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Abstract

Simulation optimisation offers great opportunities in the design and optimisation of

complex systems. In the presence of multiple objectives, there is usually no single

solution that performs best on all objectives. Instead, there are several Pareto-optimal

(efficient) solutions with different trade-offs which cannot be improved in any objective

without sacrificing performance in another objective. For the case where alternatives

are evaluated on multiple stochastic criteria, and the performance of an alternative can

only be estimated via simulation, we consider the problem of efficiently identifying

the Pareto-optimal designs out of a (small) given set of alternatives. We present a

simple myopic budget allocation algorithm for multi-objective problems and propose

several variants for different settings. In particular, this myopic method only allocates

one simulation sample to one alternative in each iteration. This paper shows how

the algorithm works in bi-objective problems under different settings. Empirical tests

show that our algorithm can significantly reduce the necessary simulation budget.

Keywords Multi-objective · Myopic · Ranking and selection · Simulation

optimisation

1 Introduction

Simulation optimisation aims to efficiently identify the best possible alternative, where

best is defined as best expected performance. Since an alternative’s true performance

is unknown and can only be evaluated by stochastic simulation, it is usually neces-

sary to average over several simulation runs in order to obtain accurate performance
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estimates. Ranking and Selection (R&S) methods aim to allocate simulation samples

more efficiently, and this research area has received substantial interest in recent years

(Chau et al. 2014).

However, many real-world simulation optimisation problems require the consider-

ation of multiple conflicting objectives. In this case, there is usually no single solution

that performs best in all objectives, but a set of Pareto-optimal solutions with different

trade-offs. A solution is called Pareto-optimal or efficient if there is no other solution

that performs better in all objectives. For instance, different staffing levels at a call

centre will incur different costs and different customer waiting times, and a solution

is Pareto optimal, if there is no better solution that has lower cost as well as lower cus-

tomer waiting times. In the presence of multiple stochastic criteria, the R&S problem

becomes a multi-objective ranking and selection (MORS) problem where the goal is

to identify the set of Pareto-optimal solutions.

Although plenty of research has been published on single-objective R&S, there is

little research on MORS. In this paper, we summarise and extend our work on the sim-

ple, yet powerful Myopic Multi-Objective Budget Allocation (M-MOBA) framework

originally introduced in Branke and Zhang (2015), Branke et al. (2016). M-MOBA

is myopic and only allocates simulation samples to one alternative in each iteration.

It is therefore easy to compute and avoid some of the approximations necessary for

other methods. We show how this framework can be adapted to different bi-objective

problem settings.

Besides summarising our previous work on this topic, this paper makes the follow-

ing novel contributions:

1. In addition to the original M-MOBA method which uses probability of correct

selection as performance criterion, and the variant using hypervolume change

originally proposed in Branke et al. (2016), we introduce a new variant that can

take into account an indifference zone.

2. We propose a variant that allows different objectives to be sampled independently

and demonstrate empirically that this can substantially improve efficiency. This

may be relevant in problems where the different criteria are determined by different

simulation tools.

3. We provide a more thorough empirical evaluation of our approach.

4. We provide a comprehensive review on the existing literature on MORS.

Our paper is organised as follows. Section 2 reviews the relevant literature of rank-

ing and selection. Section 3 formalises the problem and describes the assumptions.

Section 4 describes the proposed M-MOBA procedure and its variants. The results of

the empirical evaluation can be found in Sect. 5. The paper concludes in Sect. 6 with

a summary and some suggestions for future work.

2 Literature review

Section 2.1 introduces the major single-objective R&S methods, whereas Sect. 2.2

reviews the main methods to MORS problems. There are other related techniques that

we do not cover here due to space limitations, such as the multi-armed bandit literature
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which aims mostly at maximising cumulative reward (Gittins and Glazebrook 2011),

or the case of correlated beliefs where information about one alternative also tells us

something about other, “similar” alternatives (e.g. Shahriari et al. 2016). For a good

overview on multi-objective simulation optimisation, see also (Hunter et al. 2019).

2.1 Overview of ranking and selection

2.1.1 Performance measures

The literature considers a variety of goals in R&S. The simplest goal is to maximise

the probability of correct selection (PCS). For a minimisation problem, the true PCS

is defined mathematically as

PCS = P(μxs ≤ μx∗),

where μx∗ is the mean performance of the true best solution x∗ and μxs is the mean

performance of the selected solution xs .

In the experiments, we report on the estimated PCS. For Q replications of an

experiment, the PCS can be estimated as

P(CS) =
(

Qc

Q

)

,

where Qc is the number of replications for which the method correctly identified the

best alternative.

If two alternatives have almost identical performance, even a large number of sam-

ples may not be able to correctly identify the better one, and anyway the decision maker

(DM) might not care about very small differences. So it seems natural to introduce an

indifference zone, the smallest difference δ that deserves to be discerned. Then, the

goal is to maximise the Probability of Good Selection (PGS), which is the probability

that the selected alternative is not worse by more than δ compared to the true best. For

a minimisation problem,

PGS = P(μxs ≤ μx∗ + δ),

where μx∗ is the mean performance of true best solution x∗ and μxs is the mean

performance of the selected solution xs . The estimated PGS can be defined similar to

the estimated PCS.

Another commonly used goal is to minimise the expected opportunity cost (EOC),

defined as the true difference in performance between the true best and the selected sys-

tem. Expected opportunity cost (EOC) is of practical concern in business, engineering

and other applications, where design performance represents economic value and is

particularly useful for risk-neutral decision makers (Chick and Wu 2005). While PCS

only cares about whether a solution is correct, opportunity cost intuitively describes

how far away the selected alternative is from the true best system (Lee et al. 2007).
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Table 1 Five main basic approaches to R&S and some exemplary references

Objectives

PCS EOC PGS

Indifference zone Frequentist – Chick and Wu (2005) Kim and Nelson

(2006) Lee and

Nelson (2015)

Bayesian Frazier (2014) – –

OCBA Frequentist Chen and Lee

(2010)

– –

Bayesian Chen and Lee

(2010)

He et al. (2007) Branke et al. (2005)

EVI Bayesian Chick and Inoue

(2001)

Chick and Inoue

(2001)

–

Small EVI Bayesian Chick et al. (2010) Chick et al. (2010)

Frazier et al. (2008)

Ryzhov et al. (2012)

-

Racing Bayesian Birattari et al.

(2010)

– –

2.1.2 Major R&Smethods

Sampling each alternative an equal number of times is inefficient since it will waste a

lot of simulation runs on the obviously inferior alternatives. The state-of-the-art R&S

procedures allocate the sampling budget sequentially, based on observations made so

far. There are two categories of statistical models for R&S, frequentist and Bayesian.

Frequentist models construct estimates based purely on the observed simulation out-

put. This view generally assumes that there are some unknown, but fixed underlying

parameters for a population. In contrast, the Bayesian approach assumes prior knowl-

edge about the performance of each alternative and regards the unknown performance

as a random variable whose distribution encodes our own uncertainty about the exact

value (Chau et al. 2014). The five main basic approaches to R&S are summarised in

Table 1.

– The indifference-zone methods such as KN++ (Kim and Nelson 2006) which aim

at identifying an alternative that is not worse by more than δ compared to the true

best. KN++ maintains a set of possibly best solutions and drops solutions from

this set when it detects clear evidence that an alternative is unlikely to be best. The

procedure iterates until only one solution remains.

– The expected value of information (EVI) procedure (Chick and Inoue 2001) which

maximises the expected value of information in the next samples.

– The small-sample EVI procedures that include the Knowledge Gradient (KG)

method (Frazier et al. 2008) and the myopic method proposed in Chick et al.

