM, θq,LRM and θq,MRM by the least square
method with the negative regulation constraint on miRNA, as follows:

Θ̂q,PPIM = argmin
Θq,PPIM

1
2
‖Φq,PPIM ·Θq,PPIM − Pq‖2

2 (17)
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Θ̂x,GRM = argmin
Θx,GRM

1
2‖Φx,GRM ·Θx,GRM − Gx‖2

2

subject to



0 0 · · · · · · 0
0 0 · · · · · · 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 · · · · · · 0︸ ︷︷ ︸

Ui

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · · · · 0
0 0 · · · · · · 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 · · · · · · 0︸ ︷︷ ︸

Vi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · 0
0 1 · · · · · · 0
...

...
. . . . . .

...

0 0
. . . 1 0

0 0 · · · 0 1︸ ︷︷ ︸
Wi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
...
...
0


Θi,GRM ≤



0
0
...
...
0


(18)

Θ̂i,LRM = argmin
Θi,LRM

1
2‖Φi,LRM ·Θi,LRM − Li‖2

2

subject to



0 0 · · · · · · 0
0 0 · · · · · · 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 · · · · · · 0︸ ︷︷ ︸

Ui

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · · · · 0
0 0 · · · · · · 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 · · · · · · 0︸ ︷︷ ︸

Vi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · 0
0 1 · · · · · · 0
...

...
. . . . . .

...

0 0
. . . 1 0

0 0 · · · 0 1︸ ︷︷ ︸
Wi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
...
...
0


Θi,LRM ≤



0
0
...
...
0


(19)

Θ̂j,MRM = argmin
Θj,MRM

1
2‖Φj,MRM ·Θj,MRM −Mj‖2

2

subject to



0 0 · · · · · · 0
0 0 · · · · · · 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 · · · · · · 0︸ ︷︷ ︸

Uj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · · · · 0
0 0 · · · · · · 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 · · · · · · 0︸ ︷︷ ︸

Vj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · 0
0 1 · · · · · · 0
...

...
. . . . . .

...

0 0
. . . 1 0

0 0 · · · 0 1︸ ︷︷ ︸
Wj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
...
...
0


Θj,MRM ≤



0
0
...
...
0


(20)

For the constrained optimization problems for the parameter estimation problems
(21)–(24), we look for the optimal parameter estimates of the candidate GWGEN through
the microarray data of OSCC and non-OSCC as follows: interactive parameters between
proteins Θ̂q,PPIM, the regulatory parameters of genes Θ̂x,GRM, lncRNAs Θ̂i,LRM and miR-
NAs Θ̂j,MRM. These constrained optimization problems for the parameter estimation of
the candidate GWGEN were solved by the MATLAB Optimization Toolbox. It is worth
noting that the negative inequality constraints in (22)–(24) represent that the regulatory
parameters of miRNAs should be less than or equal to zero to ensure the negative regulation
of miRNAs on genes, lncRNAs and miRNAs.

After the parameter estimation of the candidate GWGEN of non-OSCC and OSCC by
the respective microarray data, we used the system order detection method, AIC, to detect
the system order (the number of interactions of each protein or the number of regulations
of each gene, lncRNA and miRNA). The equations of AIC for each protein, gene, lncRNA
and miRNA are given as follows.

AIC(Qq) = log(Ωq,PPIM)+
2(Gq+1)

N , for q = 1, . . . , Q

whereΩq,PPIM =
(Pq−Φq,PPIM ·Θ̂q,PPIM)

T
(Pq−Φq,PPIM ·Θ̂q,PPIM)

N

(21)
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where Ωq,PPIM is the estimated residual error of the q-th protein from the least square
parameter estimation Θ̂q,PPIM in (21), and Qq means the number of protein interactions
with the q-th protein.

AIC(Ux, Vx, Wx) = log(Ωx,GRM)+
2(Ox,GRM+1)

N , for x = 1, . . . , X

where Ωx,GRM =
(Gx−Φx,GRM ·Θ̂x,GRM)

T
(Gx−Φx,GRM ·Θ̂x,GRM)

N , Ox,GRM = Ux + Vx + Wx

(22)

where Ωx,GRM means the estimated residual error of the x-th gene in (22), and Ox,GRM is
the number of regulations of the genes, lncRNAs and miRNAs on the x-th gene; Θ̂x,GRM
denotes the estimated parameters in (22).

AIC(Ui, Vi, Wi) = log(Ωi,LRM)+
2(Oi,LRM+1)

N , for i = 1, . . . , I

where Ωi,LRM =
(Li−Φi,LRM ·Θ̂i,LRM)

T
(Li−Φi,LRM ·Θ̂i,LRM)

N , Oi,LRM = Ui + Vi + Wi

(23)

where Ωi,LRM denotes the estimated residual error of the i-th lncRNA in (23), and Oi,LRM is
the number of regulations of the genes, lncRNAs and miRNAs on the i-th lncRNA; Θ̂i,LRM
indicates the estimated parameters in (23).

AIC(Uj, Vj, Wj) = log(Ωj,MRM)+
2(Oj,MRM+1)

N , for j = 1, . . . , J

where Ωj,MRM =
(Mj−Φj,MRM ·Θ̂j,MRM)

T
(Mj−Φj,MRM ·Θ̂j,MRM)

N , Oj,MRM = Uj + Vj + Wj

(24)

where Ωj.MRM denotes the estimated residual error of the j-th miRNA in (24), and Oj.MRM
indicates the number of regulations of the genes, lncRNAs and miRNAs on the j-th miRNA;
Θ̂j,MRM denotes the estimated parameters in (24).

The AIC system order detection method in (25) means that if the system order (number
interactions) Qq increases, the second term of AIC in (25) will increase and the first term
of AIC will decrease, and vice versa. The real number of interactions (system order) Qq*
will balance two terms and achieve the minimum AIC (Qq). Therefore, employ the AIC
technique to determine the real number of interactions or regulations for each protein, gene,
miRNA and lncRNA by their AICs in (25)–(28) in the candidate GWGEN to prune the false
positive interactions and regulations and obtain the real GWGENs of OSCC and non-OSCC
in the following.

