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ABSTRACT

Identifying elephant flows is very important in developing
effective and efficient traffic engineering schemes. In addi-
tion, obtaining the statistics of these flows is also very useful
for network operation and management. On the other hand,
with the rapid growth of link speed in recent years, packet
sampling has become a very attractive and scalable means
to measure flow statistics; however, it also makes identi-
fying elephant flows become much more difficult. Based on
Bayes’ theorem, this paper develops techniques and schemes
to identify elephant flows in periodically sampled packets.
We show that our basic framework is very flexible in mak-
ing appropriate trade-offs between false positives (misiden-
tified flows) and false negatives (missed elephant flows) with
regard to a given sampling frequency. We further validate
and evaluate our approach by using some publicly available
traces. Our schemes are generic and require no per-packet
processing; hence, they allow a very cost-effective imple-
mentation for being deployed in large-scale high-speed net-
works.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations— Network
monitoring

General Terms: Measurement, Theory, Verification

Keywords: measurement, flow statistics, packet sampling,
Bayes’ theorem, the elephant and mice phenomenon

1. INTRODUCTION

As many measurement-based studies have revealed, flow
statistics exhibit strong heavy-tail behaviors in various net-
works (including the Internet) [5,8, 12, 15,16]. This char-
acteristic is often referred to as the elephant and mice phe-
nomenon (a.k.a. the vital few and trivial many rule); i.e.,
most flows (mice flows) only have a small number of pack-
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ets, while a very few flows (elephant flows) have a large
number of packets. A noticeable attribute of elephant flows
is that they contribute a large portion of the total traffic
volume despite being relatively few in the number of flows.
For example, for one trace used in this study, about 0.02%
of all flows contributed more than 59.3% of the total traffic
volume.

Thus, the impact of elephant flows on network perfor-
mance is significant. This fact makes identifying these flows
very important in developing traffic engineering schemes.
In addition, knowing the statistics of such flows is also very
useful for network operation and management. By quickly
identifying elephant flows that are overwhelmingly consum-
ing network resources, network operators can immediately
take appropriate actions against individual hosts or net-
works generating these flows.

To identify elephant flows, traditionally we have to collect
all packets in the concerned network, and then extract their
flow statistics. As many previous studies have indicated,
however, such an approach lacks of scalability [1-4,7]. For
very high-speed links (say, OC-192+), directly measuring all
flows is beyond the capability of measurement equipments
(i.e., the requirements for CPU power, memory/storage ca-
pacity and access speed are overwhelming). As a solution
to this problem, recently packet sampling techniques have
attracted much attention from both the industry and the re-
search community. For instance, some modern routers have
these functions embedded, e.g., NetFlow [11] and sFlow [14].
The Packet Sampling (psamp) Working Group [13] in IETF
has been standardizing techniques related to packet sam-
pling.

In this paper, we are particularly interested in the follow-
ing problem: “How can we identify elephant flows in sam-
pled packets?” When answering this question, we adopt the
simplest form of packet sampling; i.e., the sampling process
is completely flow-state independent, and per-packet pro-
cessing such as flow lookup and packet hashing is totally
unnecessary. This form of packet sampling can be easily
achieved by using a very simple technique — periodic sam-
pling. The purpose of adopting this approach is to reduce the
implementation cost and the operation overhead. For ISPs
operating large-scale networks with a variety of measure-
ment equipments, a cost-effective implementation is consid-
ered crucial in practice.

The main contribution of our work is developing a frame-



work to find the threshold of sampled packets for a single
flow, which can determine whether the flow is an elephant
flow in unsampled packets'. We show that such a thresh-
old can be calculated by using Bayes’ theorem. To do so,
we introduce an a priori distribution of the number of per-
flow packets (i.e., the distribution of the number of per-flow
packets in unsampled packets). This approach is very flexi-
ble in making appropriate trade-offs between false positives
(misidentified flows) and false negatives (missed elephant
flows) with regard to a given sampling frequency. Based on
our approach, we find, somehow to our surprise, that the
thresholds calculated for a variety of a priori distributions
are quite similar. This observation suggests that a calcu-
lated threshold for a network in a certain period can be ap-
plicable to the network and other networks for a long run,
which also reduces the operation overhead of our schemes.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews some related work and compares with our
work. Section 3 gives the definition of elephant flows. In
Section 4, we describe how to identify elephant flows in pe-
riodically sampled packets. We also validate and evaluate
our approach by using some public packet traces. Section 5
discusses the way of obtaining such an a priori distribution.
The effectiveness of our approach in other networks is also
discussed. In Section 6, we conclude this paper with a brief
summary.

