
RESEARCH ARTICLE Open Access

Identifying dysregulated pathways in cancers
from pathway interaction networks
Ke-Qin Liu1,2,4, Zhi-Ping Liu3, Jin-Kao Hao4*, Luonan Chen1,3,5* and Xing-Ming Zhao1*

Abstract

Background: Cancers, a group of multifactorial complex diseases, are generally caused by mutation of multiple

genes or dysregulation of pathways. Identifying biomarkers that can characterize cancers would help to understand

and diagnose cancers. Traditional computational methods that detect genes differentially expressed between

cancer and normal samples fail to work due to small sample size and independent assumption among genes. On

the other hand, genes work in concert to perform their functions. Therefore, it is expected that dysregulated

pathways will serve as better biomarkers compared with single genes.

Results: In this paper, we propose a novel approach to identify dysregulated pathways in cancer based on a

pathway interaction network. Our contribution is three-fold. Firstly, we present a new method to construct pathway

interaction network based on gene expression, protein-protein interactions and cellular pathways. Secondly, the

identification of dysregulated pathways in cancer is treated as a feature selection problem, which is biologically

reasonable and easy to interpret. Thirdly, the dysregulated pathways are identified as subnetworks from the

pathway interaction networks, where the subnetworks characterize very well the functional dependency or crosstalk

between pathways. The benchmarking results on several distinct cancer datasets demonstrate that our method can

obtain more reliable and accurate results compared with existing state of the art methods. Further functional

analysis and independent literature evidence also confirm that our identified potential pathogenic pathways are

biologically reasonable, indicating the effectiveness of our method.

Conclusions: Dysregulated pathways can serve as better biomarkers compared with single genes. In this work, by

utilizing pathway interaction networks and gene expression data, we propose a novel approach that effectively

identifies dysregulated pathways, which can not only be used as biomarkers to diagnose cancers but also serve as

potential drug targets in the future.

Background
Cancer is a type of complex diseases, which generally

involves multiple gene mutations and pathway dysregu-

lations [1,2]. Identifying biomarkers for cancer can help

to understand and diagnose diseases, which in turn helps

to design drugs with effective therapy. However, it is a

challenging task to detect reliable biomarkers in cancers.

Recently, the accumulation of large amount of “omics”

data in public databases provides an opportunity for

detecting biomarkers, among which the gene expression

data are widely used. Accordingly, much effort has been

made to identify causal disease genes based on these

data. For example, many computational methods have

been developed to detect differentially expressed genes

between normal and disease samples [3–5], and these

genes are supposed to be related to diseases and can be

used as biomarkers. Unfortunately, many of the differen-

tially expressed genes detected in one dataset are later

found not to work effectively in another dataset for the

same disease, especially for complex diseases [6]. This

phenomenon may arise due to the independency as-

sumption among disease related genes when detecting

differentially expressed genes, whereas complex diseases

are generally caused by the dysregulation of functional

modules that consist of a set of genes [7–9].

Due to the poor performance of biomarkers as differ-

entially expressed genes, some approaches have been
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proposed to identify possible pathogenic pathways,

which improves the robustness and accuracy when

these pathways are used as biomarkers compared with

above mentioned gene based methods [10–18]. For ex-

ample, Lee et al. [13] proposed to use a subset of

genes belonging to one pathway as biomarkers to ac-

curately distinguish diseases from controls. Liu et al.

[18] used pathways to compare different regions of

Alzheimer's disease brains and found dysfunctional

pathways that cooperate in different brain regions. Des-

pite the success of these methods on some datasets,

the majority of them do not consider the functional de-

pendency between pathways. Generally, different path-

ways have crosstalk with each other, and the

deregulation of one pathway may affect the activities of

many related pathways. Therefore, it is possible to de-

tect more reliable pathway biomarkers by taking into

account the functional dependency or interaction be-

tween pathways.