(2010). In each iteration, these methods only allocate samples to one alternative.

– The optimal computing budget allocation (OCBA) (Chen 1996) approach which,

different from the small-sample EVI procedures, is an asymptotic approach. For
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a comprehensive introduction of OCBA method, see Fu et al. (2007, 2008) and

Chen and Lee (2010).

– The racing method such as F-race that is based on the nonparametric Friedman’s

two-way analysis of variance by ranks (Birattari et al. 2010). Similar to KN++,

racing methods drop alternatives from sampling that are unlikely to be the best

based on the observations so far, until only one alternative remains. However,

racing methods have no performance guarantee.

As summarised by Chau et al. (2014), the indifference-zone method is generally from

a frequentist view although (Frazier 2014) proposed a Bayesian-inspired method to

correct the indifference-zone method’s tendency to over-deliver, i.e. produce better

performance than what is actually required at the expense of many more samples.

EVI is a Bayesian statistical model-based approach, and OCBA can be adapted to

both frequentist and Bayesian models (Chen and Lee 2010). A comparison of the

performance of indifference-zone, EVI and OCBA methods can be found in Branke

et al. (2007).

2.2 Overview of multi-objective ranking and selection

2.2.1 MORS performance measures

In the presence of multiple, conflicting objectives, it is difficult to decide which alter-

native is best. For a minimisation problem, a solution y is called dominated by another

solution x (denoted by x ≺ y), if μx,h � μy,h for all objectives and μx,h < μy,h for

at least one. A design not dominated by any other design is called Pareto optimal, and

the objective in Multi-Objective Ranking and Selection (MORS) is usually to find the

set of Pareto-optimal solutions. The image of the Pareto-optimal set in objective space

is often called the Pareto front.

Similar to the single-objective R&S problem, one of the most widely used goals

is PCS, which is defined as correctly identifying the entire set, and only this set, of

Pareto-optimal solutions (see also Sect. 2.2.2 for details). It is not entirely obvious

how to define an indifference zone for multiple objectives, but one attempt has been

made in Teng et al. (2010) which for a minimisation problem defines a solution x to

be non-dominated if ∄y|μy,h ≤ μx,h + δh∀h ∧ ∃h : μy,h < μx,h + δh and PGS

is then the probability to identify all the solutions that are non-dominated according

to this definition. In Sect. 4.2, we will discuss the drawbacks of this definition and

propose an alternative. Lee et al. (2007) define the opportunity cost (OC) in a multi-

objective setting as follows. For a truly dominated solution that is wrongly classified

as non-dominated, the OC is defined as the minimum amount this solution would need

to improve in each objective for it to become non-dominated. Correspondingly, for a

truly non-dominated solution that is classified as dominated, the OC is the minimum

amount this solution would need to deteriorate in each objective to become dominated.

Outside R&S such as in multi-objective optimisation or multi-objective reinforce-

ment learning, hypervolume is often used as performance measure. Hypervolume is

the area dominated by a set of solutions and bounded by a user-defined reference

point. Zitzler and Thiele (1999) present hypervolume as the only quality indicator
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known to be fully compliant to Pareto dominance, i.e. whenever a set A dominates

another set B (every solution in B is dominated by at least one solution in A), then

the measure yields a strictly better quality value for the former (Zitzler et al. 2003).

For a comprehensive literature review of the hypervolume measurement, see Bader

and Zitzler (2011). We have proposed to use hypervolume difference in the context of

R&S (Branke et al. 2016), which will be discussed in more detail in Sect. 4.3.

2.2.2 MORSmethods

Compared with single-objective R&S, the literature on MORS is relatively limited.

One of the most widely used approaches is converting performance over multiple

objectives into a scalar measure using costs or multiple attribute utility theory (MAUT)

(Keeney and Raiffa 1993). By combining with an indifference-zone R&S method,

(Morrice et al. 1998) provide a MAUT approach to MORS. Butler et al. (2001) show

applications for the procedure and conducts sensitivity analysis for the weights via

Monte Carlo simulation. Morrice and Butler (2006) have also extended the approach to

model constraints using value functions. Although Butler et al. (2001) use a mechanism

to assess the relative importance of each criterion, an accurate model of the DM’s

preferences is difficult to construct in practice.

Instead of using a single utility function, Branke and Gamer (2007) use a distri-

bution of linear utility functions, and aims to minimise the expected opportunity cost

over this distribution of weights using a variant of OCBA (He et al. 2007). Frazier

and Kazachkov (2011) develop a similar procedure based on the KG policy. Mat-

tila and Virtanen (2015) question the interpretation of the probability distributions

assumed in Branke and Gamer (2007) and Frazier and Kazachkov (2011) and instead

propose methods that only rely on constraints for the weights which can be more

easily derived from DM preference statements. They propose two MORS approaches.

The first is based on OCBA (Chen 1996) which aims at identifying solutions that

are absolutely non-dominated, i.e. solutions which, if they are evaluated with their

least favourable weight combination, are better than all other solutions evaluated with

their most favourable weight combination. The other one is based on multi-objective

optimal computing budget allocation (MOCBA) (Lee et al. 2010b) introduced below

and aims at identifying solutions that are pairwise non-dominated with respect to all

feasible weight combinations.

Most MORS procedures are only considering Pareto dominance and aim at max-

imising the probability of exactly identifying the set of Pareto-optimal solutions.

Examples include the MOCBA proposed in Lee et al. (2010b), which is a multi-

objective version of the OCBA algorithm. MOCBA has also been extended to allow

for other measures of selection quality such as EOC (Lee et al. 2007, 2010a), and PGS

(Teng et al. 2010).

Hunter and Feldman (2015), Feldman et al. (2015) and Feldman and Hunter (2018)

allocate samples to maximise the rate of decay of the probability that a misclassifica-

tion event occurs. It is asymptotically optimal, and can take into account correlation

between objectives. The myopic M-MOBA (Branke and Zhang 2015) has been derived

from the Small EVI paradigm (Chick et al. 2010), and assumes only a single alternative

is sampled at each stage.
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There are few approaches based on racing. Zhang et al. (2013) present a multi-

objective S-Race algorithm which attempts to eliminate alternatives as soon as there

is sufficient statistical evidence of them being dominated (worse in all objectives

compared to another solution). However, S-Race has limitations including type II

errors not being strictly controlled, unnecessary computational cost on comparing

non-dominated models and the sign test employed not being an optimal test procedure.

Zhang et al. (2015, 2017) overcome these limitations by introducing a multi-objective

racing algorithm based on the Sequential Probability Ratio Test (SPRT) with an indif-

ference zone. The approach uses pairwise tests and makes no assumptions about the

sample distributions. The approach in Wan and Wang (2017) uses a generalised sequen-

tial probability ratio test (GSPRT) that allows to test composite hypotheses and is able

to guarantee a user-specified PCS.

Finally, another possibility of solving MORS is to regard one performance measure

as primary objective and the rest as stochastic constraints. The general aim is then to

efficiently identify the system having the best objective function value from among

those systems whose constraint values are above a specified threshold (Hunter and

Pasupathy 2013). Research in this category includes (Andradottir and Kim 2010), in

which they provide indifference-zone frameworks with statistical performance guar-

antee consisting of two phases: identification and removal of infeasible systems, and

removal of systems whose primary performance measure is dominated by that of other

feasible systems. These phases can be executed sequentially or simultaneously. Park

and Kim (2011) propose a penalty function with memory which determines a penalty

value for a solution based on the history of feasibility checks on the solution and

converts the problem into a series of new optimisation problems without stochastic

constraints. Hunter and Pasupathy (2013) present the first complete characterisation

of the optimal sampling plan relying on the large deviation framework, a consis-

tent estimator for the optimal allocation and a corresponding sequential algorithm.