2. RELATED WORK

The problem addressed in this paper has also been dis-
cussed by Estan and Varghese [4]. The main idea of their
approach is to focus on elephant flows and neglect numer-
ous mice flows, which is quite similar to ours. They pro-
posed two novel techniques, referred to as sample-and-hold
and multistage filters, respectively. Both techniques improve
the process of extracting statistics of elephant flows in high-
speed networks, while still keeping the memory consumption
reasonably low. The main difference of their approach from
ours is its requirement for complex per-packet processing,
which may increase its implementation cost and operation
overhead. On the other hand, the advantage of our approach
is due to its simplicity; since it has no requirement for per-
packet processing, the implementation cost of our schemes
will be much lower.

In another related work, Duffield et al. [3] investigated
how to infer unsampled flow statistics (instead of identify-
ing elephant flows) from sampled flow statistics. Their key
idea is to use a scaling approach, which is based on the num-
ber of sampled SYN packets in TCP flows. Kumar et al. [7]
proposed a new technique referred to as space-code Bloom
filter (SCBF) for extracting per-flow statistics of traffic in
high-speed networks. The key points of their approach are
extending the traditional Bloom filter with multiple sets of
hash functions and using multi-resolution sampling. Their
approach can capture most flow statistics very well, while
only requiring a small amount of memory resources. How-
ever, identifying elephant flows through their approach re-
quires the identities (e.g., source IP addresses) of potential
elephant flows; i.e., it requires a priori knowledge of the
elephant flows first. Papagiannaki et al. [12] proposed a
scheme to classify elephant flows based on both flow volume
and time persistence. Their approach successfully isolates

'In this paper, unsampled and sampled packets refer to the
packet trace before and after the packet sampling process.
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Figure 1:
trace.

Probability density of X; for the IPCL

elephant flows that exhibit considerable persistence in time
domain. Since their scheme assumes the direct measure-
ment of all flows, some extensions will be required to obtain
per-flow statistics in very high-speed networks. Golab et
al. [6] proposed a deterministic algorithm to identify fre-
quent items (similar to elephant flows in our context) using
a memory-limited sliding window model. Although the algo-
rithm can fulfill its objective with limited memory resources,
it still requires per-packet processing, which we want to com-
pletely avoid in our context.

3. DEFINITION OF ELEPHANT FLOWS

A qualitative characterization of elephant flows is that
they represent the majority of total traffic volume (in the
number of packets or bytes) while being relatively few in
the number of flows. The quantitative definition of an ele-
phant flow can be arbitrarily determined by network opera-
tors according to their own criteria. In this paper, we define
elephant flow as a flow that contributes more than 0.1% of
all unsampled packets.

For illustration purpose, here we use a packet trace of In-
ternet traffic measured at an OC-48c backbone link by the
PMA project of NLANRZ. In this trace, we considered the
first 107 packets, referred to as the unsampled IPCL trace
or simply trace when the context is clear, which correspond
to about 137 seconds of observed traffic. The choice of 107
packets is considered reasonable for calculation convenience;
the number of packets still allows us to obtain sufficient data
for statistical analysis. Moreover, since the trace lasts about
137 seconds (with an average throughput of about 1 Gbps),
the identified elephant flows within this time window can
give meaningful information for the purpose of traffic engi-
neering and network operation®. Throughout this paper, we
define a flow by the 5-tuple identity (i.e., source/destination
IP addresses, source/destination port numbers, and proto-
col identifier). Since the session time of some elephant flows
can be very long (say, more than 3 hours), we include all par-
tial flows in the time window (e.g., TCP flows with missing
SYN or FIN packets) for analysis purpose. Our objective

2More precisely, we use the trace IPLS-CLEV-20020814-
090000-0 [9].

3We confirmed that in many cases, elephant flows did exceed
this time window; i.e., an identified elephant flow within the
first time window will be recognized as an elephant flow
again in the following time windows with high probability.
That result is omitted due to space limit.



is to identify elephant flows by using packets sampled from
the unsampled trace as quick and accurate as possible.

