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ABSTRACT: 

 
Unmanned Aerial Vehicle (UAV) missions often collect large volumes of imagery data. However, not all images will have useful 
information, or be of sufficient quality. Manually sorting these images and selecting useful data are both time consuming and prone 
to interpreter bias. Deep neural network algorithms are capable of processing large image datasets and can be trained to identify 
specific targets. Generative Adversarial Networks (GANs) consist of two competing networks, Generator and Discriminator that can 
analyze, capture, and copy the variations within a given dataset. In this study, we selected a variant of GAN called Conditional-GAN 
that incorporates an additional label parameter, for identifying epiphytes in photos acquired by a UAV in forests within Costa Rica. 
We trained the network with 70%, 80%, and 90% of 119 photos containing the target epiphyte, Werauhia kupperiana 
(Bromeliaceae) and validated the algorithm’s performance using a validation data that were not used for training. The accuracy of the 
output was measured using structural similarity index measure (SSIM) index and histogram correlation (HC) coefficient. Results 
obtained in this study indicated that the output images generated by C-GAN were similar (average SSIM = 0.89 – 0.91 and average 
HC 0.97 – 0.99) to the analyst annotated images. However, C-GAN had difficulty to identify when the target plant was away from 
the camera, was not well lit, or covered by other plants. Results obtained in this study demonstrate the potential of C-GAN to reduce 
the time spent by botanists to identity epiphytes in images acquired by UAVs. 
 
 

 
*  Corresponding author 
 

1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) are used for collecting 
imagery data on epiphytes that often grow in locations that are 
difficult to reach from the ground. However, UAV or drone 
missions can generate large volumes of data. Manually sorting 
and identifying epiphytes (target plant) in these images can be 
time consuming and tedious due to the presence of other non-
target plants and trees, and background (e.g., horizon). When 
more images have to be manually processed by one or more 
analysts it will lead to interpretation errors due to consistency 
issues (Acevedo, 2020). Under these circumstances, machine 
learning algorithms such as deep neural networks (DNNs) can 
be used for identifying epiphytes in these images. Neural 
networks have been used for identifying plants and trees (Sun et 
al. 2017) and diseases in plant leaves (Singh and Mishra 2017). 
DNNs consist of a family of algorithms and new improved ones 
are introduced periodically. These along with the advances in 
computing hardware have reduced the time required to process 
large volumes of image data. 
 
Generative Adversarial Networks (GAN) is one of the advanced 
DNN algorithms that is capable of recognizing objects or 
features in the input data and generate output images containing 
the required information (Goodfellow et al., 2014). GAN were 
used successfully to diverse applications such as human pose 
and face generation (Ma and Zhou, 2019), object detection in 
remotely sensed imagery (Luo and Ding, 2019), text to image 

synthesis (Qiao et al., 2019), and anomaly detection in time 
series data (Sun et al., 2019). 
 
Conditional GAN (C-GAN) is a supervised learning algorithm 
that uses semantic segmentation technique and generates mask 
by mapping the target on a pixel-by-pixel learning process and 
excludes the background information (Isola et al., 2017). In this 
study, we tested C-GAN for identifying epiphytes in 119 
images acquired by drones. In the first phase of this project, we 
trained the C-GAN using a subset of these images. Pixels 
corresponding to the target plant were highlighted by masking. 
Using the validation process, we evaluated the network’s ability 
to correctly identify the target plants in the images that were not 
used for training.  
 

2. MATERIALS AND METHODS 

2.1 Aerial images of epiphytes 

Aerial images used in this study were acquired in Costa Rica 
with Phantom DJ(™) and Phantom Sparc(™). More than 2000 
aerial images of epiphytes and other vegetation were acquired 
by a team of researchers (Sivanpillai et al., 2019).  These 
images were sorted into four groups.  The first group had 
images that contained the target epiphyte along with other 
vegetation. They did not contain any other epiphytes. The 
second group had images that contained another epiphyte that 
resembled the target plant along with other vegetation. The third 
group consisted of images that had several types of epiphytes 
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and in the last group of images only non-epiphytes were 
present. Images (n = 119) from the first group were used in the 
first phase of this study. These images were acquired at 
different times of the day under a range of illumination 
conditions (Figure 1). Conditions of the target plant also varied 
in terms of their size, color, and proximity to the camera. 

 

 

Figure 1. Photos of W. kupperiana acquired in bright light (top 

left), and low light (top right). The target plant was farther 

(bottom left), and close (bottom right) to the camera. 

 
Numerous images of epiphytes acquired in different lighting 
conditions and distances are required to train the neural network 
in order to correctly identify the target plant. However, the 
number of samples used in this study is relatively less in 
comparison to the size used by studies that have used this and 
similar CNN algorithms. 
 
