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The paper addresses cognitive processes during a teacher’s professional task of

assessing learning-relevant student characteristics. We explore how eye-movement

patterns (scanpaths) differ across expert and novice teachers during an assessment

situation. In an eye-tracking experiment, participants watched an authentic video of

a classroom lesson and were subsequently asked to assess five different students.

Instead of using typically reported averaged gaze data (e.g., number of fixations), we

used gaze patterns as an indicator for visual behavior. We extracted scanpath patterns,

compared them qualitatively (common sub-pattern) and quantitatively (scanpath entropy)

between experts and novices, and related teachers’ visual behavior to their assessment

competence. Results show that teachers’ scanpaths were idiosyncratic and more similar

to teachers of the same expertise group. Moreover, experts monitored all target students

more regularly and made recurring scans to re-adjust their assessment. Lastly, this

behavior was quantified using Shannon’s entropy score. Results indicate that experts’

scanpaths were more complex, involved more frequent revisits of all students, and that

experts transferred their attention between all students with equal probability. Experts’

visual behavior was also statistically related to higher judgment accuracy.

Keywords: eye tracking, scanpath analysis, student profiles, professional vision, teacher gaze, assessment

competence

INTRODUCTION

In day-to-day teaching, teachers have to continuously monitor a classroom full of students,
respond to questions, observe students’ learning progress, and assess how students react to
their instructions—briefly, teaching is characterized by multi-dimensionality, immediacy, and
simultaneity (Doyle, 2006). The success of a teacher to fulfill these various tasks depends heavily on
their skill to visually perceive and process all of the information extracted from the classroom (Wolff
et al., 2016). Eye-tracking provides an appropriate instrument for understanding the nature of
teachers’ visual perception processes and for uncovering differences therein that result from varying
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levels of expertise. Over the last decade, there has been a growing
interest in teachers’ eye-tracking data, particularly in terms of
the number or duration of fixations (van den Bogert et al.,
2014; Wolff et al., 2016; McIntyre et al., 2017; Stürmer et al.,
2017; Seidel et al., 2020; Wyss et al., 2020). Such metrics were
used in the above studies, for example, to demonstrate that
expert teachers were able to process visual information more
quickly than others, or that novice teachers focused more often
on non-relevant classroom events. However, our knowledge of
the underlying structure of this visual behavior, the so-called
scanpath, is limited. Scanpaths represent the pattern of fixations
and saccades constructed from the path of eye movements over
a specific period (Holmqvist et al., 2015). Scanpath analyses
have already been carried out in diverse domains (e.g., medicine;
Kelly et al., 2016) to analyze and compare the visual behavior
of experts and novices. In the teaching profession, such analyses
may also be valuable to the identification of levels of expertise,
since they would allow for the consideration of the sequential
and dynamic nature of teaching (McIntyre and Foulsham, 2018).
Analyzing teachers’ scanpath can increase, for example, our
knowledge about classroom management by uncovering how
teachers deal with classroom distractions—do teachers succeed
in refocusing their attention on what was relevant after an
unimportant distraction from an object (e.g., cell phone) or
another student, and are experts better able to refocus their
attention?McIntyre and Foulsham (2018) found that experienced
teachers prioritize and order the way they scan the classroom.
The authors showed not only that experienced teachers were
able to distribute their gaze more evenly among the students,
but also that they followed a sequential pattern of observation.
For example, their results suggest that experts initially fixate
on a student and return to observe them more frequently and
regularly than novices do after each diversion, which suggests
that students are a consistent component in the experts’ scanpath
patterns. Novices, on the other hand, did not routinely return
to the initially fixated student after a diversion and continue
to observe other students. This first evidence of differences
in teachers’ scanpaths being related to expertise is essential to
the development of knowledge about perceptional sequences in
the teaching profession. While McIntyre and Foulsham (2018)
analyzed teachers’ scanpaths within the context of classroom
management, no study to date has examined teachers’ scanpaths
in the context of an assessment situation, in which teachers
must make inferences about students and their current states of
underlying learning-relevant characteristics (e.g., self-concept).
Accurate teacher assessments are crucial to adapting their
pedagogical actions to students’ individual needs and to support
students’ individual learning progress (Klieme et al., 2009).

In this study, teacher gaze data stems from one of our
recent eye-tracking experiments (Seidel et al., 2020), in which
teachers observed an authentic video clip of a lesson and were
asked to assess marked students afterward. This assessment
situation was appropriate to the detection of differences in visual
gaze patterns, as teachers actively needed to search for and
extract information from behavioral cues to form an accurate
judgment. Previous research can provide very little insight into
this complex process. It is not yet clear how teachers order

and distribute their attention during an assessment situation
like this one, nor whether there is a relationship between gaze
sequences and teachers’ assessment competence. For example, (1)
do they monitor all students regularly in recurring sequences,
or do they focus only on specific students? And (2) are
teachers more successful in their subsequent assessment if they
monitor all students equally because they avoid missing relevant
behavioral cues? This paper aims to deepen our understanding
of relationships between teachers’ visual expertise and their
ability to judge and assess students’ underlying learning-relevant
characteristics. Moreover, the present paper follows an expert–
novice comparison paradigm, and aims to introduce new
information about how exactly the visual behavior of expert and
novice teachers differs during a diagnostic task, and whether
a visual strategy can be extracted from experts’ scanpaths,
which differs from that of novices. In addition, we introduce
a promising method to quantify the complexity of scanpath
patterns (Shannon’s entropy; Shannon, 1948) and explore how
visual behavior is related to the ability to form accurate judgments
about students’ underlying learning-relevant characteristics.

Professional Vision: The Ability to Notice
and Reason About Complex Events in the
Classroom
Teachers cannot give equal attention to everything that happens
in the classroom—instead, they must selectively focus their
attention on specific events that seem significant at that particular
moment, for example, a discussion between students. The
concept of professional vision (Goodwin, 1994) deals with
this crucial feature of teaching expertise. Professional vision is
regarded as a situation-specific use of abilities and indicates how
teachers’ professional knowledge base is applied and linked to
practical performance (Lachner et al., 2016). Professional vision
implies two interconnected processes: (1) noticing, describing
teachers’ ability to direct their attention to relevant classroom
events and cues; and (2) knowledge-based reasoning, referring
to teachers’ ability to interpret these events and anticipate
consequences for further learning (Goodwin, 1994; Seidel and
Stürmer, 2014).