Figure 1 shows the probability density Pr[X; =] (i =
1,2,...) of the IPCL trace, where X is the number of pack-
ets of the j-th flow. The probability density of X; clearly
decays in an approximate power-law fashion. As many pre-
vious measurement-based studies [5, 8,12, 15, 16] have re-
vealed, this characteristic seems to be intrinsic to Internet
traffic. The IPCL trace contains 737,780 flows in the ob-
served time window. Since an elephant flow by our defini-
tion is the one that contributes more than 0.1% of the total
107 packets, any flow j for which X; > 10% is considered
as an elephant flow in this paper. Under this definition, we
have 167 elephant flows in the unsampled IPCL trace; these
flows account for more than 59.3% of the total traffic volume
(in the number of bytes).

4. |IDENTIFYING ELEPHANT FLOWS

In this section, we propose an approach to identify ele-
phant flows by counting the number of sampled packets for
individual flows. Our task is to find a threshold determining
whether a sampled flow represents an elephant flow in un-
sampled packets. Our approach is based on Bayes’ theorem.
Here, we assume that an a priori distribution Pr [X; = 1] is
known in advance. How to obtain such a Pr[X; = ¢] will be
discussed in the next section. We first describe a framework
for our approach. Then, we discuss the trade-off between
false positives and false negatives with regard to a given
sampling frequency. Based on these results, we give a pro-
cedure of identifying elephant flows in sampled packets. Fi-
nally, we present numerical results to validate and evaluate
our approach.

4.1 A framework for our approach

Let n packets be randomly sampled from a population of
N packets*. The sampling frequency f is defined as f =
n/N. Let Y; be the number of sampled packets for a flow
j, which has X; packets in the population (i.e., unsampled
packets). Given X; = =z, the probability with which Y;
satisfies Y; =y is

om0 ()(15)/ ()

which is a hyper-geometric distribution®.

According to Bayes’ theorem, given Y; > y, the proba-
bility with which X; satisfies X; > x can be calculated as
follows.

(1)

Pr(X; > z|Y; > y]
> wet PrlYs > ylX; = k] Pr[X; = k]’

(2)

where Pr[Y; > y|X; =z2] = 1 — YV  Pr[Y; =i|X; = 1],
and Pr[X; =] is the probability density of X; shown in
Fig. 1.

4Precisely speaking, periodic sampling, which will be
adopted in our scheme, is different from random sampling.
However, since there is a large number of concurrent flows
coexisting in a high-speed link, successive packets of a given
flow will be interleaved by packets of many other flows,
which effectively randomizes the selection of packets of the
given flow [3].

To calculate (1), we use its binomial approximation.
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Figure 2: Trade-off between FPR(y') and FNR(y')
for the IPCL trace.

Equation (2) means: given a priori distribution Pr [X; = i],
we can use y, the number of sampled packets for a flow,
to calculate the probability with which the flow has more
than x packets in the population. Let a flow j be an ele-
phant flow if the number of unsampled packets X; > Z;
i.e., & is the threshold identifying an elephant flow (e.g.,
# = 10* for the example in the previous section). Then, if
Pr[X; > #|Y; > g] is close enough to 1 for a given y = g, the
flow j is very likely to have more than & packets in the pop-
ulation. In other words, if the number of sampled packets
Y; for a flow j is greater than ¢, there is a high probability
that the flow represented by the sampled packets is indeed
an elephant flow in unsampled packets.

Intuitively, Pr[X; > £|Y; > ¢] will increase with §. How-
ever, there is an intrinsic trade-off between false positives
and false negatives, which prevents us from choosing an ar-
bitrary y. Our framework allows us to quantify this trade-off
and make proper choices, as we shall see shortly.

4.2 Trade-off between false probabilities
If we assume that a flow for which Y; satisfies Y; > ¢’
is an elephant flow, then the false positive ratio (FPR) and
the false negative rate (FNR) can be defined as follows.
FPR(y) ©l py [detected flows are not elephant flows]
—1-Pr[X; > 80 > ] (3)
FNR(y') 2 Pr [elephant flows are not detected]
=1-Pr[Y; >y|X; > i]

D k=i PT[Xj = K]
These equations can be calculated by using (2). Ideally,

we should find 3’ = 4§ such that both FPR(f) and FNR(%)
are minimized. However, as shown below, there is a trade-off
between the two metrics. The trade-off becomes particularly
critical when the sampling frequency f is very low. Again,
we illustrate this trade-off by using the IPCL trace.