2.2 Image Annotation 

Masks corresponding to epiphytes, the target plant, were 
annotated using LabelMe software (Russell et al. 2008). All 
parts of the target plant were included in this mask and the rest 
of the pixels corresponding to other plants and background were 
assigned to the background. However dried parts (leaves for 
example) and other debris that obscured parts of the target plant 
were not included in the mask (Figure 2). Pixels that are 
highlighted in red color will be recognized as epiphytes by 
CGAN during the training and validation phases. 

 

 
Figure 2. Aerial image (left) of W. kupperiana and the annotated 
image (right) with the mask (red) containing pixels of the target 
plant. Dried parts of the plants were not included in the masks. 

 

2.3 Conditional Generative Adversarial Network (C-GAN) 

Conditional GAN (C-GAN) depicts the mapping from an 
observed (input) image x, and a random noise vector z to an 
output y, which can be represented as G: {x, z} = y. In this 
study, x will be the drone-acquired image of the epiphytes, and 
y will be the annotated image. 
 
GANs are generative models that learn to map from random 
noise vector z to output image y, G: z → y (Goodfellow et al., 
2014). Conditional GANs, on the other hand, learn to map from 
the observed image x and random noise vector z, to y, G: {x, z} 
→ y. 
 
C-GAN consists of Generator and Discriminator networks that 
compete with each other. In the first epoch the Discriminator 

will have a copy of original image and corresponding analyst 
annotated image. The Generator will have analyst annotated 
image(x) and adds random noise vector (z) to create y. During 
each iteration, the Generator will run a batch of images and 
generate fake output y and later Discriminator will distinguish 
the previous output from Generator and give the feedback. This 
feedback will be given as back propagation with discriminator 
loss and the Generator will continue this with next batch of 
image to a point where the Discriminator fails to identify the 
image as fake. This output image is then passed back to the 
Discriminator for identifying the annotated image (correct) 
from the one (fake) generated by the Generator. For every 
correct identification, Discriminator receives a probability score 
of 1. Results from the first epoch are passed as feedback to the 
Generator.  
 
In the next iteration, Generator learns to create new and better 
output images using the feedback and passes them to the 
Discriminator for identifying the correct image. In this iteration, 
the Discriminator might incorrectly identify few outputs rather 
than the correct annotated images. The score will be less than 1 
and the feedback is passed back to the Generator. As the 
number of iterations increase, the output images created by the 
Generator will be close to the corresponding annotated image. 
Discriminator will misidentify more and more output images 
instead of the correct images and its score at the end of iteration 
will be lower and lower. This process is repeated until the 
Discriminator is unable to identify the correct image. In other 
word the output image generated by the Generator is close to 
the annotated image.  
 
C-GAN’s objective is to balance the competition between the 
Discriminator and Generator networks. On one hand, the 
Generator aims to reduce the chances of the output images as 
fake by the Discriminator. On the other hand, the Discriminator 
wants to increase the confidence of correctly identifying the 
output image as fake and this is called the adversarial. This can 
be expressed as Equation (1): 
 

cgan x,y x,z   (1) 

 
Where, G refers to the Generator network that tries to minimize 
the objective against adversarial D. 
D refers to the Discriminative network.  
E (x, y) is the expectation value of input x and y output from the 
generator. 
D (x, y) is the discriminator estimation of the probability of x, y 
to predict real data  
E (x, y) is the expectation of mapping the data x with random 
noise. 
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D (G (x, y)) is the discriminator estimation of the probability 
that a fake instance is real. 
 
In C-GAN, G tries to minimize its objective against an 
adversarial D which tries to maximize its objective. The loss 
function formulated for the above objective function is a L1 
distance which is calculated from Equation (2). 
 

 L1 x,y,z ||1]      (2) 
 
Lower L1 distance value results in less blurring of the output 
image. Further details on the formulation of the objective and 
loss functions are described by Isola et al., 2017. 
 
The final objective function for the C-GAN with L1 distance as 
loss was calculated using Equation (3). 
 

*   (3) 
 
G* refers to a minimum with respect to G, and maximum with 
respect to D in Equation (3). 
 
C-GAN learns the features for distinguishing epiphytes from the 
background vegetation in each input image. During the training 
process the Generator network will learn the best weights / 
features for its network filters to represent the epiphyte data. At 
the same time, the Discriminator will learn the weights to 
discriminate the images created by Generator from the 
annotated image. 
 
2.3.1 Generator Architecture 
 
The generator network uses an Encoder-Decoder structure as 
the base for its network architecture. The Encoder network 
maps the input data to bottle neck junctions where the data is 
represented in a latent space. The Decoder network maps the 
compressed latent space data back to transformed 
out/reconstructed output. The basic structure of an Encoder-
Decoder network is represented in Figure 3. 
 