Considering the order detection method of AIC in system identification, the real order
of the system (i.e., the total number of interactions of the q-th protein in (1) or the number
of regulations on the x-th in (2)) is to minimize the AIC problems of system identification
in (21)–(28). Therefore, the real number of interactions or regulations for every protein,
gene, lncRNA and miRNA in the candidate GWGEN can be obtained by solving the AIC
minimization problems below:

Q∗q = argmin
Qq

AIC(Gq), for q = 1, . . . , Q (25)

(U∗x , V∗x , W∗x ) = argmin
Ux ,Vx ,Wx

AIC(Ux, Vx, Wx), for x = 1, . . . , X (26)

(U∗i , V∗i , W∗i ) = argmin
Ui ,Vi ,Wi

AIC(Ui, Vi, Wi), for i = 1, . . . , I (27)

(U∗j , V∗j , W∗j ) = argmin
Uj ,Vj ,Wj

AIC(Uj, Vj, Wj), for j = 1, . . . , J (28)

where Q∗q means the real number of protein interactions for the q-th protein; U∗x , V∗x and W∗x
respectively express the real number of regulations of genes, lncRNAs and miRNAs on
the x-th gene; U∗i , V∗i and W∗i represent the real number of regulations of genes, lncRNAs
and miRNAs on the i-th lncRNA, respectively; U∗j , V∗j and W∗j are individually the real
number of regulations of genes, lncRNAs and miRNAs on the j-th miRNA. Therefore, the
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interactions of proteins and the regulations of the gene, miRNA and lncRNA, which are
out of real order by solving the AIC minimization problems in (29)–(32), are thought of as
false positives in the candidate GWGEN of non-OSCC and OSCC and should be pruned
out to obtain the real GWGENs of non-OSCC and OSCC in Figure 2, respectively.

4.5. The Principal Network Projection (PNP) Method for the Core GWGENs by Extracting from
Real GWGENs

We want to compare the signaling pathways of non-OSCC and OSCC to investigate
their genetic and epigenetic carcinogenic molecular mechanism. Therefore, we need to
transform real GWGENs of non-OSCC and OSCC to signaling pathways of non-OSCC
and OSCC, respectively, by the annotation of KEGG pathways. However, at present,
only a GWGEN with 6000 nodes at most can be annotated by KEGG signal pathways.
Therefore, the principal network projection (PNP) method on the basis of the singular value
decomposition (SVD) is employed to extract the core GWGENs with 6000 nodes from the
real GWGENs for the annotation of core signaling pathways by KEGG pathways. Before we
extract the core GWGENs, a network matrix H of real GWGENs should be introduced. The
network matrix H consists of interactions among proteins and regulations of the TF-gene,
TF-lncRNA, TF-miRNA, lncRNA-gene, lncRNA-lncRNA, lncRNA-miRNA, miRNA-gene,
miRNA-lncRNA and miRNA-miRNA in real GWGENs, as follows:

H =


hprotein⇔protein 0 0

hTF⇒gene hln cRNA⇒gene hmiRNA⇒gene
hTF⇒ln cRNA hln cRNA⇒ln cRNA hmiRNA⇒ln cRNA
hTF⇒miRNA hln cRNA⇒miRNA hmiRNA⇒miRNA

 (29)

where hprotein⇔protein is the sub-matrix of PPIs, of which the bidirectional arrow at the
subscript of the sub-matrix means that the protein interaction is bidirectional; hTF⇒gene,
hTF⇒ln cRNA, hTF⇒miRNA, hln cRNA⇒gene, hln cRNA⇒ln cRNA, hln cRNA⇒miRNA, hmiRNA⇒gene,
hmiRNA⇒ln cRNA and hmiRNA⇒miRNA represent the transcriptional regulatory sub-matrixes
of TFs on genes, lncRNAs and miRNAs; lncRNAs on genes, lncRNAs and miRNAs; and
miRNAs on genes, lncRNAs and miRNAs, respectively. The network matrix H of real
GWGENs is given in detail, as follows:

H =



κ̂11 κ̂12 · · · κ̂1r · · · κ̂1Qq 0 0 · · · 0 · · · 0 0 0 · · · 0 · · · 0
κ̂21 κ̂22 · · · κ̂2r · · · κ̂2Qq 0 0 · · · 0 · · · 0 0 0 · · · 0 · · · 0

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

κ̂q1 κ̂q2 · · · κ̂qr · · · κ̂qQq 0 0 · · · 0 · · · 0 0 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
κ̂Q1 κ̂Q1 · · · κ̂Q1 · · · κ̂QQq 0 0 · · · 0 · · · 0 0 0 · · · 0 · · · 0
α̂11 α̂12 · · · α̂1u · · · α̂1Ux β̂11 β̂12 · · · β̂1v · · · β̂1Vx γ̂11 γ̂12 · · · γ̂1w · · · γ̂1Wx

α̂21 α̂22 · · · α̂2u · · · α̂2Ux β̂21 β̂22 · · · β̂2v · · · β̂2Vx ω̂21 ω̂22 · · · γ̂2w · · · γ̂2Wx
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
α̂x1 α̂x2 · · · α̂xu · · · α̂xUx β̂x1 β̂x2 · · · β̂xv · · · β̂xVx γ̂x1 γ̂x2 · · · γ̂xw · · · γ̂xWx

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

α̂X1 α̂X2 · · · α̂Xu · · · α̂XUx β̂X1 β̂X2 · · · β̂Xv · · · β̂XVx γ̂X1 γ̂X2 · · · γ̂Xw · · · γ̂XWx