Pujowidianto et al. (2012) and Pasupathy et al. (2014) focus on asymptotic theory in

the context of stochastically constrained simulation optimisation problems on large

finite (many thousands) sets of alternatives and provide a sampling framework called

SCORE (Sampling Criteria for Optimisation using Rate Estimators) that approximates

the optimal simulation budget allocation.

3 Assumptions and problem formulation

We consider the problem of efficiently identifying the Pareto optimal designs out of

a given set of alternatives, for the case where alternatives are evaluated on multiple

stochastic criteria. Throughout this paper, we assume the performance of each design

in each objective follows a normal distribution and the samples in the two objectives

are independent. The problem of MORS can be formulated as follows.

Given H objectives and a set of m designs with the true unknown performance of

each design i in objective h being denoted by μi,h . The performance of each design

in each objective needs to be estimated via sampling. Vectors are written in boldface,

e.g. Xi = (X ihn) is a matrix that contains the simulation output for design i , objective

h and simulation replication n. Let furthermore μi,h and σ 2
i,h be the unknown (true)
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mean and variance of alternative i , which can only be estimated using the simulation

outputs X ihn . We assume that

{X ihn : n = 1, 2, . . .} i id∼ N (μi,h, σ 2
i,h), for i = 1, 2, . . . , m and h = 1, 2, . . . H .

Let ni be the number of samples taken for alternative i so far, x̄i,h the sample mean

and σ̂ 2
i,h the sample variance. Then, we will get an observed Pareto set based on the

N =
∑

i ni simulations so far. As ni increases, x̄i,h and σ̂ 2
i,h will be updated and the

observed Pareto front may change accordingly. If alternative i is to receive another τi

sample, let Yi = (Yihn) denote the data to be collected in the next stage of sampling,

yi = (yihn) be the realisation of Yi and ȳi,h the average of the new samples in objective

h, then the new overall sample mean in each objective can be calculated as

z̄i,h = ni x̄i,h + τi ȳi,h

ni + τi

. (1)

Before the new samples are observed, the sample average that will arise after sampling,

denoted as Zi,h , is a random variable, and we can use the predictive distribution for

the new samples (DeGroot 2005) and get

Zi,h∼St(x̄i,h, ni ∗ (ni + τi )/(τi ∗ σ̂ 2
i,h), ni − 1)

where St(μ, κ, ν) denotes the student distribution with mean μ, precision κ and ν

degrees of freedom.

As discussed in Sect. 2.2.1, there are different performance criteria in MORS. For

the example of PCS, a correct selection occurs when the selected set of alternatives,

S(Y), is the true Pareto set P, i.e.

PC S = P(S(Y) = P)

Then, given a total simulation budget Nt , the MORS problem is to determine the

optimal allocation of the Nt samples to the designs such that PCS is maximised

maximise
ni

PC S

subject to

m
∑

i=1

ni ≤ Nt .

4 M-MOBA procedure

Based on the small-sample EVI procedure derived in Chick et al. (2010) and Fra-

zier et al. (2008), we proposed a simple, but efficient myopic multi-objective budget

allocation (M-MOBA) algorithm for MORS problems (Branke and Zhang 2015). By

being myopic and only allocating a few additional samples to one alternative, small-

sample procedures can avoid various asymptotic approximations. More specifically,
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Fig. 1 ac solely dominates other

alternatives

a1

ac

a2

a3

b1

b2

b3

f1

f2

c1

in each iteration of sample allocation, we only allocate samples to the alternative that

is expected to provide the maximum value of information.

In the following sections, we will present first the original M-MOBA procedure

based on the PCS criterion, and then explain how the idea may be extended to incor-

porate an indifference zone, to work with hypervolume as performance criterion, as

well as a variant that allows sampling the different objectives independently.

Throughout this paper, the allocation rules are explained by assuming that there are

two objectives for each alternative so that the Pareto set and the dominance relationship

can be visualised in a two-dimensional coordinate system. Extending the basic ideas

to more than two objectives should be possible but is left for future work.

4.1 M-MOBA PCS procedure

We will first consider the problem with PCS measurement. M-MOBA, in each iteration,

will only allocate one sample to one alternative—the alternative that has the highest

probability of changing the observed Pareto set. This algorithm has first been proposed

in Branke and Zhang (2015) and serves as basis of all other extended versions we will

present later.

Assume that after an initial n0 samples for each alternative, the current Pareto set

consists of a set of alternatives ai , i = 1, 2, . . . , k1. We will consider each alternative

ac in turn and estimate the expected value of information, i.e. the probability that the

Pareto set will change if one additional sample is allocated to ac. If the particular

alternative under consideration is removed, some previously dominated alternatives

may become Pareto optimal, denoted by b j , with j = 1, 2, . . . , k2. We further denote

the newly formed Pareto set when the particular alternative under consideration is

removed as pr , with r = 1, 2, . . . , k3. For each alternative ai , there are three possible

situations and each of them will be explained as follows.

The first situation is depicted in Fig. 1, where ac is on the observed Pareto set com-

posed of points a1, ac, a2, a3 and indicated by the dashed line. Alternatives a1 and b1

are the nearest neighbours of ac in the direction of objective f1, and alternatives b3

and a2 are the nearest neighbours of ac in the direction of objective f2. We want to cal-

culate the probability that the current Pareto set will change if we allocate τ additional

simulation samples to ac. If we only allocate samples to ac, all other alternatives can

be considered deterministic in the immediate one-step look-ahead. Then, the Pareto

set changes if and only if the new mean estimate for alternative ac after sampling
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Fig. 2 The Pareto set will

change if and only if the

estimated mean of alternative ac

will fall outside the shaded area a1

ac

a2

a3

c1b1

b2

b3

f1

f2

(l1, l2) (u1, l2)

(l1, u2)

(u1, u2)

1. dominates one of the previously non-dominated solutions (a1, a2, a3 in Fig. 2)

2. becomes dominated itself, or

3. exposes a previously dominated solution (b1, b2, b3 in Fig. 2).

In the example in Fig. 2, a change happens if the new mean estimate falls outside the

shaded area.

Since we assume that the samples in the two objectives are independent, we can cal-

culate the probability for ac to remain in the shaded area separately for each objective,

and multiply them to get the probability P that the new mean estimate for ac remains

in the shaded area, and 1 − P is the probability that with one additional sample, ac

will move out of the area and hence a new observed Pareto front will be obtained. Let

us denote the two objective values of nearest neighbours of ac as (l1, u1) and (l2, u2),

i.e.

l1 = max{x̄ pr ,1 < x̄ac,1|r = 1, 2, . . . , k3}
l2 = max{x̄ pr ,2 < x̄ac,2|r = 1, 2, . . . , k3}

u1 = min{x̄ pr ,1 > x̄ac,1|r = 1, 2, . . . , k3}
u2 = min{x̄ pr ,2 > x̄ac,2|r = 1, 2, . . . , k3}

then the probability P is

∫ u2

l2

∫ u1

l1

φac,1(x) · φac,2(y)dxdy (2)

where φac,h
is the predictive probability distribution of the new location of ac in

dimension h.

If ac does not expose any new solutions if it is removed, then the Pareto set will only

change if the new estimated mean will become dominated, or dominates a previously

non-dominated alternative. Figure 3 shows an example, with the area in which ac may

fall without causing a change highlighted.