Figure 2 shows FPR(y’) and FNR(y') (v’ = 1,2, ...) calcu-
lated by using (3) and (4). Here, the number of unsampled
packets is N = 107, and the threshold to identify an ele-
phant flow is £ = 10*. Sampling frequency f is 10~ and
10™*, respectively. For Pr[X; = i], we used the one from
the TPCL trace, i.e., the distribution shown in Fig. 1. In
both cases, an increase in 3’ leads to a decrease in FPR(y")
and an increase in FNR(y'); i.e., there is an unavoidable
trade-off between the two metrics. We can also see that the
trade-off is more critical at the lower sampling frequency
(ie., f=10"%).



Table 1: g, FPR(j), and FNR(j) for the IPCL trace
by calculation

f ] 9 [ FPR() FNR(3)
1075 13| 0.045 0.250
1074 || 4 0.030 0.774

4.3 Flow identification procedure

According to the result shown in the previous subsection,
we have to make appropriate trade-offs between false pos-
itives and false negatives when identifying elephant flows.
This subsection presents such a flow identification procedure
designed with these observations kept in mind.

We consider the following policy as a guideline, i.e., the
false positive ratio should be reasonably low while reducing
the false negative rate for a given sampling frequency. Ac-
cording to this policy, we should keep the false positive ratio
low enough without sacrificing the false negative rate too
much, which is the consequence of the trade-off. Neverthe-
less, identifying elephant flows with a sufficiently low false
positive ratio still provides very useful information for traf-
fic engineering and network operation. First, we can avoid
mistreating non-elephant flows (e.g., shaping their packet
rate) when the false positive ratio is sufficiently low. Sec-
ond, although keeping a low false positive ratio may cause
a higher false negative rate, the amount of traffic generated
by the identified flows is already significant. For example, in
the IPCL trace, the 10 heaviest elephant flows account for
about 10% of the total traffic volume.

According to the policy, our goal is to find 3/ = § such
that FPR(g) becomes reasonably low. However, merely in-
creasing ¢ will lead to an increase in FNR(9), due to the
revealed trade-off. So, we obtain the threshold gy with the
following constraint

§ = min {y | FPR(y') < €}, (5)
Y

where € specifies a tolerable false positive ratio. Equation

(5) guarantees an FPR is lower than e (say, 0.05), while

keeping the corresponding FNR as low as possible.

Table 1 lists §, FPR(g), and FNR(§) as calculated by
following (5) for the examples shown in Fig. 2. Here, we
have € = 0.05. When f = 1073, if ¢, the number of sampled
packets for a flow, is greater than 13, the flow is very likely
to be an elephant flow, since FPR(9) < € = 0.05. Due to
the fact that FNR(g) & 0.25, about 25% of elephant flows
in unsampled packets will be missed on average.

When f = 10~*, FNR(j) becomes much higher if § = 4;
i.e., more elephant flows in unsampled packets will be missed
due to an ultra-low sampling frequency and a bounded false
positive ratio. However, the identified elephant flows are
more likely to be elephant flows, which is also meaningful
for traffic engineering and network operation. The result
also suggests that for such a low f, it is advisable to allow a
higher tolerable FPR, or to have a higher f when affordable,
if false negatives have greater impact on network operation
than false positives. Since the number of elephant flows
in the IPCL trace is 167, we can expect that on average
about 38 (i.e., 167 x (1 —0.774)) heavy elephant flows will
be identified according to our approach.

In a summary, the procedure for identifying elephant flows
in sampled packets is enumerated as follows.

Step 1: Determine (i) the number of packets N in the
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Table 2: FPR and FNR through packet sampling of
the IPCL trace

f [ A ne [FPR FNR
1073 [ 134 127 | 0.053 0.240
107 || 38 38 | 0.000 0.772

population, (ii) a sampling frequency f, (iii) a threshold
% determining an elephant flow in unsampled packets, (iv)
an a priori distribution of X; of unsampled packets (i.e.,
Pr[X; =]), and (v) a threshold e that FPR should satisfy.

