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Abstract: Living and working in comfort while a building’s energy consumption is kept under
control requires monitoring a system’s consumption to optimize the energy performance. The way
energy is generally used is often far from optimal, which requires the use of smart meters that
can record the energy consumption and communicate the information to an energy manager who
can analyze the consumption behavior, monitor, and optimize energy performance. Given that
the heating, ventilation, and air conditioning (HVAC) systems are the largest electricity consumers
in buildings, this paper discusses the importance of incorporating occupancy data in the energy
efficiency analysis and unveils energy inefficiencies in the way the system operates. This paper uses
1-year data of a highly efficient certified office building located in the Houston area and shows the
power of self-organizing maps and data analysis in identifying up to 4.6% possible savings in energy.
The use of time series analysis and machine-learning techniques is conducive to helping energy
managers discover more energy savings.

Keywords: smart building; LEED building; energy efficiency; smart meter; time series; self-organizing
maps

1. Introduction

Recently, artificial intelligence tools made the leap from a fascinating theory to a
distinctive practice to control services with great flexibility and provide a better quality
environment in various fields, including the buildings sector. The electricity that powers
today’s buildings is supplied by a power grid designed in most cases over 50 years ago: a
network comprised of power plants where electricity is produced, transmission lines
that transport electricity over long distances, and substations where electrical voltage
is conditioned and distributed to consumers through low voltage lines. The increasing
electricity demand of the 21st century and the rapid development of information and
communications technologies made smart grids emerge as the next-generation power grid
aiming to make the current electrical grid more efficient, reliable, secure, and greener [1,2].
Energy efficiency and flexibility will enable smart grids to supply energy to a higher
number of buildings without increasing the power generation linearly. In other words, the
combination of smart grids with smarter buildings will enable more proactive interactions
between the power company and the end user, extending the life of existing generation
and transmission resources while supporting the energy transition.

Consequently, a number of territories in the USA have turned to the promotion
of smart and high-performance buildings powered by local renewable energy, making
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Net Zero Energy buildings common, if not a standard [3]. In 2021, the residential and
commercial sectors accounted for about 21% and 18%, respectively—39% combined—of
total U.S. energy consumption [4]. The 2018 U.S. Energy Information Administration (EIA)
Commercial Buildings Energy Consumption Survey highlighted office buildings as the
highest electricity consumers. That electricity was mainly used in air conditioning and plug
loads accounting for over 80% of the annual total. For example, in the last two years, the
Houston Advanced Research Center (HARC), a high-performance LEED Platinum, Energy
Start 99/100, and Net Zero-certified office building (located in The Woodlands, TX, USA)
had two main electricity consumers, the plug loads and HVAC, account for more than 85%
of the total building electricity consumption as presented in Figure 1 [5].
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Following a 2015 U.S. energy department report [6], various research projects started
working on building energy efficiency, aiming to improve the performance of an energy
system in parallel to providing the user with a comfortable working environment. In
addition to saving energy, optimizing energy usage has other benefits, including climate
protection, as less energy implies reducing the fossil fuels demand, which will lower the
level of carbon dioxide (CO2) in the atmosphere [7]. To monitor, control, and optimize
the performance of their energy system, some buildings are equipped with an Energy
Management System (EMS) that plays a vital role in the intelligent handling of energy and
real-time demand [8]. To measure inefficiencies in the system, an EMS needs to analyze data
produced daily from IoT devices, smart meters, weather data, and other building-related
data and help building managers understand the cause of such inefficiencies. EMSs use
building data to unveil inefficiencies in the way systems such as HVAC or plug loads are
operated, bringing to the attention of building managers situations such as high energy
consumption or low system performance [9].