Assume there are k Pareto-optimal alternatives after ac has been removed and they

are sorted from small to large based on f1, with an additional virtual 0th solution at

(−∞,∞) and a virtual (k + 1)th solution at (∞,−∞), then the probability P can be

calculated as
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Fig. 3 The Pareto set will

change if and only if the

estimated mean of alternative ac

will fall outside the shaded area
a1

ac

f1

f2

a2

a3

Fig. 4 The Pareto set will

change if and only if the

estimated mean of alternative ac

will fall outside the shaded area
a1

a2

a3

a4

ac

f1

f2

k
∑

i=0

∫ ai,2

ai+1,2

∫ ai+1,1

ai,1

φac,1(x) · φac,2(y)dxdy, (3)

where alternative i with objective values (ai,1, ai,2) is Pareto optimal if ac is removed.

When ac is not in the Pareto set, a change happens if and only if ac becomes

non-dominated. An example is shown in Fig. 4.

In this scenario, the shaded area is defined by all current Pareto optimal alternatives.

Similar to the above scenario, if there are k Pareto-optimal alternatives, the probability

P can be computed as

k
∑

i=1

∫ ∞

ai,2

∫ ai+1,1

ai,1

φac,1(x) · φac,2(y)dxdy (4)

where alternative i is Pareto optimal and ak+1,1 = ∞.

Based on the above analysis, we can formulate the small-sample multi-objective

budget allocation procedure as summarised in Algorithm 1.

4.2 M-MOBA indifference-zone procedure

In practice, some systems may have very similar objective values and a DM

might not be too concerned with small differences between these systems, hence

we should treat these designs as equally acceptable (Teng et al. 2010). Further-

more, if the difference is very small, even a large number of samples would

not allow us to decide with confidence which system is better. As discussed in
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ALGORITHM 1: Procedure M-MOBA PCS
1: Specify a first-stage sample size n0 = 5, and a number of samples τ = 1 to allocate per subsequent

stage. Specify stopping rule parameters

2: Sample Xihn , i = 1, . . . , m; h = 1, . . . , H ; n = 1, . . . , n0 independently, and initialise the

number of samples ni ← n0

3: Determine the sample statistics x̄i,h and σ̂ 2
i,h

, and the observed Pareto front

4: while stopping rule not satisfied do

5: For each alternative i , calculate the probability Pi that the new samples will lead to a change in

the Pareto set

6: Allocate τ samples to the alternative that has the largest Pi

7: Update sample statistics ni , x̄i,h and σ̂ 2
i,h

and observe a new Pareto front

8: end while

9: Select alternatives on the observed Pareto front

Fig. 5 Indifference-zone

definition of Teng et al. (2010)

and dominance of a solution

relative to solution m
m

n
n’n’’

Indifference zone δx In
d

iff
e

re
n

ce
 zo

n
e

 δ
y

incomparable

domina�ng 

dominated

indifferent 

incomparable 

Sect. 2.2.1, one way to deal with this is to introduce an indifference zone, and use

the probability of good selection as performance criterion. However, it is not obvi-

ous how to define an indifference zone in the case of multiple objectives. In the

following, we introduce a new concept of indifference zone and good selection,

and develop a corresponding M-MOBA indifference zone (M-MOBA IZ) algo-

rithm.

Teng et al. (2010) have proposed an indifference-zone concept for multi-objective

problems as follows. A DM is indifferent between system j and system i in

objective h, denoted by μ j,h ≃ μi,h if and only if |δi jh | ≤ δh , where δi jh =
μ j,h − μi,h and δh is the indifference zone of the hth objective. Based on this

definition, any solution located within the indifference-zone area of solution m is

indifferent to m and so the dominance relationship can be visualised as shown

in Fig. 5. PGS has been defined as the probability that exactly all the solutions

that are not dominated by any other solution have been identified correctly. How-

ever, with this definition small differences can still switch a solution between being

in the desired set or not. For example, in the scenario shown in Fig. 5, if solu-

tion n is observed as n′, it will be incomparable to m, while if it is observed

as n′′ it will dominate m. Thus, an algorithm optimising under this definition is

likely to spend a lot of simulation samples to distinguish the domination relation-

ship between m and n, even if such a small difference may not be relevant to the

DM.

This is why in the following, we will introduce an alternative definition of indiffer-

ence zone for multi-objective problems.
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Fig. 6 M-MOBA IZ
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4.2.1 New definition of indifference zone and good selection

The key idea of our new indifference-zone definition is to extend the number of cat-

egories. Instead of a system being either dominated or non-dominated, we introduce

the categories of “indifference-zone dominated”, “borderline non-dominated”, “bor-

derline dominated” and “indifference-zone non-dominated” as illustrated by Fig. 6. A

system is

– indifference-zone dominated if there is another solution that is at least δh better in

each objective h,

– borderline dominated, if it would become non-dominated by improving each

objective h by δh ,

– borderline non-dominated, if it is non-dominated, but would become dominated

by worsening each objective h by δh ,

– indifference-zone non-dominated if it remains non-dominated even if each objec-

tive h is worsened by δh .

More formally,

– solution i indifference zone dominates solution j , denoted by i ≺I Z j , if μi,h <

μ j,h − δh,∀h = 1, 2, . . . , H ,

– solution i borderline dominates solution j , denoted by i �I Z j , if μi,h < μ j,h ,

∀h = 1, 2, . . . , H and ∃h ∈ {1, 2, . . . , H}, |δi jh | � δh .

Therefore, a solution j is categorised as

– indifference-zone dominated if ∃i ∈ {1, 2, . . . , m}, i ≺I Z j ,

– borderline dominated if ∄i ∈ {1, 2, . . . , m}, i ≺I Z j and ∃i ∈ {1, 2, . . . , m},
i �I Z j ,

– borderline non-dominated if ∄i ∈ {1, 2, . . . , m}, i ≺I Z j , ∄i ∈ {1, 2, . . . , n},
i �I Z j and ∃i ∈ {1, 2, . . . , m}, h ∈ {1, 2, . . . , H}μi,h > μ j,h − δh ,

– indifference-zone non-dominated if ∄i ∈ {1, 2, . . . , m}, i ≺I Z j or i �I Z j and

∄i ∈ {1, 2, . . . , m}, ∄h ∈ {1, 2, . . . , H}μi,h > μ j,h − δh .

For example, in Fig. 7, we have a set of indifference-zone non-dominated solutions

a, b, c, which are still Pareto optimal if both objectives increase by a small amount

δ (a′, b′, c′ are still Pareto non-dominated). By contrast, d will be dominated by e

if its objective values increase by δ and vice versa, and thus, d and e are borderline

non-dominated. Similarly, solutions f and h are indifference-zone dominated as they
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Fig. 7 An example of solutions

in different dominance

categories

a

b

c

d

h

e

f

f1

f2

g

a’

g’
c’

b’

d’
e’

f’ h’

Table 2 Good selection

Observed True

Indifference-zone

dominated

Borderline

dominated

Borderline

non-dominated

Indifference-zone

non-dominated

Indifference-zone

dominated

✓ ✓ ✗ ✗

Borderline dominated ✓ ✓ ✓ ✗

Borderline

non-dominated

✗ ✓ ✓ ✓

Indifference-zone

non-dominated

✗ ✗ ✓ ✓

would still be Pareto dominated even if both objectives are improved by δ, while g

is borderline dominated as it would become non-dominated decreasing its objective

values by δ.

Based on the above definitions, we propose a definition of “good selection”. If ci is

the “true” category of alternative i , we still count the solution as correctly classified if

based on the observed objective values, the category is “similar” to the true category,

as defined in Table 2. For example, we accept if a borderline dominated solution is

classified as borderline non-dominated or as dominated, but we do not accept if it is

classified as indifference-zone non-dominated. This solves the issue of classifying n

in Fig. 5, as there is a tolerance for classification in adjacent categories.