The majority of prior research on professional vision is based
on studies that used video examples of classroom teaching. These
studies aimed (1) to measure professional vision (Seidel and
Stürmer, 2014); (2) to identify differences between experts and
novices (Wolff et al., 2016; Meschede et al., 2017; Wyss et al.,
2020); or (3) to foster teachers’ professional vision in teacher
education programs (van Es and Sherin, 2010; Stürmer et al.,
2013a,b; van Es et al., 2017). Studies such as the one conducted
by Meschede et al. (2017) showed that novice teachers were
distinctly less proficient at noticing relevant classroom features
and events when compared to experts. Moreover, professional
vision, like any other professional competence, is mainly acquired
through deliberate and consistent practice over a long period
(Berliner, 2001), indicating that professional vision is primarily
a characteristic of experienced teachers (Berliner and Clarridge,
1991). To foster teachers’ professional vision, van Es and Sherin
(2010) used “video club” interventions in which teachers watched
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and discussed excerpts of authentic video lessons. They found
substantial changes over time in what teachers noticed and how
they interpreted these events.

Despite this increased focus on teachers’ noticing process in
recent years, little is known about their perceptual attention
processes, which are strongly linked to the noticing component
of professional vision (Lachner et al., 2016). Previous studies,
outlined above, were mostly based on qualitative analyses of
think-aloud protocols and transcripts (Berliner and Clarridge,
1991; van Es and Sherin, 2010) or of video observation with
subsequent questionnaires (Meschede et al., 2017). However,
eye-tracking offers a useful methodology for investigating
teachers’ professional vision and perceptual attention processes
(Gegenfurtner et al., 2011). Eye-tracking metrics, such as
fixations and fixation durations, can be used to identify where
teachers direct their attention and process visual information.
Previous studies have shown that expert teachers exhibit
remarkable differences regarding eye-movement behavior when
compared to novices (van den Bogert et al., 2014; Wolff et al.,
2016; Seidel et al., 2020). For example, van den Bogert et al. (2014)
have found that expert teachers are better able to distribute their
attention (fixations) equally across all students while teaching,
compared to novices. Wolff et al. (2016) reported that experts
show (1) shorter fixation durations, (2) more task-relevant
fixations, and (3) fewer fixations on task-redundant areas. These
empirical results provide evidence that experts’ visual perceptions
approximate the principles of good classroom management
(Levin and Nolan, 2014)—for example, equal distribution of
attention to all students.

Human eye movements can be categorized into two main
processes: bottom-up attention is driven by external features of
a visual stimulus that are salient to the perceiver (bright colors,
movements) while top-down attention is driven by task-related
plans, intentions and current goals derived from professional
knowledge (Gegenfurtner et al., 2011; Goldberg et al., 2020). After
years of practical experience in teaching, teachers are likely to
have restructured their professional knowledge base and formed
practice-related cognitive schemata that guide their actions
during classroom teaching (Boshuizen et al., 1995; Heitzmann
et al., 2019). These cognitive schemata are, therefore, a central
top-down driver for professional vision (Gegenfurtner et al.,
2011; Seidel and Stürmer, 2014; Lachner et al., 2016).

Two further theoretical approaches can explain why noticing
processes undergo changes with increased expertise (see
a comprehensive meta-analysis across diverse professional
domains; Gegenfurtner et al., 2011). First, based on a theory of
long-term working memory, Ericsson and Kintsch (1995) found
that experts were able to expand their working memory capacity;
through hundreds of hours spent in the classroom, teachers had
repeatedly experienced situations and stored this information in
their long-term memory. Experienced teachers set up a retrieval
structure in the long-term memory with which they activated
interconnected knowledge such that it was readily available for
use in working memory. This retrieval structure allowed experts
to process more visual information and larger perceptual chunks
in their domain of expertise. Second, the information-reduction
hypothesis (Haider and Frensch, 1996) states that with increasing

experience, teachers learn to separate task-relevant from task-
redundant information. By reducing information that is not
relevant to a particular task, experts can actively focus on the
information relevant to the task and have a greater capacity to
cognitively process relevant information.

In conclusion, the theories and empirical studies outlined
so far point to the fact that teachers, through increasing
experience, develop and restructure cognitive schemata (top-
down processes) which in turn lead to different ways of
visually perceiving and processing information when compared
to novices. So far, most eye-tracking literature in teacher research
has used raw gaze metrics such as the number of fixations
(e.g., on single students or monitoring classroom events).
These raw gaze metrics have been shown to be suitable for
shedding light on important expert–novice differences, but such
metrics cannot cover the processual nature of eye movement
behavior. Looking more closely into gaze sequences, however,
can yield rich information, especially for social interactions as
they typically occur during teaching (McIntyre and Foulsham,
2018). Looking at the scanpath structure in this context might
be a suitable approach, since the scanpath represents the exact
spatial sequence of eye movements performed by an individual
during a task. A scanpath also reflects the unfolding of visual
attention over time, indicating exactly which contents of the
visual information are attended to. In light of reported differences
between the gazes of expert and novice teachers, it is conceivable
that scanpath patterns are affected by teachers’ experience. This
paper aims to explore how scanpaths of teacher gaze change over
the course of professional development. The so-called Scanpath
Theory (Noton and Stark, 1971a,b) serves as a further theoretical
framework and is reviewed in the next section.