In this paper, we propose a novel method to identify

dysregulated pathways by considering pathway interac-

tions. The identified dysregulated pathways can be

used as candidate biomarkers to diagnose cancer. Spe-

cifically, a new approach is proposed to construct a

pathway interaction network, which describes the func-

tional dependency between pathways. Subsequently, the

dysregulated pathways in cancer are identified as the

best features to discriminate cancers from controls in

a machine learning framework. Benchmarking our

method on several distinct cancer datasets shows that

our method outperforms previous state of the art

methods. Furthermore, functional analysis and inde-

pendent experimental evidence demonstrate that our

identified dysregulated pathways are biologically rea-

sonable, indicating the practical efficiency of the pro-

posed method.

Methods
Datasets

Gene expression data

The gene expression datasets were obtained from the

NCBI Gene Expression Omnibus (GEO) [19]. We chose

four different types of cancer datasets that have

balanced number of disease and control samples in

each dataset. Table 1 lists the gene expression datasets

that were used in this work, including lung cancer

(GSE4115) [20], prostate tumour (GSE6919) [21], breast

cancer (GSE15852) [22], and pancreatic tumour

(GSE16515) [23]. For each gene expression dataset, the

annotations for probes were obtained from GEO and

each probe was mapped to a gene, where the probes

were discarded if they do not match any gene. The ex-

pression value averaged over probes was used as the

gene expression value if the gene has multiple probes.

Subsequently, the expression values of all genes in each

dataset were standardized as follows

zij ¼
gij �mean gið Þ

std gið Þ
ð1Þ

where gij represents the expression value of gene i in

sample j, and mean(gi) and std(gi) respectively repre-

sents mean and standard deviation of the expression

vector for gene i across all samples.

Cellular pathways and human protein-protein interactions

The predefined biological pathways were obtained from

the Molecular Signatures Database (MSigDB) [24],

which is a large collection of annotated functional gene

sets. We chose the canonical pathways in the curated

gene sets that contain 880 pathways, including the meta-

bolic and signaling pathways collected from BioCarta

(www.biocarta.com), KEGG [25], and Reactome [26].

The human protein-protein interactions (PPIs) were

obtained from the Human Protein Reference Database

(HPRD, downloaded in February 2010) [27], which con-

tains manually curated protein-protein interactions. The

PPI data set contains 38788 protein interactions among

9630 unique human proteins.

Pathway activity and pathway interaction network

Figure 1 illustrates the flowchart of our proposed

method. Firstly, the pathway activity was defined based

on gene expression data for each pathway. Secondly, a

pathway interaction network (PIN) was constructed

based on pathways and PPIs for each dataset. Thirdly,

the dysregulated pathways in cancer are identified from

PIN. The details were addressed as follows.

Pathway activity

All the genes were mapped to pathways extracted from

MsigDB and only those genes that can be mapped to

pathways were kept for further analysis hereinafter. After

the genes were mapped to pathways, we defined an ac-

tivity score for each pathway as the summary of the ex-

pression values of all genes belonging to this pathway. In

particular, we used principal component analysis (PCA)

method [28] to get the summary of all gene expressions

Table 1 Cancer gene expression datasets

GEO
accession
number

Disease Number of
samples
(Disease/Control)

Platform

GSE 4115 Lung Cancer 187 (97/90) GPL96 (HG-U133A)

GSE 6919 Prostate Tumour 128 (65/63) GPL8300 (HG_U95Av2)

GSE 15852 Breast Tumour 86 (43/43) GPL96 (HG-U133A)

GSE 16515 Pancreatic
Tumour

52 (36/16) GPL570
(HG-U133_Plus_2)
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of each pathway. The PCA technique can effectively

characterize the internal structure of high-dimension

dataset by preserving the variance in the data while

transforming the data into low-dimension space. In brief,

the activity score Pkj of pathway k in sample j was

defined as follows.