4.2.2 M-MOBA IZ procedure

We use the above definition of PGS to design an M-MOBA procedure that can work

with indifference zones (M-MOBA IZ). Similar to the original M-MOBA, we will

calculate the probability that a solution, if re-sampled, will change its category by more

than one grade. Similar to the M-MOBA PCS procedure, we discuss the calculation

of the probability based on the current domination situation of each alternative.

For a solution that is indifference-zone dominated or borderline dominated:

– For a solution that is indifference-zone dominated, the area that ac needs to move

out to change the selected set is exemplified in Fig. 4, and the probability P can

be calculated with Eq. (4).
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Fig. 8 Indifference zone for a

borderline dominated solution

ac if all other solutions on the

observed Pareto front are

non-dominated

a1

a2

a3

a4

ac

f1

f2

Indifference zone 

Fig. 9 Indifference zone for a

borderline dominated solution

ac if a borderline non-dominated

solution exists a1

a2 a3

a4

ac

f1

f2

Indifference zone 

– For a solution that is borderline dominated, if all other solutions on the observed

Pareto front are indifference-zone non-dominated, an example for the area that ac

needs to move out is shown in Fig. 8, i.e. the original area plus the striped area

that allows ac to become borderline non-dominated.

– For a solution that is borderline dominated, if a solution on the observed Pareto front

is borderline non-dominated, the area that ac needs to leave is the area discussed

above plus the small rectangle around the borderline non-dominated solution. For

example, if solution a2 shown in Fig. 9 is borderline non-dominated (with respect

to ac), the area with indifference zone for ac is the shaded part.

For a solution that is on the observed Pareto front and no new solutions become

indifference-zone non-dominated or borderline non-dominated when this solution is

removed:

– For an indifference-zone non-dominated solution, if all solutions on the observed

Pareto front are indifference-zone non-dominated, the area that ac needs to move

out of is exemplified in Fig. 3 and the probability P can be calculated with Eq. (3).

– For an indifference-zone non-dominated solution, if a solution on the observed

Pareto front is borderline non-dominated, the area that ac needs to move out is the

area in Fig. 3 plus the stripe areas around the borderline non-dominated solution.

Furthermore, if two borderline non-dominated solutions are neighbours on the

Pareto front, the small square area between the two stripe areas also needs to be

added. For example, in Fig. 10, a1 and a2 are both borderline non-dominated (due

to a4 and a5, respectively), the area ac that needs to leave in order to bring a change

is the shaded part shown in Fig. 10.

– For a borderline non-dominated solution, if all other solutions on the observed

Pareto front are indifference-zone non-dominated, the shaded area that ac needs
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Fig. 10 Indifference zone for an

indifference-zone

non-dominated solution if a

borderline non-dominated

solution exists

a1

ac

f1

f2

a2

a3

a4

a5

Indifference zone 

Fig. 11 Indifference zone for a

borderline non-dominated

solution if all solutions on the

observed Pareto front are

indifference-zone

non-dominated

a1

ac

a2

a3

f1

f2

Indifference zone 

Fig. 12 Indifference zone for a

borderline non-dominated

solution if a borderline

non-dominated solution exists a1

ac

f1

f2

a2

a3

a4

a5

Indifference zone 

to move out is shown in Fig, 11, which is the original shaded area from Fig. 3 plus

a stripe area on the upper right side.

– For a borderline non-dominated solution, if a solution on the observed Pareto

front is borderline non-dominated, the shaded area that ac needs to leave is the area

discussed in Fig. 10 plus the stripe area on the upper right side. For example, similar

to the situation in Fig. 10 where a1 and a2 are both borderline non-dominated, the

area that ac needs to leave in order to bring a change is the shaded part shown in

Fig. 12.

For a solution that is on the observed Pareto front and new solutions become

indifference-zone non-dominated or borderline non-dominated when this solution is

removed:

– If the new Pareto-optimal solutions after the solution under consideration is

removed are all indifference-zone non-dominated, we only need to check solu-

tions that define the shaded area shown in Fig. 2. If some solutions that define the

left and down sides of the shaded area are borderline non-dominated, the shaded
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Fig. 13 Indifference zone for a

solution that, if removed, reveals

a set of non-dominated solutions
a1

ac

a2

a3

b1

b2 b3

f1

f2

Indifference zone 

c1

Fig. 14 Cells created to compute

probability of change

a1

ac

b1

f1

f2

c1

area can be extended accordingly. For example, in Fig. 13, since a2 is borderline

non-dominated, the area that ac needs to leave is as the figure shows.

– If the new Pareto-optimal solution after the solution under consideration is removed

is borderline non-dominated, the situation is so complex that we have not found

a good method to summarise. For this situation, we use a brute-force method that

divides the whole plane into different cells based on each solution’s objective values

and the indifference zone in each objective accordingly, and checks for each cell

whether it would change the current Pareto front in case the currently considered

solution were to fall into this cell. For example, if we have four solutions in total as

in Fig. 14, the number of cells that need to be considered is (4 ∗ 3)2 = 144. Please

note that for the sake of clear demonstration, the domination relationship in this

figure does not exactly conform to the situation that new Pareto-optimal solution

after the solution under consideration is removed is borderline non-dominated.

4.3 M-MOBA hypervolume procedure

Although PCS is useful to identify the true Pareto-optimal set, there are some disad-

vantages. Consider the scenario shown in Fig. 15, with the true value of a set of Pareto

optimal solutions a, b, c and d are depicted, alongside an iso-utility curve correspond-

ing to a specific DM. Solution b will be correctly identified as the most preferred

solution for this DM. However, if solution c would be observed as c′, the domination

relationships among all solutions remain the same, and thus, this deviation from the

true mean would not impact the PCS measure. The DM, however, would now falsely

select c′ as best solution, and suffer a loss in utility. Another disadvantage of PCS is

illustrated in Fig. 16. Intuitively, solutions a and c are much more likely to be picked
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Fig. 15 Even though all

dominance relations are correct

if solution c is observed as c′,
the DM may pick the wrong

solution

a

b

f1

f2

c

dc’

e

U�lity func�on

Fig. 16 Solutions a and c are

more likely to be preferred by a

DM

a
b

f1

f2

c

by a DM than solution b, since they are much better than b in one objective but just

a little worse in the other objective. So, misclassifying b is probably not as bad as

misclassifying a and c, but PCS does not make this distinction.

Given these drawbacks of the PCS measure for multi-objective problems, we pro-

pose hypervolume difference (HVD) as an alternative measure.

Let Λ denote the Lebesgue measure, then the hypervolume (HV) is defined as

H V (B, R) := Λ

⎛

⎝

⋃

y∈B

{y′ | y ≺ y′ ≺ R}

⎞

⎠ , B ⊆ Rm (5)

where B is a set of solutions and R ∈ Rm denotes a reference point that is usually

user defined and chosen such that it is dominated by all other solutions. Figure 17

shows a set of five alternatives in 2-objective space. Three of the solutions are Pareto-

optimal, and the HV is the shaded area, defined by the Pareto-optimal solutions and

the reference point R. The dominated solutions do not contribute to the HV. HV is a

standard metric to judge the performance in multi-objective optimisation. It rewards

solutions close to the true Pareto front, as well as a good spread of solutions along the

true Pareto front (Beume et al. 2007).