Scanpath Theory
The Scanpath Theory was defined by Noton and Stark (1971a,b)
and has become a highly relevant theory for understanding
human eye movements and gaze patterns. Scanpath Theory
argues that individuals looking at an image or a specific scene
store both the scene features and the gaze sequence used to
inspect that scene. Noton and Stark put forward the hypothesis
that individuals who recognize a previously seen scene follow a
scanpath similar to the one resulting from their initial viewing.
In subsequent work, and based on their study of human facial
recognition, Kanan et al. (2015) presented a less strict version of
the Scanpath Theory, which they called “scanpath routines.” This
version of the theory takes into account the fact that in real-world
situations, humans rarely come across the same visual stimuli
twice. Therefore, eye movements of individuals can rather be said
to be similar between viewings of scenes or images from the same
stimulus class—for example, classroom scenes from the teachers’
perspective. These scanpath routines in a specific stimulus class
evolve to enable improved visual processing (Kanan et al., 2015),
for example, by filtering important and unimportant information
(Haider and Frensch, 1996).

Experimental eye-tracking studies performed over the last
decade have supported the Scanpath Theory. These studies found
scanpaths to be repetitive and that an individual’s scanpath
pattern was idiosyncratic (Foulsham et al., 2012; Kanan et al.,
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2015; McIntyre and Foulsham, 2018; more similar within an
individual than between individuals). This evidence supports the
hypothesis that internal cognitive structures control not only
eye-movements, but also the perception process itself. During
the perceptual process, foveations enable the verification and
adaptation of sub-features of cognitive structures. Based on
these assumptions, human visual perception is seen mainly as a
top-down process (Stark and Choi, 1996), which, however, still
includes possibilities for adaptation of sub-features. If scanpaths
are more guided by underlying cognitive schemata such as a
professional knowledge base, it can be expected that scanpaths
are, indeed, affected by experience. As a consequence, experts
should produce significantly different scanpaths while viewing
a professionally relevant scene than novices. To date, scanpath
analysis has found application in the assessment of expertise level
in domains such as medicine, for example detecting anomalies
in radiographs (Kundel et al., 1978, 2007; Kelly et al., 2016);
art (Antes and Kristjanson, 1991); and chess (Charness et al.,
2001). These studies together showed significant differences in
the scanpath routines of experts and novices, which in turn
pointed to more efficient scanpaths and search patterns for
experts. For instance, expert radiologists demonstrated that they
were able to reduce an entire image more quickly to process a
smaller section of the image, compared to novices. These findings
indicate that through increasing expertise, radiologists change
their visual behavior and implement a scanpath routine for this
specific visual search task, for example a “global-to-foci” search
strategy (Kundel et al., 1978).

The existing body of research about teachers’ scanpath
routines is limited and cannot yet give an accurate answer
for the extent to which the underlying scanpaths of expert
and novice teachers differ. However, the theoretical drivers
behind the present study and results of previous research
using eye-tracking metrics, such as fixation duration or the
number of fixations (e.g., Wolff et al., 2016), emphasize the
conclusion that expertise differences are also to be expected
among teachers’ gaze patterns. Experienced teachers gain
knowledge-informed cognitive schemata (Stürmer et al., 2013a)
and should therefore be more knowledge-driven compared
to less experienced teachers (Seidel and Stürmer, 2014;
McIntyre and Foulsham, 2018).

Recently, McIntyre and Foulsham (2018) made a major
contribution to this line of study. In their real-world experiment
using mobile eye-tracking data, they investigated the differences
in scanpath patterns of teachers with varying levels of expertise.
They found (a) that there were more similarities between a
teacher’s own scanpath patterns than when compared to those of
other individuals (idiosyncratic), and (b) that scanpath patterns
were more similar within expertise groupings. Furthermore, their
qualitative scanpath analysis indicated that experts’ scanpaths are
more guided by strategy; for example, expert teachers restricted
their gaze to the most task-relevant areas while novice teachers’
scanpaths were more distracted by salient task-irrelevant events
(McIntyre and Foulsham, 2018). In addition, the experts were
able to refocus on the students after their gaze had been
distracted. While these results provide important insight into
how expertise affects teachers’ scanpath routines, they are limited

to the context of classroom management. This paper addresses
the need for further investigations of teacher scanpaths in the
context of observing and reasoning about individual students
and their underlying learning-relevant characteristics. So far,
we know little about the specific visual strategies that teachers
use during a task in which they must monitor and assess
several students.

Linking Teacher Gaze to Teachers’
Assessment Competence
The aim of this section is to link teachers’ visual behavior
(noticing) to their ability to accurately judge underlying
learning-relevant student characteristics. Teachers’ ability
to accurately judge student characteristics depends heavily
on visual perception and attention allocation, because they
gain information and collect behavioral cues. The primary
source of information in this scenario is student observation
during lessons.

Performance in Assessing Learning-Relevant Student

Characteristics
Accurately assess the state of students’ cognitive (e.g., pre-
knowledge) and motivational-affective (e.g., self-concept)
characteristics is an essential component of professional teacher
competencies (Herppich et al., 2017) and a prerequisite for
teachers to provide tailored instruction (Corno, 2008). Prior
research tackled the question of how accurately teachers judge
learning-relevant student characteristics and found that teachers
assessed students’ abilities (Machts et al., 2016) and achievement
(Südkamp et al., 2012) relatively accurately, and tended to have
more problems in assessing students’ motivational-affective
characteristics such as self-concept (Praetorius et al., 2013) or
interest (Karing, 2009). Other research showed that teachers
perceived students holistically, and intermingled distinct student
characteristics when they were asked to judge cognitive abilities
and motivational characteristics separately (Kaiser et al., 2013).