 
Figure 3: Schematic of the Encoder-Decoder structure which 

maps an input image to latent space representation and back to a 
reconstructed image. The red block will be the input image and 
the CNN filters will derive more fine tunes features in hidden 

layers (GREEN and BLUE) and form a latent space 
representation. 

 
The above architecture passes the input image through a series 
of layers and down sample the data once it reaches the latent 
space and then it reverses the process. In the study, the input is a 
RGB image consisting of epiphytes mixed with other 
vegetation. Later this input image will be transformed with 
annotated images with red and black colored pixels. In this 
transformation the structure of the images remains the same but 
the pixel colors are transformed. This can be considered as a 
colorization problem where the edge information is very 
important. The mapping of a low-level information back to high 
level information must make sure that the relevant features are 

learned during the training phase. This study used the UNET 
architecture developed by Ronneberger et al. (2015), with skip 
connections between the intermediate layers. The skips 
connections will help the network to learn specific features 
mentioned earlier for colorization problems. This modification 
will adapt the Generator network for the translation of input 
RGB images to annotated images. Figure 4 depicts the structure 
of an UNET architecture with skip connections. 
 

 
Figure 4: UNET architecture with skip connections that 

transforms the input RGB image to output images.  The image 
X will be passed through series of hidden layers with many 

CNN filters, which helps to derive the most import minimum 
information to represent the original image. The Skip 

connections will help the CNN filters to learn the weights faster 
from intermediate layers. 

 
The UNET is built upon a fully convolutional network concept 
which enables the network to map the input image to annotated 
image. The major neural network components responsible for 
carrying the coarse contextual information to higher layers 
through skip connects are depicted in Figure 5. 
 

 
Figure 5: UNET components within the Generator. The encoder 
block consists of convolutional layers to derive the features, and 

later weights will be normalized in batch normalization. The 
ReLU, the fundamental activation function, is used to bring the 

non-linearity in feature extraction. The decoder block will 
reverse the process in encoder block and receives the original 

data back from the encoded features. 
 
2.3.2 Discriminator Architecture 

 
PatchGAN architecture described by Isola et al., (2017) was 
adapted for classifying the output images as real or fake. The 
patch GAN network, unlike classifying the entire image as real 
or fake the images will be divided to small patches and classify 
it as real or fake. The ideal patch size for best classification 
found to be 70x70 from experiment work done by Isola et al., 
(2017), and the same size was used in this study. The schematic 
representation of the Discriminator PatchGAN is shown in 
Figure 6. 
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Figure 6. Network architecture of PatchGAN Discriminator. 

One of the two images is the analyst annotated image, while the 
second image is created by the Generator. These images are 
passed through a series of filters of different kernel size and 

numbers for feature extraction and comparison. 
 
2.3.3 Training C-GAN 

 
The C-GAN architecture was implemented in python using 
TensorFlow libraries. The models were trained in a Linux server 
with i7 Processor, 16 GB of RAM and NVIDIA Tesla K40 
GPU. During the training phase, one network will train at a 
time. 
 
The Generator will create a batch of output images and will 
stop. Next, the Discriminator will distinguish the real images 
from fake ones and will update the Generator weight according 
to the loss returned. This process will continue until the 
Generator and Discriminator reaches a point when they share 
the loss i.e., 0.5 or 50%. Further, there are many hyper 
parameters that can be tuned to improve the performance of the 
network. This study considered the number of training samples 
and iterations for training or epochs. The rest of the next 
configuration was set as defined by Isola et al., (2017). 
 
Training the Discriminator starts with observing a batch of 
output images created by the Generator to find similarity with 
the analyst annotated image and returns a loss value based on 
the performance of identifying the fake and real images. The 
Discriminator will also update the weights through 
backpropagation based on the loss values. Discriminator 
connects with two loss functions which are Discriminator Loss 
and Generator Loss. During the training, it focuses on its own 

loss and ignores the Generator loss because it memorizes the 
weights of input and then refers to its knowledge during the 
generator training. 
 
2.3.4 Learning Process 

 
The learning curve for the neural network will be linear to the 
amount of data used for training. The model will be trained for 
different with the data split into train and validation sets to 
understand the learning curve. This study explored 3 different 
splits for training and validation sets: 70% -30%, 80% - 20%, 
and 90% -10%. 
 
The Generator and Discriminator networks will be trained for 
different number of iterations called epochs. The generator will 
progress with better outputs with the epochs and this will get 
saturated after certain iterations. The effect of the number of 
epochs can be analysed from the Generator, Discriminator, and 
Objective loss function plots. 
 