In the past decade, many publications have used various machine learning and statis-
tical techniques that extract knowledge from historical data to analyze the energy efficiency
of a building and provide suggestions for redesigning its power configurations [10–14].
Some of the papers published used supervised techniques to predict building energy con-
sumption patterns, which help building managers and owners to measure the impact of
new efficient energy technologies or management policies [15–20]. On the other hand, some
data-driven published work on energy used unsupervised learning techniques, such as
clustering, to understand energy consumption profiles of buildings for diversifying tariffs,
distribute electricity to buildings based on their level of energy consumption, and group
buildings based on the same energy consumption patterns [21–26]. Most of the previous
work relied on the expertise of the building manager and analyzed the efficiency after
collecting data for an extended period. The research question this paper addresses is how
a building EMS can identify inefficiencies by analyzing building-related data and make
recommendations to the building manager to address those inefficiencies.
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To address this research question, our work focuses on the use of unsupervised learn-
ing to help energy managers identify and quantify possible energy saving after analyzing
building data, including smart meter data. In our earlier work [27], we used one year’s
worth of power demand data from the HARC building and showed 1.87% of possible
savings in energy using the K-Means clustering algorithm. This early experimentation was
among the first to demonstrate the potential impact of unsupervised machine learning
in identifying energy inefficiencies and in helping business users gain insight from huge
amounts of building data; this paper is a continuation of the work presented in [27]. In
this paper, we present how self-organizing maps (SOMs) unsupervised machine-learning
algorithm is used to cluster and visualize building-related data to help energy managers
easily identify possible energy saving even in a highly efficient energy building.

The main contributions of this paper are to

1. Develop an unsupervised learning approach to identify energy inefficiencies in HVAC
systems, which will entice the community to use these types of ML technology in
other systems such as plug-ins, appliances, and others;

2. Show the power of self-organizing maps (SOMs) and data analysis in helping energy
managers easily identify HVAC energy inefficiencies;

3. Quantify possible energy saving using SOM machine-learning algorithm in the op-
eration of HVAC systems even in a highly efficient LEED, Energy Star, and Net
Zero-certified building.

The rest of the paper is organized as follows: Section 2 introduces readers to the SOM
algorithm and presents various applications of this clustering algorithm through a literature
review. A summary of the data characteristics and the pre-processing methods adopted in
a data-driven clustering process is presented in Section 3. Section 4 presents the results of
applying SOMs to HARC data. Finally, a conclusion is presented in Section 5, highlighting
the outcomes achieved, limitations, and possible solutions.

2. Self-Organizing Maps Applications: Background and Literature Review

Nowadays, the world has become a repository of various data generated from people,
phones, computers, and other devices in different formats, varying from pictures, audio
files, videos, spreadsheets, and many more. Traditionally, humans used to analyze data,
but because the volume of data surpasses the ability of humans to make sense of it, au-
tomated systems are urgently needed to help data analysts gain information from data.
Machine learning is a field of inquiry that uses a set of computer systems, called models,
that can learn inferences and adapt to changes in data without explicit instructions from
the programmer [28]. Unsupervised learning is a machine-learning technique used to train
an algorithm to analyze data, infer patterns, and discover similarities/differences using
unlabeled datasets that are not tagged with labels recognizing their properties. Analyzing
data will have a meager value unless the latter is cast into business value, which is beneficial
for organizations that start to use unsupervised learning for various applications rang-
ing from data exploration, customer segmentation, anomaly detection recommendation
engines, etc. [28].

Segmentation, as an unsupervised learning application, is a technique used to split
and cluster data based on their properties, resulting in insights about the intrinsic grouping
in a set of unlabeled data. Like segmentation, self-organizing maps or Kohonen Maps
are a deep-learning unsupervised technique, introduced by a Finnish researcher named
Teuvo Kohonen, used to produce a low dimensional representation (called map) of data
with many dimensions while preserving the structure of data. Unlike other artificial neural
networks that are trained on labeled data and use error-correction learning for regression or
classification purposes, SOM is based on a competitive learning that uses a neighborhood
function to cluster unlabeled high-dimensional data while maintaining the topological
structure of the input space. To achieve this, SOMs adopt an architecture where various
inputs are mapped with weights to various neurons that are in the Kohonen Map; these
weights are important as they determine the spatial location of neurons in a 1D or a 2D
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space. During the SOM training phase, the weights get updated so that the weight vectors
for nearby neurons are close in the feature space; consequently, nearby observations in the
datasets are assigned to the same neurons or nearby neurons. The iterative changes in the
position of the neurons in the map form clusters with a clear structure, which make them
easy to visualize. Figure 2 presents a typical architecture of a SOM [29].
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The training algorithm of self-organizing maps can be summarized in five important steps:

1. Assign initial weights to each neuron;
2. Pick a random input vector X;
3. Compare X with the weight assigned to each neuron using a distance metric such as

the Euclidean Distance (1). The closet neuron (least distance) is named Best Matching
Unit (BMU)

d(A, B) =

√
n

∑
i=1

(Ai − Bi)
2 (1)

A, B: two points in n-space
n: n-space

4. Update the weights of the neighboring neurons that are close to the BMU using a learning
rate and a neighborhood function that can be optimized using the Bayesian method [30];

5. Go back to step 2 until the map converges for a given number of iterations or once the
weights are not changed.

Given their ability to produce satisfactory clustering results and good visualization
of multidimensional data, self-organizing maps have been used by researchers in various
application domains, including health, education, energy, psephology, economy, etc. [31,32].
To improve students’ achievements and facilitate the work of teachers in giving instructions,
I. Purbasari used self-organizing maps to group newly enrolled students to high schools
using their academic grades and managed to partition students into classes based on
their abilities and interests. The use of SOMs turned the hourly work of staff into a
decision support system that helped in extracting insights from data collected from students’
national examination results and managed to split students’ interests into three main groups,
which are natural science, social science, and linguistics with a high interest on the natural
science field [33].

In 2018, the World Health Organization reported that cancer was the second leading
cause of death, accounting for approximately 9.6 million deaths, with breast cancer being
the most common cancer type among women [34]. Scientifically, early diagnosis of cancer
along with early treatment will help in the prognosis and treatment of the disease, in which
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data-driven predictive models can assist. In Ref. [35], N. Shukla used SOMs and a clustering
algorithm called Density-Based Spatial Clustering of Application with Noise (DBSCAN)
to develop a model using the National Cancer Institute’s Surveillance, Epidemiology and
End Results (NCI’s SEER) data to understand breast cancer survivability, identify factors
associated with patient survivability, and produce clusters of patients sharing the same
properties. The produced clusters, along with the associated patterns, were used to train
a multilayer perceptron, which improved the overall cancer survival prediction accuracy.
The work presented in [35] is part of evidence-based medicine, where doctors use clinical
research evidence to make decisions about the care of patients, provide better treatments,
and hence improve clinical performance [36].

Another major cause of death around the world is car accidents; according to the
World Health Organization, around 1.35 million people die each year because of road traffic
crashes. Unfortunately, according to the 2018 global report, there has been no decrease
in the number of road traffic deaths in low-income countries in the past 5 years [37]. To
highlight the importance of data analysis and how data mining techniques can improve
transportation systems, P. Kasbe presented a survey of various supervised and unsuper-
vised techniques used for road accident analysis [38]. In the same survey, the author
compared SOMs to K-Means and how the former excels at better visualization of data,
which helps in extracting better patterns when analyzing road accident data, and hence
improves the accuracy of the analysis and makes better predictions of accident reasons
(human, environmental, or other factors).