Pkj ¼ w1jkz1jk þ w2jkz2jk⋯þ wijkzijk ð2Þ

where zijk represents the standardized expression value

of gene i from pathway k in sample j, and wijk denotes

weight for zijk. In other words, the activity of each path-

way can be regarded as the linear combination of the

expressions of all genes in the pathway, and each path-

way can be regarded as a meta-gene. In particular, the

first principal component from PCA was used as the

activity score for the corresponding pathway here.

Therefore, the pathways that have different activities in

diseases between controls are possibly related to

diseases.

Pathway interaction network (PIN)

A pathway interaction network (PIN) was constructed

with each node representing a pathway, where one edge

was laid between two pathways if they share at least one

gene or there are interactions between genes from the

two pathways based on PPIs. Due to the condition-

specificity of gene expression and pathway activity, for a

given gene expression dataset, we further required that

at least one of the common genes between two pathways

is differentially expressed (student’s t-test, p-value< 0.05)

between diseases and controls, or the two genes that

Figure 1 Schematic illustration of identifying dysregulated pathway in cancer. Firstly, gene expression profiles were standardized. Secondly,

the genes were mapped to pathways. For each pathway, the principal component analysis (PCA) was employed to calculate the pathway activity

score that summarizes the expression values of genes in each pathway. Thirdly, the pathway interaction network (PIN) was constructed based on

gene expression data, protein-protein interactions, and cellular pathways. In the PIN, each node represents a pathway while each edge denotes

the functional association between two pathways. Fourthly, the dysregulated pathways were identified as pathway markers that can best

distinguish diseases from controls. The red node in PIN is the firstly identified pathway marker in disease, and the yellow ones are those pathway

markers that can be combined with the first selected pathway to obtain best classification results while discriminating between diseases and

controls.
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code a pair of interacting proteins used to lay an edge

between two pathways are highly co-expressed (Pear-

son’s correlation coefficient, absolute value> 0.8).

Otherwise, the edge between two pathways will be

removed. Therefore, a pathway interaction network was

constructed for each dataset. The number of pathways

and corresponding interactions in each PIN built for

each dataset were shown in Table 2.

Identifying dysregulated pathways from pathway

interaction network

After defining the activity score for each pathway, we

formulated the identification of dysregulated pathways

as a feature selection problem in a machine learning

framework, where the minimum set of pathways that

can best discriminate diseases from controls were

Table 2 The number of pathways and interactions for

each dataset

GEO accession
number

Number of
pathways

Number of
interactions

Number of
genes

GSE 4115 867 43021 5371

GSE 6919 867 33123 4429

GSE 15852 866 40632 5325

GSE 16515 880 53397 6152

Figure 2 Results obtained by PIN, PAC, BMI and gene biomarkers on four cancer datasets. Results obtained by PIN, PAC, BMI and gene

biomarkers on four cancer datasets, where PIN, PAC, BMI and Gene respectively denotes our pathway biomarkers, PAC biomarkers, BMI

biomarkers and gene biomarkers. (A). Lung cancer dataset, where PIN gets AUC score of 0.82 compared with 0.70 by PAC, 0.76 by BMI and 0.73

by Gene. (B). Prostate tumour dataset, where PIN gets AUC score of 0.82 compared with 0.71 by PAC, 0.77 by BMI and 0.63 by Gene. (C). Breast

tumour dataset, where PIN gets AUC score of 0.99 compared with 0.92 by PAC, 0.93 by BMI and 0.90 by Gene. (D). Pancreatic tumour dataset,

where PIN gets AUC score of 0.98 compared with 0.90 by PAC, 0.84 by BMI and 0.90 by Gene.

Liu et al. BMC Bioinformatics 2012, 13:126 Page 4 of 11

http://www.biomedcentral.com/1471-2105/13/126



considered to be more possibly dysregulated pathways.

It is reasonable and biologically interpretable to con-

sider dysregulated pathways as discriminative features.