However, it remains relatively unclear which specific cognitive
processes and behavioral activities underlie teachers’ assessments
(Leuders et al., 2018; Loibl et al., 2020; Schnitzler et al.,
2020). Established models from social and general psychological
(Brunswik, 1955; Fiske and Neuberg, 1990; Chaiken and Trope,
1999; Lens model; dual process theories) have helped to
understand teachers’ judgment processes. For example, the lens
model of perception, introduced by Brunswik (1955), can be
used to describe teachers’ decision-making process: in trying to
apprehend a latent distal trait (i.e., a student’s characteristics),
the teacher only has at their disposal imperfect indicators, or
cues, of that distal trait (e.g., behaviors that are related to a
specific student characteristic). Since there is typically more than
one cue available, the teacher’s task is to combine information
gathered from these uncertain cues to reach the best judgment.
Hence, teachers’ decision-making process can be separated into a
professional vision of student cues and the correct combination
and subsequent interpretation of those cues with respect to
the teacher’s professional knowledge base. Teachers’ judgment
accuracy, therefore, depends first on whether critical student
cues are noticed, then whether noticed cues are related to the
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actual distal trait, or—if cues are misleading (cue validity)—
the degree to which teachers build their judgment on noticed
cues (cue utilization) (Brunswik, 1955; Leuders et al., 2018).
Moreover, other theories have their roots in social psychology
and are generally described as dual-process theories of judgment
under uncertainty (Fiske and Neuberg, 1990; Chaiken and Trope,
1999; Fiske et al., 1999; Ferreira et al., 2006), which can also
be applied to better understand teachers’ underlying cognitive
processes during judgment processes. Dual-process theories
have in common that mental processes are divided into two
basic forms of reasoning, depending on whether they operate
automatically or controlled. For example, Fiske and Neuberg
(1990) continuum model of impression formation suggests
people form impressions of others through various processes
that operate along a continuum that reflects the degree to which
people utilize category-related vs person-specific information.
The category-related processing mode operates automatically
and requires little cognitive effort because this mode involves
the activation and processing of heuristic knowledge about the
person to be judged. The person-specific processing mode is
rather complex and associated with higher cognitive effort as
more available information about the person to be judged is
processed systematically. The model follows a sequence: First,
the perceiver initially categorize others immediately upon easily
noticeable cues (e.g., clothing, skin color) If the degree of personal
relevance of the perceiver is high enough to warrant further
processing (step 2), the perceiver will attend to other noticeable
information to form an impression beyond the initial and rapid
categorization (step 3). Fourth, the perceiver will try to assimilate
the collected information about the target into the initially
identified stereotype. If this is successful, the judgment about the
target will be based on the initial categorization (step 1). However,
if the target person’s information is contradictory and cannot
be categorized in the initial assessment, re-categorization will
follow (step 5). During the re-categorization, the perceiver tries
to find another adequate category by re-organizing the current
amount of information or by including some extraordinary
features of the target. If this is also not successful, the perceiver
will process the model’s most complex stage—the piecemeal
integration (step 6). The perceiver will integrate all information
available in an attribute-by-attribute assessment of the target’s
characteristics, if the perceiver has sufficient resources and
motivation. It is assumed that more systematic information
processing about a target leads to a more accurate judgment,
whereby heuristic information processing results in less accurate
judgments (Fiske et al., 1999). Fiske and Neuberg point out
that piecemeal integration often occurs when perceivers assess
many individuals based on a few specific characteristics. Dual-
process theories have also found application in a recent model
of teachers’ assessment competence by Herppich et al. (2017).
The authors point out that teachers form their judgments about
students on the continuum of the two modes of processing
described above and presented the following illustrative example
(cf., Herppich et al., 2017): A new student will join the class,
and the teacher’s goal is to get a first impression of the students’
achievement level in order to integrate the student the best way.
The teacher heard from colleagues that the student achieved good

grades in the last year. This information heuristically leads to
inferences about the current achievement level, and the teacher
decides to arrive at the judgment that the new student will be
easily integrated into the class. The same teacher will execute a
rather systematic andmulti-cyclic assessment when the judgment
has more consequences for the student (e.g., school tracking
decisions). In this case, the teacher might integrate all available
information to come to an accurate judgment.

Overall, the theories outlined above explain how teachers
process information and translate collected information into
judgments, but prior research that integrates attention allocation
(e.g., gaze) to better understand the mechanism underlying
judgment processes is still scarce. Karst and Bonefeld (2020)
pointed out that (higher) attention allocation to the target person
does not explicitly guarantee that the judgment accuracy is high
or increases, but that attention allocation can be considered as
a relevant prerequisite for judgments. Especially during person-
specific, piecemeal integration of individual information, greater
attention is required to process all additional information (Karst
and Bonefeld, 2020).

Visual Expertise and Assessment Competence
Visual expertise and assessment competence so far have been
studied separately from each other in a number of research
strands (Gegenfurtner et al., 2011; Balslev et al., 2012; Praetorius
et al., 2013). Therefore, limited knowledge has been provided
with regard to the question of how visual expertise can
affect professional outcomes, such as assessment competence.
Research on visual expertise of physicians has provided nuanced
understandings about visual behavior and diagnostic decision-
making during the diagnosis of medical images (e.g., x-rays)
(Tiersma et al., 2003; O’Neill et al., 2011) or patient video
cases (Balslev et al., 2012). Balslev et al. (2012) demonstrated
that experts were better diagnosticians compared to novices and
that experts’ visual behavior was more focused on diagnostically
relevant features of the visual stimuli. O’Neill et al. (2011) found
that experts demonstrated more systematic and circumferential
gaze patterns, which were related to higher diagnostic accuracy.
On the contrary, the gaze patterns of novices were more local,
less systematic, and lacked diagnostically relevant features, which
may have been the reason for their lower diagnostic accuracy.
In addition, it was shown that regardless of expertise, a higher
proportion of total time spent examining diagnostically relevant
features went along with a more accurate diagnosis.

Taken together, eye-tracking literature from medical research
indicates that visual behavior and scanning patterns are related
to assessment competence. To the best of our knowledge, such
studies are scarce in teacher education research. Thus, there is
not yet a great deal of knowledge about how fixation pattern and
gaze behavior are related to judgement accuracy in professional
tasks—such as teachers’ ability to assess learning-relevant student
characteristics. In a recent study on this kind of professional
task (Seidel et al., 2020), it was found that experts gave more
visual attention to students whomight require pedagogical action
(e.g., students who were “struggling”). Another finding was that
experts were more accurate in judging inconsistent combinations
of learning-relevant student characteristics (e.g., underestimating
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students who demonstrated high expressions of characteristics in
the cognitive domain, but low expressions with regard to self-
concept of ability). Whether experts and novices might also differ
in their visual strategy (scanpaths), and whether these differences
are related to their assessment competence, have so far remained
open questions.