Related to the energy sector, the global electricity demand is expected to increase where
accurate energy management is essential to forecast energy usage, hence managing energy
policy making and energy production. Understanding how a building is operating requires
analyzing energy-related data that can be collected from different IoT devices, including
smart meters that record energy consumption data and share them with the utility for
analysis, to understand energy usage and dispatch electricity into different residential areas
based on their level of consumption [39]. To identify customers that are more responsible
for peaks in the system, M. Azaza used responsibility factor and consumption variability as
input features for two clustering techniques, which are hierarchical clustering and SOMs,
for better visualization of customers’ cluster distribution. Identifying customers responsible
for peaks in the systems will improve recommendations for energy reductions, assure better
dynamic pricing plans, offer economic benefits to consumers, and improve the overall
operation of the electrical grid [40].

Demand response is one of the innovative, reliable solutions offered by smart grids
aiming to reduce energy consumption without impacting everyday activities. This includes
turning off non-essential lighting, adjusting thermostat levels, and using on-site energy-
distributed energy resources (such as energy-stored systems) to power critical equipment
while still minimizing demand on the grid. Load forecasting is one of the tools that assists
in balancing supply and demand, as it can be used to plan and operate the system efficiently.
To achieve this, data scientists will have to analyze data collected from multiple sources
such as load history, weather data, temporal information (day, hour, holidays, etc.), outage
logs, demographic data, etc. [24,41]. To forecast household load consumption, authors
in [42] used a methodology referred to as CCF (Cluster, Classify, Forecast) to group daily
profiles (using K-Means and SOMs), investigate the relationship between the produced
load profiles and weather/temporal data (using a classification and a regression tree),
and produce more additional inputs that can be used to feed a Smart Meter-Based Model
(SMBM) to learn more about the overall profile shape of the cluster and hence make more
accurate forecasting results. The work presented accredits the importance of SOMs in
clustering similar daily profiles, presenting the results in a visual map (that includes the
number of daily profiles), and revealing the distances between cluster centers to express
the similarities and dissimilarities between the resulting groups [43].

On the other hand, J. Yun addressed the importance of analyzing building environment
data to propose a new HVAC control strategy that can balance energy use against occupants’
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comfort requirements. The work presented in [44] used a set of ZigBee wireless sensor nodes
placed in different locations of a laboratory’s wall to collect a 1 min interval temperature
and humidity datasets for a period of 1 month. Using K-Means and SOMs, the collected
data were used to construct a model for the building environment that was then used
to assess the occupants’ comfort level after receiving a social media message (Twitter or
Facebook). For instance, if an occupant feels uncomfortable, he/she will notify the HVAC
control system that will then use the created model to decide on the cluster to which the
current building environment will belong (Comfortable Cluster or Uncomfortable Cluster).
In case of an uncomfortable status, the HVAC system will be controlled to move the current
building environment condition to the closest cluster that is marked as comfortable.

As noted, most existing work has focused on the ability of SOMs to group data of
the same behavior into the same cluster and how it excels at producing a visual map
that can reveal relationships between the generated groups. The generated clusters can
sometimes be used for classification purposes, as presented in [44]. Our work is different
as it discusses the power of SOMs in identifying energy inefficiencies missed by experts, in
the way an HVAC is being operated (despite that the building is a highly efficient certified
office building) to suggest opportunities to reduce an organization’s energy consumption,
keep the same comfort, and save money.

3. Houston Advanced Research Center: Data Description and Exploration

Located in The Woodlands, Texas (USA), the HARC is an 18,600-square-foot office
building. It was designed and certified as a LEED Platinum, obtaining a 99/100 Energy
Star certification in 2019, 2020, and 2021 and the Net Zero certification in 2020. The climate
in the Houston area is characterized as humid subtropical, with August being the warmest
month (94.5 F on average) and January being the coldest one (42.2 F on average); high
humidity and warm temperatures make the use of an HVAC system a necessity. The HARC
building is full-electric, meaning that it only consumes electricity and has no fuel supply or
consumption on site.