But for the case of ranking and selection where evaluations are stochastic, we need

a metric that penalises over-estimation as well as under-estimation of objective values,

and thus propose the hypervolume difference (HVD). Given two sets of Pareto-optimal

solutions A and B,

H V D(A, B, R) :=H V (A, R) + H V (B, R) − 2 ∗ (I H V (A, B, R),

where I H V (A, B, R) =Λ{y′ ≺ R | ∃(y ∈ A, z ∈ B) : (y ≺ y′) ∧ (z ≺ y′)}
(6)
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Fig. 17 Hypervolume of a set of

solutions

a

b

c

d

R

f1

e

f2

Fig. 18 Hypervolume difference

of two sets of solutions a

b

c

d

R

a’

f1

b’

d’

e

c’

f2

Fig. 19 Hypervolume difference

penalises any deviation from the

true front a

b

f1

f2

c

dc’

e

Figure 18 provides an example for the proposed HVD.

HVD is able to overcome the drawbacks of PCS-based metrics discussed above.

For the scenario shown in Fig. 15, HVD will penalise deviations from the true fitness

values of Pareto-optimal solutions, even if all dominance relations are correct, see

Fig. 19. And for the scenario shown in Fig. 16, while PCS fails to reflect the higher

importance of a and c, hypervolume does pay more attention to these solutions. This is

illustrated in Fig. 20: If distorting solutions a and b by the same distance and direction,

the HVD between the new and old Pareto front made by a distortion to a is larger than

by the same distortion to b.

As additional advantage, it should be noted that HVD also allows straightforward

incorporation of partial user preferences. If a DM already has a rough idea of the

region in which the desired solutions are likely to be, the reference point can be set to

reflect this preference by setting it to the maximum acceptable value in each objective.

For example, if the reference point is defined as R shown in Fig. 21, solutions a and d

will have little influence on HVD, even if their values are disturbed, and thus, ranking

and selection will focus its sampling effort on the more relevant solutions b and c.

123



850 J. Branke, W. Zhang

Fig. 20 Hypervolume change

caused by different solutions is

different

a
b

f1

f2

c

b’

Hypervolume  change caused by b

c’

Hypervolume  change 

caused by c

Fig. 21 Effect of choosing

reference point
a

b

f1

f2

d
c

R

Following the general M-MOBA framework, we will sample where we expect the

sample will lead to the biggest change in HV, i.e. where the expected HVD between

the Pareto fronts before and after sampling is maximal.

4.3.1 Mathematical calculation of the expected HV change

Calculating the expected HV change requires to break down the calculation into differ-

ent cells, but for each cell, we can find a closed form expression. Then, these expected

changes can be added up to result in the overall expected HV change. In the following,

we will explain the computation for one particular cell, with other cells computed

analogously. Some examples for how a move of one solution will influence the HVD

can be found in Branke et al. (2016).

Consider Fig. 22, where all solutions on the current Pareto front are labelled

a1, . . . , ak , with coordinates ai,h for alternative i and objective h, and the solutions

are sorted in increasing order of objective 1. For technical reasons, let us define

a0,1 = −∞, a0,2 = ar ,2, ak+1,1 = ar ,1, ak+1,2 = −∞. We consider another

sample for design ac, and the calculation for one particular cell that is outlined

in bold and defined by upper right corner u with coordinates (u1, u2) and lower

left corner l with coordinates (l1, l2). Let us assume that these two corners are

defined by the Pareto-optimal solutions ap and aq , by u = (ap+1,1, aq−1,2) and

l = (ap,1, aq,2).

Then, the contribution of the cell to the expectation of the HV change when sampling

design ac is
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Fig. 22 Different cells that need

to be considered when

calculating the expected HV

change from re-sampling
a1

R
f2

f1

a2

a4

ac
a’c

l

u

b1

b2

b3

b4

(p)

(q)

∫ u2

l2

∫ u1

l1

⎡

⎣(ap+1,1 − x)(ap,2 − y) +
∑

p<i<q

(ai+1,1 − ai,1)(ai,2

−y)] · φc,1(x) · φc,2(y)dxdy (7)

where φc,h is the predictive probability distribution of the new location of xc in dimen-

sion h.

For efficient computation, we derive a closed form for calculating the expected HV

change in one cell. Let φ(x;μ, κ, ν) denote the distribution of μ + 1√
κ

Tν , where Tν

is a random variable with standard t distribution with ν degrees of freedom, i.e. the

t distribution we estimate for the new location of an alternative’s mean values after

having taken another sample, with mean μ, precision κ and ν degrees of freedom. The

cumulative density function is then

	(x;μ, κ, ν) = 	t (
√

κ(x − μ); ν) (8)

with 	t (x; ν) the cumulative standard t-distribution, and the probability density func-

tion is

φ(x;μ, κ, ν)=
√

κ · φt (
√

κ(x−μ); ν)=
√

κ

νπ

Γ ( ν+1
2

)

Γ ( ν
2
)

·
(

1+κ(x−μ)2

ν

)− ν+1
2

(9)

with φt (x; ν) the standard t-distribution. The HV change, due to the point we are

considering moving to a new position (x, y), is always a function in the form axy +
bx+cy+d. The constant coefficients a, b, c, d are different in different areas, and some

of the coefficients could be 0 sometimes. The contribution of the area [l1, u1]×[l2, u2]
(e.g. the small cell highlighted in Fig. 22) to the expectation of the HV change is

∫ u1

l1

∫ u2

l2

(axy + bx + cy + d) · φi,1(x) · φi,2(y)dxdy

= a

∫ u1

l1

xφi,1(x)dx

∫ u2

l2

yφi,2(y)dy + b · 	i,2(y)|u2

l2
·
∫ u1

l1

xφi,1(x)dx

+ c · 	i,1(x)|u1

l1
·
∫ u2

l2

yφi,2(y)dy + d · 	i,1(x)|u1

l1
· 	i,2(y)|u2

l2
, (10)
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where φi,h(x) = φ(x;μi,h, κi,h, νi ), 	i,h(x) = 	(x;μi,h, κi,h, νi ), μih = x̄i,h ,

κi,h = ni (ni + τi )/τi σ̂
2
i,h and νi = ni − 1. On the right-hand side of Eq. (10),

the most critical part is solving the integrals, and it can be done by calculating the

corresponding indefinite integral, which is

∫

xφ(x;μ, κ, ν)dx =
∫

(x − μ)φ(x;μ, κ, ν)dx + μ	(x;μ, κ, ν)dx

= ψ(x;μ, κ, ν) + μ	(x;μ, κ, ν)

(11)

with

ψ(x;μ, κ, ν) :=
∫

(x − μ)φ(x;μ, κ, ν)dx

=
√

ν

κπ
·

Γ ( ν+1
2

)

(1 − ν)Γ ( ν
2
)

(

1 + κ(x − μ)2

ν

)

1−ν
2

=ν + κ(x − μ)2

(1 − ν)
√

κ
φ(x;μ, κ, ν).

(12)

In the rest of this section, for convenience, we will denote ψ(x;μih, κih, νi ) as ψih(x).

Using the above results and gathering the terms with same integrals, Eq. (10) can be

rewritten as

∫ u1

l1

∫ u2

l2

(axy + bx + cy + d) · φi,1(x) · φi,2(y)dxdy

= ai,1(x)|u1

l1
i,2(y)|u2

l2
+ (b + aμi,2)i,1(x)|u1

l1
	i,2(y)|u2

l2

+ (c + aμi,1)	i,1(x)|u1

l1
i,2(y)|u2

l2
+ (aμi,1μi,2 + bμi,1

+ cμi,2 + d)	i,1(x)|u1

l1
	i,2(y)|u2

l2
,

(13)

where  is the integral of ψ .

For example, considering the integral (7), we will have

a = 1, b = −ap,2,

c = −ap+1,1 −
∑

p<i<q

(ai+1,1 − ai,1), d = ap+1,1ap,2+
∑

p<i<q

(ai+1,1−ai,1)ai,2,

and then, we can substitute them, in addition to

μc,h = x̄c,h, κc,h = nc(nc + τc)/τcσ̂
2
c,h, νc = nc − 1,

where h = 1 or 2, into Eq. (13) to solve the integral (7).