THE PRESENT STUDY

The present study extends our previous work on the same
dataset and experimental setup (Seidel et al., 2020), in which
expert and novice teachers were asked to observe a video clip
of an authentic teaching situation (see Methods–Procedure–
Video Stimulus) and to assess five students based on their
underlying learning-relevant student characteristics (see details
in Seidel et al., 2020). The current research goals are to find
first evidence of teachers’ scanpath routines during the above-
described assessment situation and to uncover whether scanpaths
are affected by differences in level of expertise. Additionally,
this study aims to shed light on the so far relatively unknown
routines of experts’ scanpaths, which only become visible when
taking the spatial order of fixations into account. Finally, we
want to bridge the gap between teachers’ visual perception of
student behavioral cues and their subsequent reasoning about
underlying learning-relevant student characteristics. Therefore,
we aim to explore whether different visual strategies are linked
to differences in teachers’ assessment competence. The following
research questions and hypotheses guided this investigation:

RQ1a: Are teacher scanpaths (1) of an idiosyncratic nature and
(2) more similar within expertise groups?

First, following the study by McIntyre and Foulsham (2018),
we will examine whether scanpaths of teachers are also of an
idiosyncratic nature in an assessment situation. The findings
aim to support the idea that teachers’ visual perception is
mainly a top-down process. We therefore expect that teacher
scanpaths are significantly more similar when compared within
an individual than when compared between individuals (H1).
Second, if scanpaths are, in fact, guided by cognitive schemata in
a top-down process, then scanpaths of individual experts should
be more similar to the scanpaths of other experts than those of a
group of novices, and the scanpaths of individual novices should
be more similar to those of other novices (H2).

RQ1b: Do scanpaths of experts include recurring sub-
patterns—a consistent visual strategy—that differ from recurring
sub-patterns in novice scanpaths?

If scanpaths of experts are more similar within the group
of experts, then the question arises whether there are specific
and regular patterns that indicate an expert visual strategy that
differs from that of a novice. Based on previous findings showing
that experts spread their eye movements more evenly across
all students (van den Bogert et al., 2014), we expect that this
might be the first indication that experts, in the process of
assessing students, also demonstrate a visual strategy that is more
consistent across all students (H3). We assume that experts are
able to process all incoming information more effectively and
that they are able to make more cross-comparisons between

multiple students to form an accurate judgment. As Fiske et al.
(1983) pointed out, experts’ extra capacity potentially frees them
to process additional relevant information, whereby novices do
not yet can handle the amount of information, and they might
become cognitive overwhelmed.

In addition, to confirm that top-down processes control
teacher gaze, RQ1a and RQ1b were investigated in two different
classroom context scenes, varying with regard to the assumed
amounts of top-down vs. bottom-up drivers. The two different
classroom scenes are described in detail further on (seeMethods–
Procedure–Video Stimulus).

RQ2: Is there (a) a relationship between teachers’ visual
strategy and their judgment accuracy, and (b) are there systematic
differences between experts and novices?

This explorative research question aims to bridge the gap
between teachers’ visual behavior (the noticing component) with
their ability to assess different student profiles accurately
(reasoning about collected cues). Based on theoretical
considerations of teacher professional competencies (Blömeke
et al., 2015) while acknowledging limited prior research, we
tentatively assume a positive relationship between teachers’
visual behavior and their assessment competence. For example,
experts may systematically and repeatedly spread their gaze to
all targeted students and, therefore, manage to perceive more
crucial behavioral cues. We assume that the greater the number
of relevant behavioral cues that are perceived, the better teachers
can assess individual students.

METHODS

Participants
High-quality eye-tracking data (Mtrackingratio = 0.94 and average
deviation x-axis = .58◦, y-axis = 57◦) were available for 44
participants. Among them were 35 novice teachers (female =

60.5%) enrolled at university level in a bachelor’s teacher training
program to become teachers in German high-track secondary
schools for science or mathematics. Furthermore, data were
available for nine in-service teachers (female = 70.5%) with an
average teaching experience of 12.40 years (SD = 8.58, range =
1.5-25.0 years).

Procedure
Data collection took place in the university laboratory. First,
participants were introduced to learning-relevant student
characteristics (i.e., self-concept, pre-knowledge), as well as their
complex combinations, so-called student profiles (Seidel, 2006;
Seidel et al., 2016). Next, participants were instructed to carefully
observe a video stimulus (11min) showing a typical teaching-
learning situation, and were then requested to assess the profiles
of five target students. The five students to be assessed were
continuously marked with five randomly selected letters (B, E,
K, P, and T) throughout the video to ensure that participants
were always aware of which students to observe and assess.
After participants had watched the video and eye-tracking had
been recorded, the assessment situation began, with participants
assessing the profile of each marked student.
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Video Stimulus
The video (11min) originates from a previous video study on
teacher-student interactions in classrooms (Seidel et al., 2016).
The video clip showed an authentic eighth-grade mathematics
lesson from a German high-track secondary school (22 students
are constantly visible), and consisted of two segments. The first
segment primarily comprised scenes of “whole-class instruction,”
in which the teacher stands in front of the students and
introduces a topic while some students occasionally raise their
hands to give answers. The characteristics of this scene suggest
that bottom-up drivers could be more involved because eye
movements of observers may be controlled by salient cues from
students (e.g., hand-raisings) — teacher gaze than follow mainly
the course of the video. In contrast, the second segment consisted
mostly of “individual work” in which the teacher speaks for a
longer time, and students listen to the teacher and work alone on
tasks. This scene is characterized by less motion from students
(e.g., fewer hand-raisings) and should provide a context in which
top-down drivers may be activated.