σ̂11 σ̂12 · · · σ̂1u · · · σ̂1Ui ς̂11 ς̂12 · · · ς̂1v · · · ς̂1Vi τ̂11 τ̂12 · · · τ̂1w · · · τ̂1Wi
σ̂21 σ̂22 · · · σ̂2u · · · σ̂2Ui ς̂21 ς̂22 · · · ς̂2v · · · ς̂2Vi τ̂21 τ̂22 · · · τ̂2w · · · τ̂2Wi

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

σ̂i1 σ̂i2 · · · σ̂iu · · · σ̂iUi ς̂i1 ς̂i2 · · · ς̂iv · · · ς̂iVi τ̂i1 τ̂i2 · · · τ̂iw · · · τ̂iWi
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
σ̂I1 σ̂I2 · · · σ̂Iu · · · σ̂IUi ς̂ I1 ς̂ I2 · · · ς̂ Iv · · · ς̂ IVi τ̂I1 τ̂I2 · · · τ̂Iw · · · τ̂IWi

ω̂11 ω̂12 · · · ω̂1u · · · ω̂1Uj ξ̂11 ξ̂12 · · · ξ̂1v · · · ξ̂1Uj ψ̂11 ψ̂12 · · · ψ̂1w · · · ψ̂1Wj

ω̂21 ω̂22 · · · ω̂2u · · · ω̂2Uj ξ̂21 ξ̂22 · · · ξ̂2v · · · ξ̂2Uj ψ̂21 ψ̂22 · · · ψ̂2w · · · ψ̂2Wj
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
ω̂j1 ω̂j2 · · · ω̂ju · · · ω̂jUj ξ̂ j1 ξ̂ j2 · · · ξ̂ jv · · · ξ̂ jUj ψ̂j1 ψ̂j2 · · · ψ̂jw · · · ψ̂jWj

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

ω̂J1 ω̂J2 · · · ω̂Ju · · · ω̂JUj ξ̂ J1 ξ̂ J2 · · · ξ̂ Jv · · · ξ̂ JUj ψ̂J1 ψ̂J2 · · · ψ̂Jw · · · ψ̂JWj



∈ R(Q∗+X∗+I∗+J∗)×(U∗+V∗+W∗) (30)
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where κ̂qr denotes the interaction ability between the q-th protein and the r-th protein;
α̂xu, β̂xv and γ̂xw are respectively the regulation abilities of the u-th TF on the x-th gene,
the v-th lncRNA on the x-th gene and the w-th miRNA on the x-th gene; σ̂iu, ς̂iv and τ̂iw
individually express the regulation abilities of the u-th TF on the i-th lncRNA, the v-th
lncRNA on the i-th lncRNA and the w-th miRNA on the i-th lncRNA; ω̂ju, ξ̂ jv and ψ̂jw
respectively mean the regulation abilities of the u-th TF on the j-th miRNA, the v-th lncRNA
on the j-th miRNA and the w-th miRNA on the w-th miRNA. Moreover, if there is neither
interaction nor regulation between the source and the target, some zeros should be padded
in the network matrix in (34). Then, the core GWGENs were obtained by using PNP on the
network matrix H with a significant energy threshold of 85%. First, the network matrix H
is decomposed by singular value decomposition (SVD), as follows [11,83]:

H = SVDT (31)

where S ∈ R(Q∗+X∗+I∗+J∗)×(Q∗+X∗+I∗+J∗) and DT ∈ R(U∗+V∗+W∗)×(U∗+V∗+W∗) are uni-
tary singular matrices; V = diag(v1, · · · , vi, · · · vU∗+V∗+W∗) ∈ R(Q∗+X∗+I∗+J∗)×(U∗+V∗+W∗)

means the diagonal matrix of which the components at the diagonal are the singular
values of H and are arranged in descending order, i.e., v1 ≥ v2 ≥ · · · ≥ vi ≥ · · · ≥
vU∗+V∗+W∗ ≥ 0.

V =



v1 0 · · · 0 · · · 0
0 v2 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · vi · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · vU∗+V∗+W∗

0 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 0


(32)

Moreover, the normalization of singular values in (36) is defined as follows.

Ei =
v2

i
U∗+V∗+W∗

∑
i=1

v2
i

and
U∗+V∗+W∗

∑
i=1

Ei = 1 (33)

I

∑
i=1

Ei ≥ 0.85 (34)

From the above equation, we chose the top I significant singular vector structures to
indicate the significant energy of real GWGENs, which is equal or more than the threshold
of 0.85. Then, we separately projected every node of real GWGENs (i.e., each row of the
network matrix H) to the top I significant singular vectors, as follows.

Z(a, b) = ha,: · dT
b,:, for a = 1, . . . , Q∗ + X∗ + I∗ + J∗, b = 1, . . . , I (35)

where Z(a, b) means the projection value of the a-th node on the b-th significant singular
vector; ha,; is the a-th row vector of the network matrix H and dT

:,b expresses the b-th
column of DT , i.e., the transpose of the b-th singular vector. Then, we define the two-norm
projection value of each node such as protein, gene, lnRNA and miRNA in real GWGENs
on the top I significant singular vectors as follows:

S(a) =

√√√√ I

∑
i=1

Z2(a, b), for a = 1, . . . , Q∗ + X∗ + I∗ + J∗ (36)
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According to the two-norm projection values in (40), the top 6000 significant proteins,
genes, miRNAs and lncRNAs with high projection values were chosen to comprise the core
GWGENs for OSCC and non-OSCC in Figure 3. Then, the core GWGENs were submitted
to the Database for Annotation, Visualization and Integrated Discovery (DAVID) website to
conduct the KEGG pathway enrichment analysis in Tables 3 and 4, and the core signaling
pathways of non-OSCC and OSCC in Figure 4 were obtained by exploring the annotation of
KEGG pathways. The enrichment analysis was used to check which significant pathways
of our results were important to OSCC. Finally, the potential biomarkers were identified in
Table 5 for the OSCC carcinogenic mechanism investigated by comparing the core signaling
pathways and their downstream abnormal cellular functions of non-OSCC and OSCC in
Figure 4.