The overall Myopic Multi-Objective Budget Allocation procedure based on the HV

change criterion is denoted as M-MOBA-HV, and the procedure is almost identical to

that of M-MOBA PCS except that for each alternative i , M-MOBA-HV will calcu-

late the expected hypervolume change that would result from allocating τ additional
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sample to alternative i and allocate τ samples to the alternative i that has the largest

expected hypervolume change.

4.4 M-MOBA procedure for differential sampling between the objectives

Sometimes, objectives can be evaluated independently, e.g. if different simulation

models are used to evaluate different criteria. In this case, in order to further improve

the efficiency of sampling, it is possible to regard the sampling allocation process for

each objective independently. This independent sampling procedure can be employed

with different measures and without loss of generality we use PCS in this paper. Instead

of evaluating all objectives of an alternative simultaneously as in the M-MOBA PCS

procedure, we will evaluate only one objective of one alternative in each iteration. We

calculate Pi using the same methods as in M-MOBA PCS, and allocate the simulation

sample to the solution and objective that has the biggest probability to change the cur-

rent Pareto front. For comparison purposes, for a 2-objective problem, we assume the

M-MOBA PCS procedure will allocate one sample for each objective of a solution in

every iteration, while the M-MOBA Differential Sampling PCS (M-MOBA DS PCS)

procedure will only allocate one sample to the selected objective. Empirical results in

Sect. 5 show that by allowing to evaluate objectives independently, the efficiency of the

algorithm may be improved substantially. This would be even more the case if evalu-

ating different objectives would take different times or involve different costs, because

it would allow the algorithm to focus on the cheaper objectives. Different costs could

be easily integrated into M-MOBA DS PCS by using the quotient of probability of

change and computational cost to decide which solution and objective to evaluate next.

5 Empirical results and analysis

In this section, we present empirical experiments using different M-MOBA methods

and compare their performance with Equal allocation (which simply allocates an equal

number of samples to each alternative) according to different performance measures.

For each method, each design is sampled n0 = 5 times during initialisation, and

additional samples are allocated one at a time (τ = 1) until a pre-set budget has

been used up. All results are averaged over 1000 runs. We report the performance of

M-MOBA PCS, M-MOBA IZ, M-MOBA HV and M-MOBA DS PCS.

In some cases, we observed problems with numerical precision. As the number of

samples allocated to an alternative increases, the posterior distribution becomes more

and more narrow, leading to extremely small probabilities that an additional sample

might influence the selection. Once the probabilities become numerically zero for all

alternatives, the algorithm can no longer differentiate between them. As a simple fix

to this problem, we implemented two slight modifications. First, in case we run into

problems of numerical precision, τ is changed to 10 for the expected information

change calculation, but still only one sample is allocated. Second, if the numerical

precision problem persists, we will use Equal allocation until the problem disappears

and τ is then set back to 1.
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Table 3 True expected

performance in each objective,

SD in all cases is 5

Index Obj. 1 Obj. 2

0 1 2

1 3 1

2 5 5

Fig. 23 Comparison of P(CS)

for different algorithms on the

3-alternative case

5.1 M-MOBA PCS procedure

In an earlier paper (Branke and Zhang 2015), we compared the performance of M-

MOBA PCS with MOCBA (Chen and Lee 2010) by using two configurations from

Chen and Lee (2010). In Branke and Zhang (2015), as we did not have access to an

implementation of MOCBA at the time, we just compared with results read approx-

imately from figures provided in Chen and Lee (2010). For this paper, Dr. Haobin

Li has kindly provided us with his code of MOCBA, and so we are able to compare

MOCBA PCS and M-MOBA directly and under identical settings.

In the first benchmark problem, there are three designs and each of them is evaluated

according to two objectives. Objective values of the designs are shown in Table 3.

The resulting P(CS) over the budget allocated is shown in Fig. 23. As can be seen,

our algorithm obtains a significantly higher P(CS) than Equal allocation with the same

simulation budget. M-MOBA PCS performs very similar to MOCBA on this problem.

The second configuration has 16 alternatives, and the objective values of each design

are shown in Table 4 and visualised in Fig. 24.

Results are summarised in Fig. 25. Comparing our algorithm, M-MOBA PCS

(τ = 1), MOCBA and Equal allocation, it can be seen that both M-MOBA PCS and

MOCBA work much better than Equal allocation and M-MOBA PCS works better

than MOCBA. The difference of performance between the latter two methods reaches

a peak when the total simulation budget is around 1600. When the simulation budget

continues increasing, the difference between M-MOBA PCS and MOCBA reduces

again. The very good performance of M-MOBA PCS for small samples makes sense
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Table 4 Standard configuration

with 16 alternatives and two

objectives. Standard deviation

for all designs is 2 in each

objective

Index Obj. 1 Obj. 2 Index Obj. 1 Obj. 2

1 0.5 5.5 9 4.8 5.5

2 1.9 4.2 10 5.2 5

3 2.8 3.3 11 5.9 4.1

4 3 3 12 6.3 3.8

5 3.9 2.1 13 6.7 7.2

6 4.3 1.8 14 7 7

7 4.6 1.5 15 7.9 6.1

8 3.8 6.3 16 9 9

Fig. 24 Standard configuration

with 16 alternatives

Fig. 25 Comparison of P(CS)

for different algorithms on the

16-alternative case

as M-MOBA PCS has been designed from a myopic perspective, whereas MOCBA

is based on asymptotic considerations.
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Fig. 26 Similar solution

configuration with 13

alternatives

Table 5 Configuration with 13 alternatives and two objectives. Standard deviation for all designs is 1.5 in

each objective

Index Obj. 1 Obj. 2 Index Obj. 1 Obj. 2 Index Obj. 1 Obj. 2

1 1 8 6 3 7 11 2.6 3.9

2 2 5 7 3.05 2.2 12 2 7

3 3.5 5.01 8 1.5 6 13 2.5 6

4 3 2 9 2.1 5.2

5 2.5 8 10 2.5 4

Fig. 27 Similar solution

configuration PCS performance

comparison

5.2 M-MOBA IZ procedure

In order to test the performance of M-MOBA IZ, we construct a configuration that

includes four categories of solutions mentioned before, namely IZ dominated, border-

line dominated, borderline non-dominated and IZ non-dominated as shown in Fig. 26.

Expected values of each design are listed in Table 5, and the indifference zone δ

is 0.2 in both objectives. The performance in terms of PCS and PGS measure is

shown in Figs. 27 and 28, respectively. In terms of PCS (Fig. 27) as expected, M-

MOBA PCS performs best and the difference between its performance and Equal
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Fig. 28 Similar solution configuration PGS performance comparison

Fig. 29 Allocation of samples to different alternatives for 13 similar alternatives configuration

allocation is quite large. Both M-MOBA IZ and M-MOBA PCS work better than

Equal allocation throughout the run. In terms of PGS, the highest PGS reached by

M-MOBA IZ is more than five times higher than the highest PCS reached by any

algorithm within the same budget since PGS is a less strict criterion. M-MOBA PCS

performs even worse than Equal allocation in terms of PGS, which confirms that

focusing too much on PCS may be detrimental if the user has an indifference zone.

Our proposed M-MOBA IZ, on the other hand, works very well. To further inves-

tigate how the different methods spend the simulation samples, Fig. 29 shows the

percentage of samples allocated to a particular design. M-MOBA spends quite a lot

of samples on alternatives 2, 4, 7, 9, 10 and 11 in order to distinguish the small

differences between these alternatives. By contrast, the samples spent by M-MOBA

IZ are more evenly distributed except the apparently dominated solutions of 3, 5

and 6.
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Fig. 30 Comparison of relative

hypervolume difference for

standard configuration with 16

alternatives

Table 6 Borderline

configuration with ten

alternatives and two objectives.