Student Profiles
Each of the five marked students in the video described above
represented a so-called student profile (Seidel, 2006; Seidel
et al., 2016). Student profiles were empirically identified in prior
research studies (Seidel, 2006; Seidel et al., 2016) using latent
profile analysis (LPA). This research tackles the question to
identify homogenous subgroups of students that are statistically
distinct from each other, meaning that each of the identified
subgroups showed a unique pattern of cognitive (i.e., pre-
knowledge) and motivational-affective characteristics (i.e., self-
concept). For example, students with high self-concept and high
pre-knowledge are grouped into a particular student profile
(i.e., so-called strong students) and statistically separated from
students who, for example, have a high self-concept but little
pre-knowledge (i.e., so-called overestimating students). The
student profiles we used in the present study stemmed from
a larger video study (Seidel et al., 2016) and were created
based on two learning-relevant student characteristics: students’
self-concept and pre-knowledge in mathematics. Both student
characteristics are important predictors of students’ school
achievement (e.g., Ausubel, 2000; Huang, 2011) and highly
relevant for teachers because they often consider information
about student characteristics when planning their pedagogical
instruction and grading students (Landis, 1984).

The five marked students represented each of the following
student profiles: strong (overall high values), struggling (overall
low values), overestimating (high self-concept but low pre-
knowledge), underestimating (low self-concept but high pre-
knowledge), and intermediate (average self-concept and pre-
knowledge). More detailed information about student profiles
can be found in person-centered research (Seidel, 2006; Lau and
Roeser, 2008; Linnenbrink-Garcia et al., 2012; Seidel et al., 2016).

Teacher Judgement Accuracy
The assessment situation required participants to assign each
marked student to one of the five listed student profiles (as
described above). In case they were uncertain, they were also

able to assign an additional, alternative profile. If participants
assigned the student to the correct profile, thereby judging the
student correctly, they were awarded one point. If a teacher first
assigned an incorrect profile but stated the correct profile in their
alternative choice, they received half a point. If their first and
second choices were both wrong, they received zero points. The
total score could range between zero (no correct judgment) and
five points (only correct judgments).

Apparatus
Eye movements were recorded using the static and lab-based
SMI RED 500 binocular eye tracker using Experiment Center 3.7
software (SensoMotoric Instruments, 2017) on a 22-inch display
monitor and at a sampling frequency of 500Hz. Eye-tracking
conditions were standardized for all participants (constant ceiling
light, 65 cm distance to eye-tracker, use of a chinrest). Moreover,
before beginning eye-tracking, a 9-point automatic calibration
followed by a validation was implemented to ensure data
quality. The calibration was performed again if the 9-point
automatic failed.

Data Analysis
First, we wish to describe which preparatory work was conducted,
and then illustrate which analytical steps were carried out.
Preparatory work included the creation of five Areas of Interest
(AOI). Each of the AOI represented a target student (Figure 1)
and was drawn manually using SMI BeGaze 3.4 (SensoMotoric
Instruments, 2017). Subsequently, we identified eight short
teaching events in the scene: four events included primarily
“individual work,” and four events included “whole-class
instruction.” The teaching events were, on average, 43 seconds
long. We then generated scanpaths for each of the eight teaching
events, whereby the built-in saccade and fixation detector of SMI
BeGaze 3.4 (see details: SensoMotoric Instruments, 2017) was
used. The raw eye-tracking data were converted into strings using
the conversion application smi2ogama (Dolezalova and Popelka,
2016), meaning that the fixation sequence was recoded into a
sequence of strings representing the fixation locations. Finally,
we obtained multiple scanpaths as strings (e.g., TEKBP) for every
participant and each of the eight teaching events extracted from
the two different classroom context scenes described above.

One widely applied technique for comparing scanpaths is
Levenshtein distance (LD) (Levenshtein, 1966), also known as the
optimal matching analysis (Abbott and Tsay, 2016). This string-
edit algorithm is used to measure the dissimilarity of character
strings. In this method, a sequence of basic mathematical
operations (deletion, insertion, or substitution) is used to
transform one sequence of strings into another. The more similar
two scanpaths are, the fewer mathematical operations need to be
performed, and the lower the cost of converting one string to
another. LD has been commonly used to analyze and compare
scanpaths (Mathôt et al., 2012; Davies et al., 2016; McIntyre and
Foulsham, 2018). After finishing the above-described preparatory
work, we pursued the following data analysis strategy:

1. Use of LD to measure the similarity of scanpaths (a) within
individuals compared across individuals (H1) and (b) across
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FIGURE 1 | Video stimulus for eye movement analysis. This is an exemplary screenshot of the classroom and used AOIs. AOIs are only marked for illustration in this

paper; they were not visible to the participants. The blurring of student faces is only added for the presentation in the publication to ensure the protection of data

privacy; it was not visible when drawing the AOIs. Students were marked with letters not referring to any underlying profile: B, E, K, P, and T. This figure was previously

published as Video stimulus for eye movement analysis by Seidel et al. (2020) and is licensed under CC BY 4.0.

expertise groupings (H2). LD was calculated using the R
package stringdist 0.9.5.5 (van der Loo, 2014). LDs were
calculated for all pairwise scanpaths. To account for varying
lengths of scanpaths, we normalized the LD by dividing the LD
by the length of the longer scanpath and then subtracting from
1. As a result of this normalization, we obtained LD similarity
scores (subsequently referred to as LDss) valued between [0,
1], whereby values near one indicated that both scanpaths
were nearly identical.

2. For statistical analyses of the different sets of LDss, we ran
repeated-measure ANOVA separately for each of the two
different classroom context scenes.

3. To potentially detect and explore visual strategies and to
uncover expert-novice differences (H3), we analyzed the
data with the R package GrpString 0.3.2. (Tang and Pienta,
2017). GrpString enabled us to identify common sub-patterns
(repetitive scanpath patterns), which are defined as sub-
sequences within scanpaths that are found more than once
with a minimum length of three characters (e.g., ABC).
GrpString lists the sub-patterns with how many times they
are seen in the scanpaths and how many scan paths are
inclusive of the particular sub-pattern. Longer sub-patterns
(e.g., ABCDCA) may contain multiple shorter sub-patterns
(e.g., ABC, DCA, CDC etc.). Moreover, in order to explore
gaze transitions from one AOI to another AOI (i.e., change
of gaze from student A to student B), we computed transition
matrices. A gaze transition is defined as a substring with two
characters (e.g., AB).