4.6. Systematic Drug Discovery Based on the Drug/Target Interaction Prediction by the
DNN-Based DTI Model and Drug Design Specifications for OSCC

Based on drug/target (biomarker) prediction and drug design specifications, we want
to discover a potential multiple-molecule drug for the carcinogenic biomarkers on OSCC.
First, we trained a DTI model based on a deep neural network (DNN) to predict the drug–
target interactions between the drugs and targets (biomarkers). However, it is not enough
to only consider the interactions between the molecular drugs and the targets in drug
design. Some drug design specifications, i.e., adequate regulation ability, low toxicity and
high sensitivity, are necessary to filter the candidate drugs predicted by the DNN-based
DTI model. This systems drug discovery method is introduced in the following paragraphs
for designing a multiple-molecule drug for OSCC treatment before clinical trials.

The flowchart of the systematic drug discovery method is shown in Figure 5. First,
drug–target interaction databases by UniProt [84], DrugBank [59], ChEMBL [85] and
Pubchem [86] are combined to train DNN as the DTI model for drug–target interaction pre-
diction. In a few years, the feature-based method, i.e., molecular descriptor, will be widely
used to describe the structural and chemical properties of molecules such as characteristics
from the 2D, 3D spectrum of the structure, molecular weight, hydrophilic and hydropho-
bicity, etc. The chemical properties of the drug and genomic sequence of the target could
be described with the molecular descriptor for the purpose of convenient analysis in drug
design since the molecular descriptor can transform complicated chemical properties into a
feature vector. We used the molecule descriptor function and protein descriptor function of
python package pyBioMed to transform the drug and target into descriptors as drug and
target features, respectively, under the python2.7 environment. Drug features of molecule
descriptors include constitutional descriptors, connectivity indices, E-state indices, charge
descriptors, molecular properties and kappa shape indices. For the target features, the
protein descriptor calculates the structural and physicochemical features of proteins and
peptides from the amino acid sequence such as amino acid composition, dipeptide com-
position, etc. For more detailed information about the descriptor transformation, readers
can access the documents of pyBioMed. The drug descriptor and the target descriptor are
combined into the feature vector corresponding to the drug–target pair, as follows:

vdrug–target = [D, T] = [d1, d2, · · · , dM, t1, t2, · · · , tN ] (37)

where the former symbol D in vdrug–target is defined as the drug descriptor and the latter
symbol T is the target descriptor. d1 means the first drug feature; t1 represents the first
target feature; M indicates the total number of features of the drug and N expresses the
total number of features of the target. We have 363 features for the drug and 996 features
for the target.

Before training our DNN-based DTI model, we encountered several problems: features
of different scales will affect our results—for example, large-scale features will have a great
dominance in the training process. There are far more unverified data in the data than
verified data, so there exists a between-class imbalance issue which could lead to a biased
parameter updating tendency to the larger class during the training process.
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To remedy the imbalance issue, we have to solve the problem of scale first. We
use the min-max normalization to deal with this problem. Min-max normalization can
handle this problem effectively, but compared to normalization, it is very sensitive to
outliers. Additionally, feature normalization is performed before principal component
analysis (PCA) to improve the DNN-based DTI model training performance. Therefore,
the normalization to the features is given as follows:

d∗i =
di − µi

σi
, ∀i = 1, . . . , M (38)

t∗j =
tj − µj

σj
, ∀j = 1, . . . , N (39)

where di denotes the i-th drug feature and d∗i expresses the i-th drug feature after the
standardization; µi and σi respectively denote the mean and standard deviations of the i-th
drug feature; tj means the j-th feature of the target and t∗j represents the j-th feature of the
target after standardization; µj and σj separately indicate the mean and standard deviation
of the j-th target feature; M expresses the total number of drug features and N denotes the
total number of target features.

In our data, the number of proven drug–target interaction samples, called the positive
class, is 1455, and the number of unverified drug–target interaction samples, called the
negative class, is much larger than the positive class. There exists a huge difference in the
amount between the negative class and the positive class, which leads to the between-class
imbalance issue. Before training the DNN-based DTI model, we also implemented data
preprocessing by the principal component analysis (PCA) method—(35)–(40)—to reduce
the dimension of the features of the drug and target to the dimension of the input of DNN.
The PCA extraction was conducted after down-sampling and standardization to ensure
that the PCA could accurately project the original data on the feature plane. It is worth
noting that data preprocessing, e.g., PCA, is only conducted in training data because testing
data should be deemed unknown to the model. The drug features were selected by the top
85% with higher singular values. The insignificant features of the drug and the target lower
than the dimension of the input of DNN are deleted, and the remainders were employed
to train DNN as the DTI model to predict candidate drugs for biomarkers (drug targets)
of OSCC.

We referenced the basic concept and knowledge of DNN to train a DNN-based DTI
model to predict drug–target interaction through the python Tensorflow and Keras package
under the python3.7 environment. In the model structure of the DNN-based DTI model in
Figure 4, the function in a feedforward step can be denoted as follows:

h = σ(wx + b) (40)

where x and h respectively denote the input and output; w is the weighting matrix and b
is the bias vector; σ (.) indicates the activation function with ReLU in the hidden layer and
the sigmoid function at the output layer. Since the binary classification issue is concerned,
the binary-cross entropy is chosen as the cost function to calculate the model loss [11]:

Cn(w, b) = −[ p̂n log pn + (1− p̂n)log(1− pn)] (41)

L(w, b) =
1
N

N

∑
n=1

Cn(w, b) (42)

where pn means the truth label of positive interaction; p̂n indicates the predictive probability
of positive interaction, and 1− pn shows the truth label of negative interaction; 1− p̂n
represents the predicted probability of negative interaction; L(w, b) denotes the average
of total loss Cn(w, b). According to the cost function, the backward propagation algorithm
is applied to update the model parameter set θ containing the weighting matrix w and the
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bias vector b through calculating the gradient of the cost function in (46) and eventually
obtain the optimal solution θ∗ in (48), as follows.