Standard deviation for all

designs is 2 in each objective

Index Obj. 1 Obj. 2 Index Obj. 1 Obj. 2

1 1 5 6 4 2.1

2 5 1 7 2.1 4

3 3 3 8 5.5 5

4 3.1 2 9 3.5 5

5 2 3.1 10 6 6

5.3 M-MOBA HV procedure

In Branke et al. (2016), we tested three configurations, and compared them with two

other methods, the M-MOBA PCS (Branke and Zhang 2015) and Equal allocation. The

test results in this section are taken from Branke et al. (2016) and are repeated here for

completeness. The first configuration is still the 16 alternatives configuration proposed

by Chen and Lee (2010). Figure 30 reports the reduction in the HV difference as the

number of samples allocated increases. It can be seen that the M-MOBA-HV method

works much better than both the Equal and M-MOBA PCS methods in terms of HVD

between the selected and true Pareto set. Although M-MOBA PCS has been shown

to identify the Pareto-optimal solutions much more quickly than Equal allocation on

this problem (Branke and Zhang 2015), in terms of HVD it is actually only slightly

better than Equal allocation.

The second configuration is designed to show the impact of solutions that are close

to being dominated or non-dominated. These points have a small influence on the

resulting HV, and whether they are actually identified as dominated or non-dominated

may not matter so much to a decision maker. The configuration has ten designs, two

objectives, and the standard deviation of each alternative in each objective is set to 2.

The reference point is (10,10) in this case. Expected values of each design are shown

in Table 6 and visualised in Fig. 31. Designs 6 and 7 are dominated, but close to being

non-dominated, and design 3 is non-dominated, but close to being dominated.
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Fig. 31 Borderline configuration

with ten alternatives

Fig. 32 Comparison of relative

hypervolume difference of

borderline configuration

The result is shown in Fig. 32. Again, M-MOBA-HV works very well. The PCS-

based version of M-MOBA now is even worse than Equal allocation. To investigate

this further, Fig. 33 shows the percentage of samples allocated to a particular design.

M-MOBA PCS allocates quite a few samples to the borderline designs 3, 6 and 7,

because it aims to improve the probability of correct selection, and for these designs

the classification is most difficult. For a decision maker, however, these designs are

probably less relevant. M-MOBA-HV instead focuses on the designs 1, 2, 4 and 5,

which are the Pareto-optimal solutions probably most relevant to a decision maker.

Thus, it creates reliable performance estimates where it is most relevant.

The third configuration is designed to show the impact of very similar designs.

Again, for PCS-based MORS algorithms, it is difficult to distinguish between them.

On the other hand, the distinction is probably not very relevant for a decision maker.

There are eight designs, two objectives, and the standard deviation of each alternative

in each objective is set to 2. Expected values of each design are shown in Table 7, with

a visualisation in Fig. 34. The results depicted in Fig. 35 are similar to configuration
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Fig. 33 Allocation of samples to

the different alternatives for

borderline configuration

Table 7 Similar solution

configuration with eight

alternatives and two objectives.

Standard deviation for all

designs is 2 in each objective

Index Obj. 1 Obj. 2

1 1 5

2 5 1

3 3.2 2.1

4 3 2

5 2 3.1

6 6 4

7 5 5

8 4 6

Fig. 34 Similar solution

configuration with eight

alternatives

2 in the sense that M-MOBA-HV works best, and the PCS-based M-MOBA is worse

than Equal allocation. Again, Fig. 36 provides further detail on the distribution of

samples onto the different alternatives.

As additional test, we run some experiments on randomly generated configurations.

We generated 1000 random configurations of ten alternatives each, by sampling the

true mean of each alternative from a normal distribution with mean (2, 2) and standard

deviation of 3 in each objective. The sample standard deviation of each alternative has

been set to 2 in each objective. The reference point has been set to max μi + 5 in each
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Fig. 35 Comparison of relative

hypervolume difference of

similar solution configuration

Fig. 36 Allocation of samples to

the different alternatives for

similar solution configuration

Fig. 37 Hypervolume difference

depending on the number of

samples taken, averaged over

1000 random configurations
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dimension. Algorithms are tested once on each of the 1000 random configurations,

and results are averaged over these 1000 runs.

Figure 37 compares the HVD over the run for M-MOBA HV, M-MOBA PCS and

Equal allocation. As expected, for this HVD performance criterion, M-MOBA HV is

best, followed by M-MOBA PCS, and Equal allocation performing worst. The same

comparison but for the P(CS) criterion is shown in Fig. 38. Again as expected, for this

criterion, M-MOBA PCS performs best. M-MOBA HV works OK in the beginning,

but then stagnates and falls behind Equal allocation, presumably because it just does
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Fig. 38 P(CS) depending on the

number of samples taken,

averaged over 1000 random

configurations
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Table 8 Time required per sample allocation

Number of alternatives Best Worst Average

10 0.079110s 0.093693s 0.083943s

20 0.099771s 0.11613s 0.106111s

50 0.239546s 0.399704s 0.259820s

100 0.497097s 0.585236s 0.515388s

not care about some borderline solutions, as these solutions do not contribute to the

HV. The experiment on randomly generated configurations reinforces our intuition

that the selection of the algorithm should depend on the chosen performance measure.

Finally, the timings reported in Table 8 approximate the time it takes to perform one

sample allocation with M-MOBA HV (the slowest of the algorithm variants proposed

in this paper). We report the shortest, longest and average wall-clock time of 100 times

running with MATLAB 2018b on a machine with 2.4 GHz Intel Core i7 CPU and 8GB

memory. The average computational time is almost exactly linear in the number of

alternatives.

5.4 M-MOBA DS PCS procedure

Still using the 16 alternatives configuration used in Chen and Lee (2010), we test

the M-MOBA DS PCS procedure and compare it with the original M-MOBA PCS

procedure and Equal allocation.

Figure 39 shows PCS as the number of samples allocated increases. It can be seen

that both M-MOBA PCS and M-MOBA DS PCS perform much better than Equal

allocation and M-MOBA DS PCS performs better than M-MOBA PCS throughout

the entire run. This matches our expectation because the M-MOBA DS PCS allocates

the sampling budget more precisely to the objectives where they provide the highest

value of information. This procedure is valuable when the simulation budget is quite

limited and the objectives can be evaluated independently.
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Fig. 39 M-MOBA DS PCS

procedure
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Table 9 Different purposes
Purpose Method

Minimise PCS M-MOBA PCS

Minimise PCS but ignore small differences M-MOBA IZ

Any performance measure, but if objective

functions are derived from different

simulation models independently

M-MOBA DS

Minimise hypervolume difference M-MOBA HV

6 Conclusion

In this paper, we presented an overview on the M-MOBA method for ranking and

selection in case of two objectives. We show how this method can be adapted to

various different scenarios such as the case of an indifference zone, hypervolume as

performance criterion, or the case where objectives can be evaluated independently,

and we propose new variants and evaluation criteria. Empirical results show M-MOBA

is able to substantially reduce the number of simulation runs needed to obtain a desired

performance, when compared to equal allocation or other methods from the literature.

In conclusion, we suggest different M-MOBA variants are used in different situa-

tions according to Table 9.

There are several avenues for future research, including a test on real-world simu-

lation optimisation problems, other M-MOBA variants with different stopping rules

rather than fixed budget, considering the situation when the objectives are correlated

and a development of an M-MOBA variant that works with more than two objectives.
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