4. We then introduced a rarely used but potentially valuable
method of capturing and analyzing the complexity of
scanpaths, Shannon’s entropy of information, which is

grounded in information theory (Shannon, 1948). Entropy
measures the information in a variable in terms of ordering
and complexity, and is defined as:

H (R) = −
∑

p (ai) log p (ai) , ai > 0 (1)

Where H (R) is the entropy in units (so-called bits) and
p (ai) is the proportion of measurement ai (Shannon, 1948; see
details: Hooge and Camps, 2013). Consider the example of a
fair coin flip, in which the chance of each outcome is equal—it
is a situation with maximum uncertainty because it is difficult
to predict the outcome of the next coin flip. However, if we
know that the coin is not fair and that the probability p(h)
is higher compared to b(n), where p 6= b, then we have
less uncertainty, quantified in a lower entropy coefficient.
Calculated for transition matrices, this means that the lowest
possible entropy is zero. In this case, there is no uncertainty
which transition between different AOI will occur (all cells
in the transition matrix have the same value). The maximum
entropy value occurs when all cells in the transition matrix
have different values. Thus, from that analytical perspective,
when Shannon’s entropy coefficients are high, individuals
look at every AOI with equal frequency and transition
between all possible AOI combinations with approximately
equal frequency (Hooge and Camps, 2013), indicating more
complex scanpaths. In research about teacher’s attentional
processes, gaze entropy can be used to describe teachers’
gaze distribution across multiple students or students and
teaching-related objects (e.g., board) (McIntyre et al., 2017). A
high entropy eye movement pattern occurs when the teacher
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distributes his/her attention equally among many students
and when, after fixing one student, all other students have a
similar probability of being looked at. McIntyre et al. (2017)
refer to the term gaze flexibility, where greater gaze flexibility
is related to a visual behavior where teachers can alternate
their visual attention between different students or student-
related material. Besides, Krejtz et al. (2014) pointed out that
the calculation and use of Shannon’s entropy coefficient has
two advantages: first, it is possible to capture the complexity of
visual behavior represented by a single value per individual,
which can then be averaged across groups; and second, the
Shannon’s entropy coefficient allows for subsequent analysis
using basic statistical methods (i.e., t-test, regression analysis)
(Krejtz et al., 2014). Entropy analysis is an important step
toward a better understanding of teacher attentional processes
and is particularly useful for spotlighting the differences
revealed in scanpath similarity studies.

5. In the last step, we performed a multiple regression analysis
to investigate the relationship between entropy, teachers’
assessment competence, and expertise level. Furthermore,
two frequently used eye-tracking metrics (average fixation
duration and number of fixations) were included as control
variables in the regression analysis. We are not specifically
interested in examining the relationship between averaged
metrics and judgment accuracy in the present study, but we
want to control the effect of both variables, as they may also be
related to judgment accuracy.

RESULTS

Nature of Teacher Scanpaths
Our first research question addresses the nature of teacher
scanpaths and defines the extent to which teacher scanpaths
are of an idiosyncratic nature and more similar within
expertise groups.

Intra- vs. Inter-individual Scanpath
Similarities
The first hypothesis states that scanpaths are more similar if they
are from the same individual than if they are from different
individuals. To evaluate this hypothesis, we calculated a set of
intra-individual LDss (i.e., how similar multiple scanpaths are
within an individual) as well as a set of inter-individual LDss (i.e.,
how similar scanpaths of an individual are when compared to
all other individuals). The repeated-measure ANOVA revealed
that for the “whole-class instruction” scene that a teacher’s gaze
behavior was more similar to itself (MLDss = 0.54) than to that
of other teachers (MLDss = 0.49), F(1, 43) = 8.40, p = 0.006, η²
= 0.16. An analogous result was also found for the “individual
work” scene [itself: MLDss = 0.52; other teachers: MLDss = 0.47;
F(1, 43) = 11.09, p= 0.002, η²= 0.21].

Effect of Teaching Expertise on Scanpaths
In the second hypothesis, we expected for scanpaths of experts to
be more similar to other experts than to novices and vice versa.
To test this hypothesis, we calculated a second set of LDss. To
assess expert-novice scanpath differences, we computed within-
expertise mean LDss (i.e., teachers’ scanpaths were compared

TABLE 1 | Absolute and (normalized) transition matrices for novices and experts.

From/To B E K P T

Novices

B 0 76 (0.01) 356 (0.06) 174 (0.03) 287 (0.05)

E 82 (0.01) 0 330 (0.06) 501 (0.09) 158 (0.03)

K 361 (0.06) 293 (0.05) 0 252 (0.04) 680 (0.12)

P 137 (0.02) 600 (0.10) 239 (0.04) 0 121 (0.02)

T 291 (0.05) 118 (0.02) 658 (0.12) 160 (0.03) 0

Experts

B 0 69 (0.04) 95 (0.05) 46 (0.03) 108 (0.06)

E 67 (0.04) 0 101 (0.06) 87 (0.05) 100 (0.06)

K 92 (0.05) 93 (0.05) 0 60 (0.04) 159 (0.09)

P 43 (0.02) 117 (0.07) 50 (0.03) 0 56 (0.03)

T 115 (0.07) 75 (0.04) 158 (0.09) 76 (0.04) 0

The absolute transition value, for example, 76 (cells 1, 2 respectively from B to E)

specifies 76 transitions from student B to student E. The normalized transition values in

parentheses, for example, 0.01 (cell 1, 2 respectively from B to E) specifies that 1% of all

novice transitions were from student B to student E. The darker the shading of the cell, the

more frequent the transitions between the pair of AOIs/students. The diagonal contains

only zeros because, by definition, a transition is a saccade from one AOI to another.

within their level of expertise) and across-expertise mean LDss
(i.e., experts’ scanpaths were compared to novices’ scanpaths).
The repeated-measure ANOVA indicated for the “whole-class
instruction” scene that teachers were more similar to other
teachers with the same expertise (within expertise group LDss;
MLDss = 0.61) than to teachers from different expertise groups
(between expertise group LDss; MLDss = 0.50), F(1, 43) = 21,74,
p = 0.003, η² = 0.24. Next, within/between expertise LDss were
analyzed for the “individual work” scene. Again, the repeated-
measure ANOVA revealed that teachers’ scanpaths were more
similar within their expertise group (MLDss = 0.59) than when
scanpaths were compared between experts and novices (MLDss =

0.48), F(1, 43) = 39,74, p < 0.001, η²= 0.28.