Step 2: Calculate § by using the above (i) — (v) and (5).

Step 3: Conduct periodic packet sampling, and mean-
while count the number of per-flow packets.

Step 4: If the number of sampled packets for a flow is
greater than ¢, the flow is identified as an elephant flow.

4.4 Performance evaluation

In this subsection, we evaluate our approach through an
actual packet sampling process for the IPCL trace. Fol-
lowing the procedure described in the previous subsection,
we first determine the following parameters (ref. Step 1):
N =107, f € {107%,107"}, and & = 10*. We again use the
distribution of the IPCL trace shown in Fig. 1 as the a priori
distribution of X;. Second, we use the calculated g listed
in Table 1 (Step 2). We then conduct the actual packet
sampling for the IPCL trace and count the number of per-
flow packets (Step 3). We use periodic sampling, which is
the simplest form to implement; i.e., we periodically sample
every (N/n)-th packet. Finally, we investigate the flows for
which the sampled packets satisfy Y; > 4 (Step 4). The
number of identified elephant flows in sampled packets is
denoted as 7ie. Among these 7. flows, there are n. actual
elephant flows by our definition. We use N. to denote the
number of total elephant flows in unsampled packets (recall
that N. = 167 for the IPCL trace, as stated in Section 4).

Here, the false positive ratio FPR and false negative rate
FNR can be approximated by FPR = 1 — ne/fe, FNR =
1 —ne/Ne.

FPR and FNR through packet sampling of the IPCL trace
are listed in Table 2. As we can see, they are in good agree-
ment with those listed in Table 1, which were calculated
from (3) and (4), respectively. This result confirms that our
approach can effectively identify elephant flows in sampled
packets. With a periodic sampling, such an approach is also
very efficient.

5. A PRIORI DISTRIBUTION OF x;

Identifying elephant flows accurately requires an appro-
priately chosen . We have shown that such a § can be
obtained by following (5). To do so, we need know N, f,
and &, and Pr[X; = i]; i.e., we have to obtain the distribu-
tion of X; in unsampled packets. There are three possible
approaches: A) use the distribution measured previously at
the same link; B) infer the unsampled flow statistics (e.g.,
per-flow packet distribution) from sampled flow statistics;
C) utilize the power-law characteristic of Internet traffic.

Approach A assumes that the distribution is similar if
measured at the same link in similar periods (say, in daily
busy hours). However, this approach lacks scalability, since
it requires the direct measurement of flow characteristics.
Approach B uses the result given by Duffield et al. [3]; i.e.,
with the estimated number of original flows, the unsam-



Figure 3: Complementary cumulative distributions
of X; for the three traces.
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Figure 4: FPR(y') and FNR(y') for the three traces:
f=10"2 (top) and f =10"" (bottom).

pled per-flow packet distribution Pr [X; = 4] can be inferred
from the observation of sampled per-flow packet distribu-
tion Pr[Y; =1i]. Approach C utilizes the observation that
the distribution of the number of per-flow packets for In-
ternet traffic seems to decay in an approximately power-law
fashion.

In the following, we focus on Approach C. We investigate
how Pr [X; = ] affects §. First, we look into several empir-
ical distributions obtained from packet traces measured in
different networks. We then augment our investigation with
the case of a family of theoretical Pareto distributions. We
find, somehow to our surprise, that the calculated thresh-
olds ¢ are similar for these empirical and theoretical distri-
butions. This result suggests that a threshold obtained for
one network can be used as an approximation for other net-
works as long as their flow statistics also exhibit heavy-tail
characteristics.

5.1 Empirical distributions

To supplement the IPCL trace, we used two more unidi-
rectional packet traces of Internet traffic. The first one was
measured at the same location as the IPCL trace, but at
other OC-48c backbone links, i.e., those between Indianapo-
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Table 3: y for the three traces by calculation

trace |9 (f=10"%) g (f=10"")
IPCL 13 4
IPKS 14 4
CESCA 15 5
10°
10
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Figure 5: Complementary cumulative distributions
of X; for the Pareto distributions.

lis and Kansas City [9]. We refer to this trace as the IPKS
trace®. The second one was measured at a Gigabit Ethernet
link connecting the Anella Cientifica to the global Internet
via RedIRIS [10]. We refer to this trace as CESCA”. Each
link had an adequate volume of traffic during the measure-
ment period.