θ =

[
w
b

]
(43)

θ∗ = argmin
θ

L(θ) (44)

θl = θl−1 − η∇L(θl−1) (45)

where l is the l-th epoch of the learning procedure; η is learning rate and ∇L
(

θl−1
)

is the

gradient of L
(

θl−1
)

, as follows:

∇L(θl−1) =

[
∂L(θl−1)

∂w
∂L(θl−1)

∂b

]
(46)

Based on the backward propagation method, the DNN-based DTI model could adjust
the parameters to fit the drug–target interaction data at each iteration well.

In addition, the hyperparameters were tuned to not only lower the training time but
also achieve the best model performance. We used an optimizer with default settings and
set the learning rate to 0.003 to make model parameter θ converge faster and precisely.
We set 100 for epochs and 100 for batch size. For the data, we split one-fourth of the
data as testing data and three-fourths of it as training data. Moreover, we divided the
training data into five equal folds to perform the five-fold cross-validation strategy. In
the five-fold data, four-fifths of them were for the model training and one-fifth of them
was used as the validation data, which play the role of supervisor to check whether the
model was better than that of the former epoch. Additionally, five-fold cross-validation
could verify the stability of the data and model. To avoid model overfitting, we applied an
early stopping strategy to check if the test accuracy decreased when the training accuracy
increased continuously. Moreover, we embedded the dropout layer after each hidden
layer to further prevent model overfitting and set 0.4 for the dropout rate. After training
the DNN-based DTI model, we adopted a performance measurement AUC (area under
the curve) score and ROC (receiver operating characteristics) curve in Figure 8 to check
the model performance. It is one of the most useful evaluation metrics to visualize the
model performance when it comes to the classification problems. The higher the AUC score
(which means the area under the line is larger), the better the accuracy is for the DNN-based
DTI model in predicting the true positive and true negative drug–target interaction. The
formulas for the AUC score and ROC curve are shown below [83].

TPR(True Positive Rate) =
TP

TP + FN
(47)

specificity =
TN

TN + FP
(48)

FPR(False Positive Rate) = 1− specificity =
FP

TN + FP
(49)

where TP (True Positive) means that the real value is true and is judged correctly; TN shows
that the real value is true and is judged by mistake; FP indicates that the real value is false
and is judged accurately; FN represents that the real value is false and is judged in error.

5. Conclusions

In this study, based on our proposed combination of systems biology and systems
drug discovery design methods, we investigated the complex carcinogenic molecular
mechanisms of OSCC from genome-wide data, genetic and epigenetic network perspectives,
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and designed prospective multiple-molecular drugs as a multi-molecule drug to target
multiple biomarkers of OSCC. We construct a genetic and epigenetic biological network
by exploring methods of systematic identification and systematic sequential detection
of big data. Afterwards, we extracted core signaling pathways by the PNP method and
KEGG pathway annotation to select important biomarkers from OSCC carcinogenesis by
comparing core signaling pathways and their downstream abnormal cellular functions. To
discover drug candidates that interact with these biomarkers, we trained a DNN-based
DTI model by DTI databases to predict drug–target interaction probability values. In
addition, we took the drug regulation ability, low toxicity and high sensitivity as the drug
design criteria to screen out suitable potential drugs from the predicted drug candidates.
Therefore, a set of combined multi-molecular drugs is proposed as a multi-molecule drug
for OSCC treatment. In the future, more and more different types of genomics data will
be available for epigenetic and epigenetic regulations. A combination of multiple types of
genomics data is needed to help us enhance our work and gain a deeper understanding of
the significant biomarkers of the carcinogenic mechanism of OSCC. It is anticipated that
the proposed systems biology and systems drug discovery design approach may provide
new directions for OSCC treatment.

Author Contributions: Conceptualization, Y.-C.L. and B.-S.C.; methodology, Y.-C.L. and B.-S.C.;
software, Y.-C.L. and B.-S.C.; validation, Y.-C.L. and B.-S.C.; formal analysis, Y.-C.L. and B.-S.C.;
investigation, Y.-C.L. and B.-S.C.; data curation, Y.-C.L.; writing—original draft preparation, Y.-C.L.;
writing—review and editing, Y.-C.L. and B.-S.C.; visualization, Y.-C.L.; supervision, B.-S.C.; funding
acquisition, B.-S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The gene raw count datasets of human genes are integrated from
GSE30784 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30784, accessed on 1 Novem-
ber 2021) and GSE17913 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17913, ac-
cessed on 1 November 2021). The drug regulation ability data are from Phase I L1000 Level 5
datasets (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742, accessed on 1 Novem-
ber 2021). The drug sensitivity datasets are from DepMapPRISM primary screen datasets (https:
//depmap.org/repurposing/, accessed on 1 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Da Silva, S.D.; Marchi, F.A.; Xu, B.; Bijian, K.; Alobaid, F.; Mlynarek, A.; Rogatto, S.R.; Hier, M.; Kowalski, L.P.; Alaoui-Jamali,

M.A. Predominant Rab-GTPase amplicons contributing to oral squamous cell carcinoma progression to metastasis. Oncotarget
2015, 6, 21950. [CrossRef] [PubMed]

2. Petersen, P.E. Oral cancer prevention and control–the approach of the World Health Organization. Oral Oncol. 2009, 45, 454–460.
[CrossRef] [PubMed]

3. Andisheh-Tadbir, A.; Mehrabani, D.; Heydari, S.T. Epidemiology of squamous cell carcinoma of the oral cavity in Iran. J.
Craniofacial Surg. 2008, 19, 1699–1702. [CrossRef] [PubMed]

4. Dissanayaka, W.L.; Pitiyage, G.; Kumarasiri, P.V.R.; Liyanage, R.L.P.R.; Dias, K.D.; Tilakaratne, W.M. Clinical and histopathologic
parameters in survival of oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 518–525.
[CrossRef] [PubMed]