In detail, a single pathway that can best discriminate

between diseases and controls was firstly identified as

the first pathway biomarker, and the second pathway

that can be combined with the first pathway to get bet-

ter classification results was identified from those path-

ways that interact with the first pathway in PIN. This

procedure was repeated to add new pathways to

selected pathway biomarkers until no more pathways

can be added to improve classification accuracy, and

the final selected pathway biomarkers were retained as

potential dysregulated pathways in diseases. In feature

selection, we used support vector machines (SVMs),

which is a widely used kernel based method especially

useful for small number of samples with high dimen-

sional variables. In this work, the LIBSVM [29] toolbox

was used with radial basis functional (RBF) kernel. The

performance of the classifier was evaluated with five-

fold cross validation, and AUC (Area Under ROC

Curve) score was adopted as classification performance

index. In the five-fold cross validation, all samples were

randomly split into five equal-size subsets without over-

lap, four of which were used as training set while the

rest one was used to evaluate the classification

performance. To get robust results, we repeated five-

fold cross-validation for 100 times and the average was

used as the final result in each dataset.

Results
Identification of dysregulated pathways in cancer

To evaluate our method, we applied it to identify dysre-

gulated pathways for the four cancer datasets listed in

Table 1. Moreover, we used these pathways to discrim-

inate diseases from controls and compared our results

with two classical differentially expressed gene detection

methods, including the student’s t-test and Biomarker

identifier (BMI) method [30,31]. In the BMI method,

the differentially expressed genes were ranked by logis-

tic regression analysis (LRA), and this method was

shown to outperform other methods. The genes

selected by student’s t-test and BMI were respectively

denoted as gene biomarkers and BMI biomarkers here-

inafter. For comparison with student’s t-test and BMI,

we picked the same number of top ranked genes by

these two methods as that of our selected pathways.

Figure 2 shows the results obtained by gene biomarkers

and BMI biomarkers compared with our method

(denoted as PIN biomarkers). The dysregulated path-

ways identified by our method in four cancer datasets

were respectively listed in Tables 3, 4, 5, 6. We can

Table 3 Dysregulated pathways identified in lung cancer (GSE4115) dataset

Pathway Description Number of genes

REACTOME_SPHINGOLIPID_METABOLISM Genes involved in sphingolipid metabolism 32

REACTOME_TRIACYLGLYCERIDE_BIOSYNTHESIS Genes involved in triacylglyceride biosynthesis 14

KEGG_PPAR_SIGNALING_PATHWAY PPAR signaling pathway 69

REACTOME_AKT_PHOSPHORYLATES_TARGETS_IN_THE_CYTOSOL Genes involved in AKT phosphorylates targets
in the cytosol

14

REACTOME_TCR_SIGNALING Genes involved in TCR signaling 64

BIOCARTA_STATHMIN_PATHWAY Stathmin and breast cancer resistance to
antimicrotubule agents

19

ST_T_CELL_SIGNAL_TRANSDUCTION T Cell signal transduction 44

BIOCARTA_SPRY_PATHWAY Sprouty regulation of tyrosine kinase signals 18

ST_IL_13_PATHWAY Interleukin 13 (IL-13) Pathway 7

BIOCARTA_INTEGRIN_PATHWAY Integrin signaling pathway 38

BIOCARTA_CELL2CELL_PATHWAY Cell to cell adhesion signaling 14

REACTOME_APOPTOTIC_CLEAVAGE_OF_CELL_ADHESION_PROTEINS Genes involved in apoptotic cleavage of cell
adhesion proteins

11

Table 4 Dysregulated pathways identified in prostate tumour (GSE6919) dataset

Pathway Description Number of genes

REACTOME_METABLISM_OF_NUCLEOTIDES Genes involved in metablism of nucleotides 71

REACTOME_PURINE_METABOLISM Genes involved in purine metabolism 30

KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM Nicotinate and nicotinamide metabolism 24