Despite its by-design efficiency features, the HARC started collecting data related to
the building to carry out data analysis, build familiarity with data, extract useful insights,
and, most importantly, identify any energy inefficiencies in the way the building energy
is operated. To convert collected data (raw data) into useful information and make better
decision making, it is important to follow a data analytics process as presented in Figure 3.
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3.1. Data Collection

Data collection is a systematic approach meant to gather relevant information from
data collected from different sources, which can help to solve a defined problem. To identify
inefficiencies in the way their building is operated, the HARC started collecting 1 min
power data at different building levels using four meters: lighting plug loads, HVAC, and
others. The relevance of the HVAC system in subtropical climates (over 40% of the total
energy consumption) is the reason this paper focuses on understanding how the HVAC
system is performing. Currently, the HVAC system is controlled by a Building Automation
System (BAS), setting a set point that can be changed based on the climate period and
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whether users will be in the building or not. Assessing the energy performance of an
HVAC requires power data from a meter but also in situ measurements (such as the indoor
temperature) and relative information (such as climate data); unfortunately, the last two
data categories were not available. Given the importance of the outdoor temperature and
the number of occupants for our analysis, we collected the outdoor temperature from
WILLIAM P. HOBBY AIRPORT STATION weather station as it provides hourly climate
data. As for the number of occupants, we used data collected from the access-card system
that recorded only the entrance time and assumed that users remained in the building till
17 h30. Because the HARC energy manager changes the scheduled set point value when
needed, we decided not to use it in the analysis, as the exact set point values were not
available either.

3.2. Data Cleaning

In data science, the quality of the analysis will depend on the quality of data; this
is referred to as the concept of garbage-in/garbage-out. Data cleaning is the process of
fixing data that may negatively affect the analysis, consequently ending up making wrong
decisions. From deleting unnecessary columns to removing corrupted, incorrect, duplicate,
or incomplete data, there are various techniques used to fix data impurities that impact
the efficiency and accuracy of the analysis [45]. To prepare data for analysis, we took the
following data imputation actions for 123 missing rows in the 1 min interval dataset:

1. Replaced a missing row with the average of the previous two rows;
2. For months where a whole week of data was missing, since the HVAC has a weekly

repeated consumption behavior, the energy manager suggested replacing the missing
rows with similar day timeslot data and similar outdoor temperature.

3.3. Data Manipulation

Data manipulation is the process of transforming data to produce a more organized
and logical dataset through adding new variables, grouping data, selecting different sets of
columns, sorting data, etc. Before we used data visualization tools and statistical techniques
to uncover initial patterns, we applied the following:

- Changed the sampling rate from a 1 min interval to a 1 h interval (using sum as the
aggregation technique) for better visualization of the data;

- We added a time index where each row is tagged with a time index made up of day
and hour;

- We added a set of columns representing weekday name, month name, hour, day
type (weekday, weekend, or holiday), and timeslot description (no_users, few_users,
many_users, or set point change).

Table 1 describes the HARC data before and after wrangling.

Table 1. HARC data—a description.

Data Characteristics Description
Raw Data

Sampling Rate 1 min interval
Dimension 12 × 525,477

Feature Names
Date, timeslot, Others (KW), plug loads (KW), lighting (KW),
HVAC (KW), total (KW), Others (KWh), Plug loads (KWh),
Lighting (KWh), HVAC (KWh), Total (KWh)

Analyzed Data
Sampling Rate 1 h interval
Dimensions (8760, 8)

Column Names
HVAC_Consumption_kWh, Outdoor_Temperature_F,
Number_Users, Weekday_Name, Hour_Day, Month_Name,
Day_Type, and Timeslot_Description

Data Span Period From 1 October 2018 to 30 September 2019
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3.4. Data Analysis and Visualization

Analyzing data is an important step in the data analysis pipeline that aims at extracting
meaningful insights from data, interpreting and presenting data into useful information
that can help an organization understand a problem. The first step in data analysis is
data exploration, which allows a deep understanding of the dataset and uncovers initial
insights/patterns with the help of statistical and graphical techniques. In this paper, we
used R as a programming language (version 3.4.4), Linux as the platform, and Tidyverse as
an R package meant to make data scientists work more productively by providing effective
data manipulation, exploratory data analysis, and visualization tools [46]. Figure 4 shows
a sample of the dataset used in the analysis.
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Figure 4. A sample of the HARC dataset.