5. Chen, Y.J.; Chang, J.T.C.; Liao, C.T.; Wang, H.M.; Yen, T.C.; Chiu, C.C.; Lu, Y.C.; Li, H.F.; Cheng, A.J. Head and neck cancer in the
betel quid chewing area: Recent advances in molecular carcinogenesis. Cancer Sci. 2008, 99, 1507–1514. [CrossRef] [PubMed]

6. Otero-Rey, E.M.; Suarez-Alen, F.; Peñamaria-Mallon, M.; Lopez-Lopez, J.; Blanco-Carrion, A. Malignant transformation of oral
lichen planus by a chronic inflammatory process. Use of topical corticosteroids to prevent this progression? Acta Odontol. Scand.
2014, 72, 570–577. [CrossRef]

7. Tang, D.; Tao, D.; Fang, Y.; Deng, C.; Xu, Q.; Zhou, J. TNF-alpha promotes invasion and metastasis via NF-kappa B pathway in
oral squamous cell carcinoma. Med. Sci. Monit. Basic Res. 2017, 23, 141. [CrossRef]

8. Scully, C.; Field, J.; Tanzawa, H. Genetic aberrations in oral or head and neck squamous cell carcinoma (SCCHN): 1. Carcinogen
metabolism, DNA repair and cell cycle control. Oral Oncol. 2000, 36, 256–263. [CrossRef]

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30784
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17913
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
https://depmap.org/repurposing/
https://depmap.org/repurposing/
http://doi.org/10.18632/oncotarget.4277
http://www.ncbi.nlm.nih.gov/pubmed/26110570
http://doi.org/10.1016/j.oraloncology.2008.05.023
http://www.ncbi.nlm.nih.gov/pubmed/18804412
http://doi.org/10.1097/SCS.0b013e31818c04cc
http://www.ncbi.nlm.nih.gov/pubmed/19098587
http://doi.org/10.1016/j.oooo.2011.11.001
http://www.ncbi.nlm.nih.gov/pubmed/22668430
http://doi.org/10.1111/j.1349-7006.2008.00863.x
http://www.ncbi.nlm.nih.gov/pubmed/18754860
http://doi.org/10.3109/00016357.2014.914570
http://doi.org/10.12659/MSMBR.903910
http://doi.org/10.1016/S1368-8375(00)00007-5


Int. J. Mol. Sci. 2022, 23, 10409 27 of 29

9. Feller, L.; Altini, M.; Lemmer, J. Inflammation in the context of oral cancer. Oral Oncol. 2013, 49, 887–892. [CrossRef]
10. Harada, K.; Ferdous, T.; Itashiki, Y.; Takii, M.; Mano, T.; Mori, Y.; Ueyama, Y. Cepharanthine inhibits angiogenesis and

tumorigenicity of human oral squamous cell carcinoma cells by suppressing expression of vascular endothelial growth factor and
interleukin-8. Int. J. Oncol. 2009, 35, 1025–1035. [CrossRef]

11. Chang, S.; Chen, J.-Y.; Chuang, Y.-J.; Chen, B.-S. Systems Approach to Pathogenic Mechanism of Type 2 Diabetes and Drug
Discovery Design Based on Deep Learning and Drug Design Specifications. Int. J. Mol. Sci. 2020, 22, 166. [CrossRef] [PubMed]

12. Ting, C.-T.; Chen, B.-S. Repurposing Multiple-Molecule Drugs for COVID-19-Associated Acute Respiratory Distress Syndrome
and Non-Viral Acute Respiratory Distress Syndrome via a Systems Biology Approach and a DNN-DTI Model Based on Five
Drug Design Specifications. Int. J. Mol. Sci. 2022, 23, 3649. [CrossRef] [PubMed]

13. Yeh, S.-J.; Chang, C.-A.; Li, C.-W.; Wang, L.H.-C.; Chen, B.-S. Comparing progression molecular mechanisms between lung
adenocarcinoma and lung squamous cell carcinoma based on genetic and epigenetic networks: Big data mining and genome-wide
systems identification. Oncotarget 2019, 10, 3760. [CrossRef]

14. Li, C.-W.; Jheng, B.-R.; Chen, B.-S. Investigating genetic-and-epigenetic networks, and the cellular mechanisms occurring in
Epstein–Barr virus-infected human B lymphocytes via big data mining and genome-wide two-sided NGS data identification.
PLoS ONE 2018, 13, e0202537.

15. Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249.
[CrossRef]

16. Akhondzadeh, S. The importance of clinical trials in drug development. Avicenna J. Med. Biotechnol. 2016, 8, 151.
17. Weaver, M.F.; Hopper, J.A.; Gunderson, E.W. Designer drugs 2015: Assessment and management. Addict. Sci. Clin. Pract. 2015,

10, 8. [CrossRef] [PubMed]
18. Li, A.; Huang, H.-T.; Huang, H.-C.; Juan, H.-F. LncTx: A network-based method to repurpose drugs acting on the survival-related

lncRNAs in lung cancer. Comput. Struct. Biotechnol. J. 2021, 19, 3990–4002. [CrossRef]
19. Cheng, L.-H.; Hsu, T.-C.; Lin, C. Integrating ensemble systems biology feature selection and bimodal deep neural network for

breast cancer prognosis prediction. Sci. Rep. 2021, 11, 14914.
20. Lai, Y.-H.; Chen, W.-N.; Hsu, T.-C.; Lin, C.; Tsao, Y.; Wu, S. Overall survival prediction of non-small cell lung cancer by integrating

microarray and clinical data with deep learning. Sci. Rep. 2020, 10, 4679.
21. Lee, K.-H.; Chang, Y.-C.; Chen, T.-F.; Juan, H.-F.; Tsai, H.-K.; Chen, C.-Y. Connecting MHC-I-binding motifs with HLA alleles via

deep learning. Commun. Biol. 2021, 4, 1194. [CrossRef] [PubMed]
22. Salwinski, L.; Miller, C.S.; Smith, A.J.; Pettit, F.K.; Bowie, J.U.; Eisenberg, D. The database of interacting proteins: 2004 update.