KEGG_TRYPTOPHAN_METABOLISM Tryptophan metabolism 40
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clearly see from the results that our method outper-

forms the other two methods on all four different can-

cer datasets, indicating the effectiveness and efficiency

of our proposed method. For example, for lung cancer

dataset, our method performed very well with an AUC

score of 0.82 compared against gene biomarker with an

AUC score of 0.71 and BMI biomarker with an AUC

score of 0.70. Except for the AUC score, we also com-

pared the four methods with respect to accuracy, sensi-

tivity and specificity (detailed results can be found in

Additional file 1: Table S1). The promising results

obtained by the proposed method also demonstrate that

our identified pathway biomarkers are potential dysre-

gulated pathways in cancer.

Moreover, we also compared our method with one

state of the art dysregulation pathway identification

method, i.e., PAC (Pathway Activity inference using

Condition-responsive gene activity) method, proposed

by Lee et al. [13]. In the PAC method, the pathway activ-

ity was defined as a combined score of a subset of genes,

called the condition-responsive genes, that yields the

best discriminative score. The pathways with different

discriminative power were subsequently ranked based

on t-test. We performed the PAC method on above four

cancer datasets. For a fair comparison, we used the same

SVM toolbox and the same number of pathways identi-

fied by our method. The results of the PAC method

(denoted as PAC biomarkers) were also shown in Fig-

ure 2 (detailed results can be found in Additional file 1:

Table S1). As shown in Figure 2, our proposed method

achieved a higher AUC score than the PAC method on

all four datasets. These results indicate that our pro-

posed approach helps to improve the discriminative

power by taking into account the functional dependency

between pathways.

Furthermore, we compared the genes involved in our

identified dysregulated pathways with those top ranked

differentially expressed genes. Table 7 lists the numbers

of genes involved in both our identified dysregulated

pathways and those top ranked differentially expressed

genes (the same number of genes as those in dysregu-

lated pathways). It is found that only a small fraction

(from 2.8% to 8.4%) of the genes in our identified dysre-

gulated pathways overlaps with top ranked differentially

expressed genes. This phenomenon implies that a path-

way as an entity can better diagnose complex diseases

rather than individual genes even though the genes in

the pathway are not differentially expressed significantly.

Table 5 Dysregulated pathways identified in breast tumour (GSE15852) dataset

Pathway Description Number of genes

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY Adipocytokine signaling pathway 67

REACTOME_TCR_SIGNALING Genes involved in TCR signaling 64

REACTOME_P75NTR_SIGNALS_VIA_NFKB Genes involved in p75NTR signals via NF-κB 13

BIOCARTA_ATM_PATHWAY ATM signaling pathway 20

REACTOME_ACTIVATION_OF_THE_AP1_FAMILY_OF_TRANSCRIPTION_FACTORS Genes involved in activation of the AP-1 family
of transcription factors

10

KEGG_INSULIN_SIGNALING_PATHWAY Insulin signaling pathway 137

BIOCARTA_AKAP13_PATHWAY Rho-Selective guanine exchange factor AKAP13
mediates stress fiber formation

12

BIOCARTA_CK1_PATHWAY Regulation of ck1/cdk5 by type 1 glutamate
receptors

17

KEGG_PANCREATIC_CANCER Pancreatic cancer 70

Table 6 Dysregulated pathways identified in pancreatic

tumour (GSE16515) dataset

Pathway Description Number
of genes

KEGG_P53_SIGNALING_PATHWAY P53 signaling pathway 69

ST_JNK_MAPK_PATHWAY JNK MAPK pathway 38

ST_P38_MAPK_PATHWAY P38 MAPK pathway 35

BIOCARTA_SALMONELLA_PATHWAY Salmonella pathway 13

BIOCARTA_CDC42RAC_PATHWAY Role of PI3K subunit
p85 in regulation of
actin organization and
cell migration