Statistically, measuring the spread of a numerical variable describes how scattered
data values are and how different they are in comparison to the mean value. Additionally,
breaking data into quartiles helps in computing the interquartile range that measures the
variability around the median [47]. The median is used to divide data samples into two
equal groups, and Table 2 shows that HVAC consumption has a median of 1.8 kWh, which
is close to the first quartile and implies a positive skewness; the same applies for the number
of users as the difference between the median and the third quartile is quite high (0 to 17).
As for the outdoor temperature, we can say that the values have quite a normal distribution
around the mean, which is around 71 F. These interpretations are visually represented
using the histograms in Figure 5.
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Table 2. A statistical summary of numerical features used in the analysis.

HVAC_Consumption_kWh Outdoor_Temperature_F Number_Users
Minimum 0.8 31 0
First Quartile 1.3 60 0
Median 1.9 74 0
Mean 4.2 71 6
Third Quartile 5.2 82 17
Maximum 27.6 99 23

To explore the HVAC consumption with respect to the timeslot type (No Users, Few
Users, Set Point Change, or Many Users), we grouped data by timeslot type, and we
computed the maximum, minimum, and average HVAC consumption as presented in
Table 3. Surprisingly, for no users’ timeslot type, the maximum HVAC consumption is
more than the many users’ timeslot type, which imposed further analysis.

Table 3. HVAC consumption with respect to timeslot type.

Timeslot Type Min_HVAC_Value Max_HVAC_Value Avg_HVAC_Value
No Users 0.8 25.9 1.9
Few Users 0.9 22.7 4.1
Set Point Change 0.9 27.6 7.1
Many Users 1.1 22.8 8.4

In addition to exploring the HVAC consumption per timeslot type, we looked at its
consumption values with respect to the day type (weekday, holiday, or weekend). One more
time and unexpectedly, holiday day type columns showed higher energy consumption
compared to weekend values, where some users are in the building on Saturdays. Table 4
is a summary of the results we obtained.

Table 4. HVAC consumption per day type.

Day Type Min_HVAC_Value Max_HVAC_Value Avg_HVAC_Value
Weekend 0.8 15.3 2.0
Holiday 0.9 25.9 4.0
Weekday 0.8 27.6 5.1

Data visualization is another important practice in the data analysis pipeline, as it
transforms information into a visual context that allows the human brain to extract insight
from graphs or maps. To view the HVAC consumption per weekday name, we used a
variation of the bar chart called the lollipop plot to foreground the HVAC consumption
trend over time, as presented in Figure 6. The vertical line in the graphs represents the
HVAC consumption mean, which is around 4.16 kWh, and we can see that generally, most
of the consumptions are beyond the mean value. Additionally, the HVAC consumption
has the same trend during working days (with very few points that have higher values
that can be explained by higher outdoor temperature), while for weekend days, and given
that some users use the building on Saturdays, we can see higher HVAC consumption
in comparison to Sunday, when we expect zero users in the building. Surprisingly, for
holidays, Monday to Friday still show high HVAC consumption, which could be explained
by some users being in the building even if it is a day off.

On the other hand, Figure 7 is a collection of subplots representing the HVAC con-
sumption per hour of the day for holidays, weekend, and weekday days. Except for a
few points, the working days graph shows expected behavior, as the HVAC consumption
shows a high value when the set point is changed, takes some time to stabilize, and follows
the same trend after 7:00 as the number of users and outdoor temperature increases from
8:00 to 16:00 and drops starting 17:00. On the other hand, in the other two subplots, we
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could clearly identify points with high HVAC consumption while the number of users is
zero (cyan points); these points are to be investigated in detail in the next section.
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To graphically visualize the relationship between HVAC consumption and the outdoor
temperature, we plot another graph, as shown in Figure 8. Once more, in the subplots
holiday and weekend, we can locate points with high HVAC consumption while the
outdoor temperature and the number of users are low, which will also be discussed in the
next section.
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Given that we followed a heuristic approach regarding the number of users data, we
decided to narrow our analysis to timeslots where we know for sure that the number of
users is zero, yet the HVAC consumption exhibits a high-value behavior. The next section
discusses the results we obtained after applying self-organizing maps.