Figure 3 shows complementary cumulative distributions
PriX; >kl =1-— Zle Pr[X; =] for these three traces.
Although their distributions are different, they all exhibit
heavy-tail behaviors and decay in an approximately power-
law fashion. Then, we use the distribution Pr[X; =] for
each trace to calculate FPR(y’) and FNR(y') (see Fig. 4),
with N = 107, f € {1072,107*}, and & = 10%; four sub-
figures show similar tendencies of FPR(y’) and FNR(y’) for
all these three traces. Next, we use (5) to calculate ¢, with
€ = 0.05. Table 3 lists the calculated thresholds of identify-
ing elephant flows in sampled packets. As we can see, these
thresholds (§) are very similar for traces with different per-
flow packet distributions.

5.2 Theoretical distributions

We use the Pareto distribution as a theoretical distri-
bution, since it is appropriate for evaluating behaviors for
which the complementary cumulative distribution decays in
a power-law fashion. This distribution is often referred to as
the basis of the elephant and mice phenomenon. The Pareto
distribution is defined by Pr[X; < z] = 1— (a/2)? (z > ),
where a > 0 is a location parameter, and 5 > 0 is a shape
parameter. With the above notation, the probability density
function is defined as Pr[X; = z] = Ba? /2P, Figure 5 il-
lustrates the complementary cumulative distribution of the
Pareto distributions (o < = < 10°). Here, a = 1.0, and
B € {0.5,0.75,1.0,1.25,1.5}. The empirical distributions
are also plotted for comparison purpose.

SWe use the first 107 packets (corresponding to about 124
seconds) in the trace IPLS-KSCY-20020814-105000-1 [9].
"We use the first 107 packets (corresponding to about 85
seconds) in the trace 20040219-120000-a [10].
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Figure 6: FPR(y') and FNR(y') for the Pareto dis-
tributions: f =10"% (top) and f = 10"* (bottom).

Table 4: § for the Pareto distributions by calculation

B g (F=107°) g (f=10"7)
0.5 13 4
0.75 13 4
1.0 14 4
1.25 14 4
15 15 5

For each of the above Pareto distributions, we calculate
FPR and FNR by using (3) and (4) (see Fig. 6), and § by
using (5) (see Table 4). Here, N = 107, f € {1072,107*},
# = 10%, and € = 0.05. Both FPR(y’) and FNR(y') show
very similar tendencies for all distributions. The calculated
thresholds () are similar for the Pareto distributions over
a relatively wide range of 3, and are similar to those for the
empirical distributions.

As shown in Fig. 5, the empirical distributions of X for
the three traces roughly follow Pr[X; > z] ~ 7, where
[ is close to 1. Other measurement-based studies have re-
ported that flow statistics exhibit such characteristics [5, 8,
12,15,16] in many different networks (including the Inter-
net). Therefore, we may conclude that the value of § cal-
culated by using the Pareto distribution (say, with 8 = 1.0)
can be used as approximations for a wide range of other net-
works as long as their per-flow packet statistics also follow
heavy-tail distributions.

6. CONCLUSION

In this paper, we have described how to identify elephant
flows through counting periodically sampled packets. The
key is to find the threshold of per-flow packets in sampled
packets which can reliably indicate whether or not a flow
is actually an elephant flow in unsampled packets. We have
shown that such a threshold can be obtained based on Bayes’
theorem, with a proper trade-off of false positives and false
negatives. Moreover, we have found that for various a pri-
ori distributions, the calculated thresholds are quite simi-
lar. This observation suggests that a threshold obtained for
one network will be applicable to other networks exhibiting
similar per-flow packet distributions. Although our current
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scheme only focus on identifying elephant flows instead of
exacting detailed flow statistics, we believe that identifying
elephant flows is an important step toward the goal of the
latter during network operation and traffic engineering.

The advantage of our approach is due to its simplicity. Pe-
riodic sampling and stateless flow identification without per-
packet processing can be easily implemented in any contem-
porary high-end PC, which is of course a very cost-effective
solution. In addition, our analytical framework quantifies
the intrinsic trade-off in flow identification and can provide
insights on how to choose appropriate parameters. For ISPs
operating large-scale networks with a variety of measure-
ment equipments, these features are considered very crucial
in practice.
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