16

Table 7 The overlap between the genes in dysregulated

pathways and gene biomarkers, where the two sets have

the same number of genes

GEO accession
number

Number of
genes in
pathway
biomarkers

Overlap
with top
ranked gene
biomarkers

Percentage

GSE 4115 255 9 3.5%

GSE 8397 94 5 5.3%

GSE 15852 285 24 8.4%

GSE 16515 142 4 2.8%
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Dysregulated pathways are robust as biomarkers

To further test our method, we applied the identified dys-

regulated pathways from above lung cancer dataset (GSE

4115, see Table 3) to other four independent hold-out

datasets of lung cancer (GSE2514 [32], GSE7670 [33],

GSE10072 [34] and GSE19027 [35]) that are from two dif-

ferent Affymetrix platforms, i.e., GPL8300 (HG_U95Av2)

and GPL96 (HG-U133A). Note that all of these test data-

sets list in Table 8 are not used in above section, thereby

evaluating our proposed method in an objective way.

Similarly, the gene or pathway biomarkers selected from

GSE4115 dataset by other methods were also applied to

the four lung cancer test datasets. The same numbers of

pathways or genes as that of our selected pathways were

chosen for a fair comparison. The pathway biomarkers

Table 8 The four lung cancer test datasets

GEO accession
number

Number of samples
(Disease/Control)

Platform

GSE 2514 39 (19/20) GPL8300 (HG_U95Av2)

GSE 7670 54 (27/27) GPL96 (HG-U133A)

GSE 10072 107 (49/57) GPL96 (HG-U133A)

GSE 19027 51 (30/21) GPL96 (HG-U133A)

Figure 3 Results obtained by PIN, PAC, BMI and gene biomarkers on four lung cancer datasets. The biomarkers identified from lung

cancer dataset (GSE 4115) by four methods were applied to independent lung cancer test datasets (GSE7670, GSE10072, GSE19027, and GSE2514),

where PIN, PAC, BMI and Gene respectively denotes our pathway biomarkers, PAC biomarkers, BMI biomarkers and gene biomarkers. (A). GSE2514

dataset, where PIN gets AUC score of 0.99 compared with 0.99 by PAC, 0.95 by BMI and 0.87 by Gene. (B). GSE7670 dataset, where PIN gets AUC

score of 0.99 compared with 0.99 by PAC, 0.80 by BMI and 0.85 by Gene. (C). GSE10072 dataset, where PIN gets AUC score of 0.99 compared with

0.99 by PAC, 0.93 by BMI and 0.96 by Gene. (D). GSE19027 dataset, where PIN gets AUC score of 0.71 compared with 0.63 by PAC, 0.65 by BMI

and 0.52 by Gene.
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identified by our method achieved higher or comparable

AUC scores compared with other methods on all four

datasets. For example, in GSE19027 dataset, our pathway

biomarkers got an AUC score of 0.71 compared with 0.63

by PAC biomarkers, 0.65 by BMI biomarkers and 0.52 by

gene biomarkers. Figure 3 shows the results obtained with

biomarkers identified by our method compared with the

other three methods. Furthermore, we also compared the

four methods with respect to accuracy, sensitivity and spe-

cificity. For the dataset of GSE10072, both PIN biomarkers

and PAC biomarkers achieved an AUC score of 0.99 com-

pared with 0.93 by BMI biomarkers and 0.96 by gene bio-

markers. However, PIN biomarkers achieved the highest

sensitivity and specificity. The detailed results can be

found in Additional file 2: Table S2. The good perform-

ance of our method on both training dataset and the four

independent test dataset demonstrates that our identified

dysregulated pathways can serve as robust biomarkers.

Dysregulated pathways provide insights into

pathogenesis of cancer

We further investigated the five identified dysregulated

pathways in pancreatic cancer (see Table 6). From the

pathway list, we can find that some identified dysregu-

lated pathways involve hallmark cancer genes, such as

P53, NF-κB, PI3K, etc. Figure 4 shows the interactions

among the five identified dysregulated pathways in PIN,

including P53 signaling pathway, JNK MAPK pathway,

P38 MAPK pathway, Salmonella pathway, and

CDC42RAC pathway, where the last four pathways con-

nect with each other.