2.4 Evaluation Metrics 

Output images generated for the validation dataset were 
evaluated with two metrics: Structural Similarity Index Measure 
(SSIM), and Histogram Correlation. SSIM measures the 
similarity between two images (Wang et al., 2004). In this study 
the output created for the images that were not included in the 
training were compared to the corresponding annotated images. 
This index ranges between -1 and 1. A value of 1 indicates that 
both images are identical and -1 indicates an opposite 
relationship. Histogram Correlation compares multi-color 
images using the distribution of their colour intensity values 
(Swain, Ballard, 1991). Distribution of the red colour pixels 
corresponding to epiphytes in the output images should be close 
to the distribution in the output images generated by C-GAN for 
the validation images. Histogram Correlation computes the 
Pearson correlation between these two images and the values 
range between 0 and 1. A value close to 1 indicates that both 
images are highly correlated.  
 

3. RESULTS AND DISCUSSION 

Annotating these 119 images required 35 days because of the 
complex shape, pattern, and proximity of non-target plants.  
This is the time consuming and tedious task which required 
careful examination of each image. Errors introduced in this 
stage can adversely affect the algorithm’s ability to correctly 
identify the target plants in each image. 
 

Data split 
(Train% - Test%) 

Epoch SSIM Histogram 
correlation 

Case 1 (70-30) 
300 0.89 0.97 
500 0.90 0.99 

Case 2 (80-20) 
300 0.90 0.97 
500 0.91 0.97 

Case 3 (90-10) 
300 0.90 0.97 
500 0.92 0.97 

Table 1: The Structural Similarity Index Measure (SSIM) and 
Histogram correlation values obtained by comparing the 

annotated and output images generated by C-GAN when 70%, 
80%, and 90% of the input images were used for training the 

algorithm under 300 and 500 epochs. 
 
The average SSIM values obtained by comparing the output 
images generated by C-GAN with the manually annotated 
images are presented in Table 1. The average SSIM values 
ranged between 0.89 and 0.92 and were close to the maximum 
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value of 1. There was a slight increase in the SSIM values when 
the percent of photos used for training, i.e., data split increased 
from 70% to 90%. Also, the average SSIM values increased by 
a fraction between the 300 and 500 epochs.  
 
The average Histogram correlation values were also close to the 
maximum value of 1 (Table 1). Histogram correlation value 
increased between 300 and 500 epochs when 70% of the input 
images were used for training.  
 
The high SSIM and Histogram correlation values that C-GAN 
algorithm can be trained to identify the target epiphyte plant in 
the drone-acquired images. Training the network for 500 epochs 
did not result in major improvement when 70%, 80% and 90% 
of the input images were used for training. 
 
Sample output images generated by C-GAN were trained with 
90% of the input images are shown in Figure 7. These output 
images were very close to the analyst annotated images. 

 

Input Image Output image Annotated image 

   

   

   

   

Figure 7. Output images generated by C-GAN (middle column) 
and the analyst annotated images (right column). These outputs 

were generated after the C-GAN algorithm was trained with 
90% of the drone acquired images. 

 
Some of the output images generated by C-GAN did not capture 
all the details annotated by the analyst (Figure 8). The input 
images were of poor quality due to low lit conditions, location 
of the target plant within the frame, or occluded by other 
vegetation. These conditions could have caused the model to 
either miss some parts of the target plant or incorrectly identify 
non-epiphytes as the target plant.  
 

Additional pre-processing might be required to improve the 
quality of these images prior to identifying epiphytes with C-
GAN.  
  

Input image Output image Annotated image 
 

A 

 

 
 
 
B 

   

 
 

C 

   

Figure 8. Three examples of when the output generated by the 
algorithm (middle column) failed to correctly identify the target 

plants as highlighted in the annotated image (right column). 
This could be due to the target plant was occluded by other 

vegetation (A), the target plant was not lit sufficiently (B) or 
was further away from the camera (C). 

 
4. CONCLUSIONS AND RECOMMENDATIONS 

C-GAN can be used for identifying epiphytes in these aerial 
images. This algorithm can help botanists to automatically 
classify the field data and reduce the time needed to manually 
identify the target in each photo. 
 
This study also identified few limitations associated with this 
technique and future work must improve C-GAN’s ability to 
distinguish epiphytes in poor quality images. Incorporating pre-
processing techniques such as cropping, scaling, and 
morphological operations to image before training the 
algorithm. Future studies can explore the use of other encoder-
decoder combinations to improve the overall performance of the 
network. 
 
This study had access to about 120 photos of the target plants. 
Most C-GAN studies use 1000s of photos for training the 
algorithm. Augmentation techniques will help to generate more 
varieties of training samples and thereby increase the sample 
size. 
 
Annotating the images was both tedious and time consuming. 
Future studies must explore automated annotation methods to 
reduce the time needed to generate the annotated images and 
increase the consistency. 
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