4. Application of SOMs on HARC Data: Results and Analysis

Neural networks form the base of deep learning, which is a sub-field of machine
learning that uses a set of algorithms that train themselves to recognize complex patterns
in data in a way that mimics how a human brain works. There are different types of neural
networks, each with its own use; one variant of neural networks is the self-organizing
map or Kohonen Map, which is an unsupervised neural network used for dimensionality
reduction, clustering, and data visualization. To better understand the HARC dataset,
group the unlabeled dataset into a set of clusters, and, most importantly, produce effective
visualization of the clustered data, we used SOMs. The ability of SOMs to produce satis-
factory groupings/clusters that can be interpreted visually by a data analyst or even an
energy manager easily is the main reason why we opted for this clustering technique to
identify energy inefficiencies in the way the HVAC is operating. Our focus is to analyze the
produced clusters and identify timeslots with energy inefficiencies, as the number of users
was zero while the HVAC consumption was still high.

To train the SOM model, we decided to go for a 2 × 2 map where the choice of
the number of clusters was selected using different metrics, such as the elbow method
discussed in paper [27]. We used the Kohonen package in R, where the learning rate used
declined linearly from 0.05 to 0.01 over rlen (the number of times the complete data will be
presented in the map) updates [48]. As for the radius, we opted for a value that covers 2/3
of all unit-to-unit distances, which is the default option in the SOM function. The first two
SOM graphs generated are called count and codes plots used to graphically represent data
partitioned into four clusters using different data characteristics. The first plot, count plot,
shows the number of observations assigned to each node as presented in Figure 9. As for
the second plot, codes plot or fan diagram, it is used to show how large/small the values
of a variable are in each node as presented in Figure 10.
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To understand and compare the distribution of the HVAC consumption using the
generated clusters, we generated some boxplots that are used to extract various types
of information. The SOM generated four clusters with different HVAC consumption
distributions, as presented in Figures 11–13. From Figures 10 and 11, clusters 1 and 3 are
characterized by a low HVAC consumption, which is explained by excluding timeslots
where the number of users is high, as presented in Figure 12. The second cluster, cluster2,
grouped all types of timeslots of all day types and is characterized by high values of
the number of users, Outdoor temperature, and HVAC consumption. Some timeslots in
cluster2 have no users, but the HVAC consumption is still high, which requires further
analysis. As for the third cluster, which contains most of the data points (3527), the SOM
grouped all timeslot types except many users, and generally this cluster also has low
values of all the analyzed features, with some potential outliers that we can see outside
the whiskers. The whiskers, in a box plot, are the two lines outside the box that go from
quartile 1 to minimum and from quartile 3 to maximum, respectively. Finally, for the last
cluster, cluster4, we find only weekday times slots where either a set point was changed
or the number of users is high, which explains why the HVAC consumption is somehow
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high. Given that our focus is based on identifying any energy inefficiencies that pertain to
timeslots with zero users, we are excluding the fourth cluster.
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After excluding cluster4, the dataset was reduced to 7322 observations, which we
filtered using only the rows corresponding to no_users timeslots, ending up with a dataset
of 4999 observations. We applied SOM for the second time to visually highlight energy
inefficiencies that may have occurred when the building was empty. Figure 14 shows the
obtained results.
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The second SOM generated three clusters with different distributions of HVAC con-
sumption, as presented in Table 5. The first and the third clusters have an HVAC consump-
tion mean of around 1.6 kWh, grouping data points that are mostly non-working hours
(from 18:00 to 5:00); still, the first cluster has some observations with quite a high HVAC
consumption and low outdoor temperature, which is explained by heating the building
during cold days. Some data points in cluster1 are mapped to holidays, and the HVAC
consumption is still relatively high, which could be explained by some users in the building
during their days off. As for the third cluster, the grouped observations are non-working
hours, but for hot days with an average temperature of 78 F. Finally, the second cluster
grouped observations that are mostly not working hours as well, but with peak values
of HVAC consumption with an average mean of 6.0 kWh, highlighting potential energy
inefficiencies. A sample of these inefficiencies is shown in Figure 15, where the highest
HVAC consumption in the whole dataset is mapped to an observation where the building
is empty, and the outdoor temperature is low.
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Table 5. HVAC consumption description—second SOM.