P53 is a well-known tumour suppressor gene, which is

involved in various biological processes, including cell

cycle, apoptosis and senescence, etc. [36]. Mutations that

deactivate P53 were found in most tumour types, and

P53 plays an important regulation role in tumour pro-

gression. Interestingly, P53 signaling pathway was identi-

fied as the top dysregulated pathway by our method.

The JNK MAPK pathway interacts with P53 signaling

pathway. Jun N-terminal kinase (JNK) is one of

mitogen-activated protein kinase (MAPK) members and

also a stress-activated protein kinase. Both P53 and JNK

are two important apoptosis-regulatory factors fre-

quently deregulated in cancer cells. They also participate

in the modulation of autophagy and can be regulated by

TNF alpha (tumour necrosis factor alpha), which is a

soluble cytokine mediator of immune responses and

involved in various biological functions. JNK and ERK

mediate TNF alpha-induced P53 activation in apoptosis

and autophagic activity. Another identified desregulated

pathway P38 MAPK pathway is also involved in this

process, where P38 is one member of the MAPK super-

family. JNK and P38 MAPK pathways that are activated

by stress and inflammatory signals have crosstalk,

thereby working together to affect proliferation, differen-

tiation, survival, and migration. The P38 MAPK pathway

can negatively regulate JNK activity in several contexts

[37]. TNF alpha regulates the JNK and P38 MAPKs in

apoptotic and autophagic process in which ERK/JNK

plays a promoting role while P38 plays an inhibiting one

[38]. JNK activation can also be negatively regulated by

NF-κB which is widely involved in oncogenesis, cell pro-

liferation and apoptosis, and evasion of immune

responses [39]. Inhibition of NF-κB activation and sus-

tained JNK activation promote the TNF alpha mediated

cell apoptotic and suppress the tumour progression [40].

The Salmonella pathway and CDC42RAC pathway are

both related to cell invasion and migration. Cdc42 gene

is the common differentially expressed gene in four dys-

regulated pathways indicating its key role in pancreatic

tumour. The CDC42RAC pathway regulates cell migra-

tion through P85 that is a subunit of PI3Ks (Phosphati-

dylinositol-3 kinases). P85 activates Cdc42 which affects

the formation of new actin fibers and interacts with

Wiskott–Aldrich syndrome protein (WASP) to stimulate

migration [41]. On the other hand, activated P85 can

bind to P110, another subunit of PI3K, which can acti-

vate Akt through PIP3 that serves as a second messen-

ger. Akt plays a main role in cell survival, proliferation,

Figure 4 Dysregulated pathways interaction network in

pancreatic tumour dataset. In pancreatic tumour dataset

(GSE16515), five dysregulated pathways were identified which can

be assembled into a network based on their interactions in the

pathway interaction network constructed for this dataset. Different

colours were used to represent the five dysregulated pathways. The

common genes between pathways are differentially expressed and

the dashed line between two genes from distinct dysrugulated

pathways denotes protein-protein interaction.
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and growth [42]. The mutation of P85 and activation of

Akt have been found in some primary tumours, includ-

ing the pancreatic tumour [43].

Furthermore, we applied NOA (Network Ontology

Analysis) web tools [44] to identify enriched GO func-

tion for genes in our identified dysregulated pathways.

The top 5 enriched GO biological processes for each

pathway biomarker in pancreatic tumour dataset were

listed in Table 9. From the analysis, we found that those

enriched processes, such as regulation of cell cycle,

apoptosis and regulation of cellular component biogen-

esis, are most important biological processes in tumour

progression, thereby implying the effectiveness of our

proposed method. The identified enriched GO terms on

the other three cancer datasets were listed in Additional

file 3: Table S3.