Nucleic Acids Res. 2004, 32 (Suppl. 1), D449–D451. [CrossRef] [PubMed]
23. Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.; Del-Toro,

N. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014,
42, D358–D363. [CrossRef] [PubMed]

24. Stark, C.; Breitkreutz, B.-J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: A general repository for interaction
datasets. Nucleic Acids Res. 2006, 34 (Suppl. 1), D535–D539. [CrossRef]

25. Zanzoni, A.; Montecchi-Palazzi, L.; Quondam, M.; Ausiello, G.; Helmer-Citterich, M.; Cesareni, G. MINT: A Molecular INTeraction
database. FEBS Lett. 2002, 513, 135–140. [CrossRef]

26. Bovolenta, L.A.; Acencio, M.L.; Lemke, N. HTRIdb: An open-access database for experimentally verified human transcriptional
regulation interactions. BMC Genom. 2012, 13, 405. [CrossRef]

27. Zheng, G.; Tu, K.; Yang, Q.; Xiong, Y.; Wei, C.; Xie, L.; Zhu, Y.; Li, Y. ITFP: An integrated platform of mammalian transcription
factors. Bioinformatics 2008, 24, 2416–2417. [CrossRef]

28. Wingender, E.; Chen, X.; Hehl, R.; Karas, H.; Liebich, I.; Matys, V.; Meinhardt, T.; Prüß, M.; Reuter, I.; Schacherer, F. TRANSFAC:
An integrated system for gene expression regulation. Nucleic Acids Res. 2000, 28, 316–319. [CrossRef]

29. Friard, O.; Re, A.; Taverna, D.; De Bortoli, M.; Corá, D. CircuitsDB: A database of mixed microRNA/transcription factor
feed-forward regulatory circuits in human and mouse. BMC Bioinform. 2010, 11, 435. [CrossRef]

30. Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. elife 2015,
4, e05005. [CrossRef]

31. Li, J.-H.; Liu, S.; Zhou, H.; Qu, L.-H.; Yang, J.-H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014, 42, D92–D97. [CrossRef] [PubMed]

32. Chen, B.-S.; Wu, C.-C. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems
metabolic engineering. Cells 2013, 2, 635–688. [CrossRef]

33. Li, C.-W.; Chen, B.-S. Investigating core genetic-and-epigenetic cell cycle networks for stemness and carcinogenic mechanisms,
and cancer drug design using big database mining and genome-wide next-generation sequencing data. Cell Cycle 2016, 15,
2593–2607. [CrossRef] [PubMed]

34. Wang, G.; Pan, C.; Cao, K.; Zhang, J.; Geng, H.; Wu, K.; Wen, J.; Liu, C. Impacts of cigarette smoking on the tumor immune
microenvironment in esophageal squamous cell carcinoma. J. Cancer 2022, 13, 413. [CrossRef]

http://doi.org/10.1016/j.oraloncology.2013.07.003
http://doi.org/10.3892/ijo_00000417
http://doi.org/10.3390/ijms22010166
http://www.ncbi.nlm.nih.gov/pubmed/33375269
http://doi.org/10.3390/ijms23073649
http://www.ncbi.nlm.nih.gov/pubmed/35409008
http://doi.org/10.18632/oncotarget.26940
http://doi.org/10.1111/j.1476-5381.2010.01127.x
http://doi.org/10.1186/s13722-015-0024-7
http://www.ncbi.nlm.nih.gov/pubmed/25928069
http://doi.org/10.1016/j.csbj.2021.07.007
http://doi.org/10.1038/s42003-021-02716-8
http://www.ncbi.nlm.nih.gov/pubmed/34663927
http://doi.org/10.1093/nar/gkh086
http://www.ncbi.nlm.nih.gov/pubmed/14681454
http://doi.org/10.1093/nar/gkt1115
http://www.ncbi.nlm.nih.gov/pubmed/24234451
http://doi.org/10.1093/nar/gkj109
http://doi.org/10.1016/S0014-5793(01)03293-8
http://doi.org/10.1186/1471-2164-13-405
http://doi.org/10.1093/bioinformatics/btn439
http://doi.org/10.1093/nar/28.1.316
http://doi.org/10.1186/1471-2105-11-435
http://doi.org/10.7554/eLife.05005
http://doi.org/10.1093/nar/gkt1248
http://www.ncbi.nlm.nih.gov/pubmed/24297251
http://doi.org/10.3390/cells2040635
http://doi.org/10.1080/15384101.2016.1198862
http://www.ncbi.nlm.nih.gov/pubmed/27295129
http://doi.org/10.7150/jca.65400


Int. J. Mol. Sci. 2022, 23, 10409 28 of 29

35. Foy, J.-P.; Bertolus, C.; Michallet, M.-C.; Deneuve, S.; Incitti, R.; Bendriss-Vermare, N.; Albaret, M.-A.; Ortiz-Cuaran, S.; Thomas,
E.; Colombe, A. The immune microenvironment of HPV-negative oral squamous cell carcinoma from never-smokers and
never-drinkers patients suggests higher clinical benefit of IDO1 and PD1/PD-L1 blockade. Ann. Oncol. 2017, 28, 1934–1941.
[CrossRef]

36. Cheskis, B.J.; Greger, J.; Cooch, N.; McNally, C.; Mclarney, S.; Lam, H.-S.; Rutledge, S.; Mekonnen, B.; Hauze, D.; Nagpal, S.
MNAR plays an important role in ERa activation of Src/MAPK and PI3K/Akt signaling pathways. Steroids 2008, 73, 901–905.
[CrossRef]

37. Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer 2014,
120, 3446–3456. [CrossRef]