Cluster Label Count Mean Std Min 25% 50% 75% Max
Cluster1 1725 1.5 0.7 0.8 1.1 1.3 1.7 5.6
Cluster2 420 6.0 2.5 3.8 4.7 5.1 6.4 25.9
Cluster3 2854 1.6 0.5 0.8 1.3 1.4 1.6 3.9

To quantify the number of kilowatt hours wasted in cluster2, we used the first and the
third clusters as the ground truth, but these two clusters have some outliers, and the HVAC
consumption distribution is skewed right. Figure 16 is a histogram and a density plot for
cluster3 HVAC consumption. Because the distribution is not a normal one, outliers were
handled using the interquartile range method, where we inputted the upper (percentile 75)
and lower limit (percentile 25) values to both regions of outliers.
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Figure 16. HVAC consumption in cluster3—second SOM.

We replaced the timeslots with energy inefficiencies in cluster2 with the consumption
mean value of the same timeslots in cluster 1 or 3, depending on whether the cluster2
observation is a hot, cold, or holiday one. For cluster2 timeslots with high outdoor temper-
ature, we used the mean value of similar timeslots in cluster3, and for cluster2 timeslots
with low outdoor temperature, we replaced them with the mean value of similar timeslots
in cluster1. In addition to handling outliers with the interquartile range technique, this
paper’s analysis led to an energy saving of up to 1665 kWh, which counts for 4.6% of the
1-year data used in this paper.

5. Conclusions

To cope with the climate of Houston, buildings must rely on the use of air conditioning,
as high humidity and warm temperatures can cause damage. However, generating good
indoor quality is very often energy intensive and hence a costly process, which attracted
many researchers to work on different techniques to improve how an HVAC system
operates and help energy managers identify opportunities for energy improvement.

The main goal of this paper is to once again prove the power of data analysis, unsu-
pervised learning, and visualization tools in identifying inefficiencies in the way an HVAC
system is managed, even for high-performance buildings in the Houston area. The paper
also takes the reader through a step-by-step data analysis methodology that goes from data
collection to data visualization using data collected from building meters, in addition to
data collected from a weather station and building access cards. In Ref. [27], the K-Means
algorithm was used to identify 1.87% saving; this work proves that self-organizing maps
excel at generating better clustering results in addition to better graphical representation
of the clustering results using forms of charts that can be easily interpreted by energy
managers to identify improvement opportunities in the way an HVAC system is operating.
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This paper finds opportunities to reduce the energy consumption of the HARC building by
up to 4.6% using the data analysis approach presented in this work.

As future work, the HARC is actively working on expanding the data collected to the
indoor temperature, temperature set points, and real-time building occupancy. In April
2022, the HARC started monitoring each of the over 250 circuit breakers in its electrical
panels. That level of detail and granularity will support future analysis along the lines
presented in this paper. In addition to collecting more data, it is important for researchers
and companies developing EMSs to create an end-to-end infrastructure that will be used to
collect, wrangle, analyze, and visualize data for the energy manager to take the necessary
actions meant for better management of the HVAC system.
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