Discussion
Identifying biomarkers in complex diseases can help

diagnose disease and design more effective drugs. The

accumulation of “omics” data, especially gene expression

data, makes it possible to detect biomarkers in a more

efficient way [45,46]. However, it is a challenging task to

identify robust biomarkers from about 20,000 genes con-

sidering that complex diseases are usually caused from

mutations of multiple correlated genes or failure of cer-

tain subsystems rather than individual genes. Traditional

methods detecting differentially expressed genes as bio-

markers failed to work in some cases due to the inde-

pendent assumption among genes, whereas complex

diseases generally affect a set of functionally related

genes.

In this paper, we proposed a novel method to identify

dysregulated pathways in cancer. Unlike the existing

methods, our method considers the functional depend-

ency between pathways by constructing a pathway inter-

action network. Benchmarking our method on several

different cancer datasets demonstrates the effectiveness

of the proposed method. The results on independent test

datasets imply the robustness of our identified pathway

biomarkers. Further analyses indicate that the dysregu-

lated pathways that we identified are indeed involved in

Table 9 The top 5 enriched GO terms for each dysregulated pathway in pancreatic tumour (GSE16515) dataset

Pathway GO: term p-value Term name

KEGG_P53_SIGNALING_PATHWAY GO:0051726 1.30E-33 regulation of cell cycle

GO:0006917 1.30E-22 induction of apoptosis

GO:0012502 1.50E-22 induction of programmed cell death

GO:0006915 1.10E-20 apoptosis

GO:0042981 1.20E-20 regulation of apoptosis

ST_JNK_MAPK_PATHWAY GO:0000165 6.70E-33 MAPKKK cascade

GO:0023014 8.90E-27 signal transmission via phosphorylation event

GO:0007243 8.90E-27 intracellular protein kinase cascade

GO:0031098 1.40E-23 stress-activated protein kinase signaling cascade

GO:0007254 8.60E-22 JNK cascade

ST_P38_MAPK_PATHWAY GO:0044087 1.40E-13 regulation of cellular component biogenesis

GO:0043254 4.70E-13 regulation of protein complex assembly

GO:0030833 3.30E-12 regulation of actin filament polymerization

GO:0030036 4.40E-12 actin cytoskeleton organization

GO:0008064 6.40E-12 regulation of actin polymerization or depolymerization

BIOCARTA_SALMONELLA_PATHWAY GO:0006793 1.70E-17 phosphorus metabolic process

GO:0006796 1.70E-17 phosphate metabolic process

GO:0006468 4.10E-17 protein amino acid phosphorylation

GO:0016310 1.30E-16 phosphorylation

GO:0043687 9.20E-16 post-translational protein modification

BIOCARTA_CDC42RAC_PATHWAY GO:0044087 1.20E-14 regulation of cellular component biogenesis

GO:0043254 3.10E-12 regulation of protein complex assembly

GO:0032956 3.30E-12 regulation of actin cytoskeleton organization

GO:0032970 4.20E-12 regulation of actin filament-based process

GO:0030833 1.50E-11 regulation of actin filament polymerization
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tumour processes, and some of these dysregulated path-

ways may serve as drug targets in the near future [37].

Therefore, the functional relationship between pathways

can not only provide insights into disease mechanisms

but also provide alternative ways to develop more effi-

cient drugs.

Conclusions
In this work, we present a novel approach to identify

dysregulated pathways in cancer based on a derived

pathway interaction network that describes the func-

tional dependency between pathways. The promising

results obtained by our method indicate that the dysre-

gulated pathways indeed have crosstalk with each other.

The comparison between our method and other state of

the art methods on multiple cancer datasets demon-

strates that our identified dysregulated pathways can

serve as robust biomarkers. We believe that our pro-

posed method can help to predict new biomarkers and

even drug targets in a more accurate and robust way.
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