38. Mittal, M.; Kapoor, V.; Mohanti, B.K.; Das, S.N. Functional variants of COX-2 and risk of tobacco-related oral squamous cell
carcinoma in high-risk Asian Indians. Oral Oncol. 2010, 46, 622–626. [CrossRef]

39. Ramos-Garcia, P.; Gil-Montoya, J.; Scully, C.; Ayén, A.; González-Ruiz, L.; Navarro-Triviño, F.; González-Moles, M. An update on
the implications of cyclin D1 in oral carcinogenesis. Oral Dis. 2017, 23, 897–912. [CrossRef] [PubMed]

40. Lakshminarayana, S.; Augustine, D.; Rao, R.S.; Patil, S.; Awan, K.H.; Venkatesiah, S.S.; Haragannavar, V.C.; Nambiar, S.; Prasad,
K. Molecular pathways of oral cancer that predict prognosis and survival: A systematic review. J. Carcinog. 2018, 17, 7. [CrossRef]

41. Freier, K.; Sticht, C.; Hofele, C.; Flechtenmacher, C.; Stange, D.; Puccio, L.; Toedt, G.; Radlwimmer, B.; Lichter, P.; Joos, S. Recurrent
coamplification of cytoskeleton-associated genes EMS1 and SHANK2 with CCND1 in oral squamous cell carcinoma. Genes
Chromosomes Cancer 2006, 45, 118–125. [CrossRef] [PubMed]

42. Wang, Q.; Han, J.; Xu, P.; Jian, X.; Huang, X.; Liu, D. Silencing of LncRNA SNHG16 downregulates cyclin D1 (CCND1) to abrogate
malignant phenotypes in oral squamous cell carcinoma (OSCC) through upregulating miR-17–5p. Cancer Manag. Res. 2021,
13, 1831. [CrossRef] [PubMed]

43. Giles, R.H.; Van Es, J.H.; Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta (BBA)-Rev. Cancer
2003, 1653, 1–24. [CrossRef]

44. Huelsken, J.; Behrens, J. The Wnt signalling pathway. J. Cell Sci. 2002, 115, 3977–3978. [CrossRef] [PubMed]
45. Lyou, Y.; Habowski, A.N.; Chen, G.T.; Waterman, M.L. Inhibition of nuclear Wnt signalling: Challenges of an elusive target for

cancer therapy. Br. J. Pharmacol. 2017, 174, 4589–4599. [CrossRef] [PubMed]
46. Xiao, X.; Gu, Y.; Wang, G.; Chen, S. c-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and

apoptosis in multiple myeloma. Int. J. Biol. Macromol. 2019, 122, 526–537. [CrossRef]
47. Walker, L.; Lynch, M.; Silverman, S.; Fraser, J.; Boulter, J.; Weinmaster, G.; Gasson, J.C. The Notch/Jagged pathway inhibits

proliferation of human hematopoietic progenitors in vitro. Stem Cells 1999, 17, 162–171. [CrossRef]
48. Chai, A.W.Y.; Lim, K.P.; Cheong, S.C. Translational genomics and recent advances in oral squamous cell carcinoma. In Seminars in

Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 71–83.
49. Hijioka, H.; Setoguchi, T.; Miyawaki, A.; Gao, H.; Ishida, T.; Komiya, S.; Nakamura, N. Upregulation of Notch pathway molecules

in oral squamous cell carcinoma. Int. J. Oncol. 2010, 36, 817–822.
50. Sjölund, J.; Manetopoulos, C.; Stockhausen, M.-T.; Axelson, H. The Notch pathway in cancer: Differentiation gone awry. Eur. J.

Cancer 2005, 41, 2620–2629. [CrossRef]
51. Ingram, W.; McCue, K.; Tran, T.; Hallahan, A.; Wainwright, B. Sonic Hedgehog regulates Hes1 through a novel mechanism that is

independent of canonical Notch pathway signalling. Oncogene 2008, 27, 1489–1500. [CrossRef]
52. Subramaniam, D.; Ponnurangam, S.; Ramamoorthy, P.; Standing, D.; Battafarano, R.J.; Anant, S.; Sharma, P. Curcumin induces

cell death in esophageal cancer cells through modulating Notch signaling. PLoS ONE 2012, 7, e30590. [CrossRef] [PubMed]
53. Bi, H.; Ming, L.; Cheng, R.; Luo, H.; Zhang, Y.; Jin, Y. Liver extracellular matrix promotes BM-MSCs hepatic differentiation

and reversal of liver fibrosis through activation of integrin pathway. J. Tissue Eng. Regen. Med. 2017, 11, 2685–2698. [CrossRef]
[PubMed]

54. Dayyani, F.; Parikh, N.U.; Varkaris, A.S.; Song, J.H.; Moorthy, S.; Chatterji, T.; Maity, S.N.; Wolfe, A.R.; Carboni, J.M.; Gottardis,
M.M. Combined Inhibition of IGF-1R/IR and Src family kinases enhances antitumor effects in prostate cancer by decreasing
activated survival pathways. PLoS ONE 2012, 7, e51189. [CrossRef] [PubMed]

55. Yu, Z.; Weinberger, P.M.; Sasaki, C.; Egleston, B.L.; Speier IV, W.F.; Haffty, B.; Kowalski, D.; Camp, R.; Rimm, D.; Vairaktaris, E.
Phosphorylation of Akt (Ser473) predicts poor clinical outcome in oropharyngeal squamous cell cancer. Cancer Epidemiol. Biomark.
Prev. 2007, 16, 553–558. [CrossRef]

56. Subarnbhesaj, A.; Miyauchi, M.; Chanbora, C.; Mikuriya, A.; Nguyen, P.T.; Furusho, H.; Ayuningtyas, N.F.; Fujita, M.; Toratani, S.;
Takechi, M. Roles of VEGF-Flt-1 signaling in malignant behaviors of oral squamous cell carcinoma. PLoS ONE 2017, 12, e0187092.
[CrossRef]
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