Sub-patterns and Gaze Transitions of
Experts and Novices
Our second research question aimed to uncover whether experts
have a consistent visual strategy that is different from the
visual strategy of novices. To get a better idea of the specific
visual strategies shared by teachers from different expertise
groups, we created transition matrices, including absolute and
normalized numbers of transitions between two AOIs. We then
extracted common sub-patterns from scanpaths. The results of
these exploratory and qualitative analyses are presented in the
following sections.

Gaze Transitions
The absolute and normalized frequency of transitions between
two AOIs is shown in Table 1. This descriptive and qualitative
analysis reveals both similarities and differences in gaze-
switching behavior: On one hand, both experts and novices
switched most frequently between student K and student T
and vice versa. On the other hand, if the transitions are sorted
by frequency, the gaze-switching behavior identified above (i.e.,
repetitive focus on two students) was more consistent among
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TABLE 2 | Common scanpath patterns of experts and novices.

Experts Novices

Sub-pattern length Com. Patt. O. Freq. (ratio) Freq. (ratio) Com. Patt. O. Freq. (ratio) Freq. (ratio)

Whole-class instruction scene

5 BTKET 6 (66.67%) 5 (55.56%) KTKTK 66 (188.57%) 18 (51.43%)

BKEPT 5 (55.56%) 4 (44.44%) TKTKT 61 (174.29%) 18 (51.43%)

ETBKT 5 (55.56%) 3 (33.33%) PEPEPE 24 (68.57%) 13 (37.14%)

4 EKTB 13 (144.44%) 7 (77.78%) KTKT 100 (285.71%) 28 (80.00%)

KTBK 12 (133.33%) 7 (77.78%) TKTK 95 (271.43%) 26 (74.29%)

TKET 11 (122.22%) 7 (77.78%) PEKT 54 (154.29%) 26 (74.29%)

3 KTB 32 (355.56%) 8 (88.89%) KTK 170 (485.71%) 31 (88.57%)

BTK 24 (266.67%) 7 (77.78%) TKT 144 (411.43%) 30 (85.71%)

EKT 24 (266.67%) 7 (77.78%) PEP 108 (257.14%) 34 (97.14%)

Individual work scene

5 TKBTK 8 (88.89%) 4 (44.44%) KTKTK 77 (220.00%) 20 (57.14%)

BTKET 7 (77.78%) 5 (55.56%) TKTKT 71 (202.86%) 19 (54.29%)

ETKBT 7 (77.78%) 4 (44.44%) PEPEP 35 (100.00%) 17 (48.57%)

4 EKTB 15 (166.67%) 7 (77.78%) KTKT 119 (340.00%) 29 (82.86%)

KTBK 15 (166.67%) 7 (77.78%) TKTK 72 (205.71%) 31 (88.57%)

TKBT 13 (144.44%) 5 (55.56%) TEKT 52 (148.57%) 28 (80.00%)

3 KTB 38 (422.22%) 8 (88.89%) KTK 218 (622.86%) 33 (94.29%)

BTK 33 (366.67%) 7 (77.78%) PEP 164 (468.57%) 34 (97.14%)

EKT 30 (333.33%) 7 (77.78%) PEK 108 (308.57%) 31 (88.57%)

Com. Patt., Common Scanpath Pattern. O. Freq., Overall frequency (times of occurrence) of each pattern, and the ratio of the total frequency to the number of original strings in

parentheses (in percent). Freq., The frequency of each pattern whereby each pattern is counted only once in a scanpath (even if the pattern occurs multiple times), and the ratio, which

indicates the frequency of each pattern in percent (and each pattern, is, again, counted only once). To identify the sub-patterns and reduce complexity, scanpaths were summarized

and collapsed for every classroom context scene.

novices (see 10 most common transitions, sorted by frequency:
KT, TK, PB, BP, KB, BK, EK, KE, TB, BT). Experts displayed these
transitions considerably less frequently (see 10 most common
transitions, sorted by frequency: KT, TK, PE, TB, BT, EK, ET,
BK, KE, KB).

Sub-patterns
The overall frequencies and ratios of occurrence of common
sub-patterns are presented in Table 2. We were able to identify
common sub-patterns with a length of up to five strings. When
comparing the most common sub-patterns, it became clear that
the difference was more likely to be identified between expertise
groups than between the two classroom scenes. Considering the
sub-patterns of both expertise groups, it became visible that
sub-patterns of experts covered a broader spectrum of different
students compared to novices. For example, in the classroom
talk scene, the most frequently identified sub-pattern of experts
with a length of five strings (BTKET) included four different
students who were inspected by experts one after another. On
the contrary, the most frequently identified sub-pattern with
a length of five strings (KTKTK) in the group of novices
included only two different students. Moreover, the sub-pattern
KTKTK was found multiple times within single scanpaths, as
indicated by the high number of the overall frequency ratio
(188%). These recurring sub-patterns were found in the group
of experts only for sub-patterns with a length of four characters

(the ratio of the sub-pattern EKTB was 144%). Besides, with
regard to the sub-pattern consisting of three strings, it became
clear that experts and novices prompted somewhat different
visual behavior. Highly recurring sub-patterns were found for
experts as well as for novices. The most recurring sub-pattern
within the group of experts was KTB (422%) and included three
different students, whereas in the group of novices, the most
recurring sub-pattern was KTK (622%) and included only two
different students.

The Relationship Between Visual Behavior
and Teachers’ Judgement Accuracy
In the final step of the study, we were interested in exploring
the relationship between teachers’ visual behavior and judgment
accuracy. Before running multiple regression analysis, we
computed a set of t-tests to identify expertise differences
in entropy coefficients and judgment accuracy. We found a
statistically significant difference between experts’ (M = 4.56,
SD = 0.77) and novices’ (M = 3.79, SD = 0.86) mean
entropy coefficients, t(42) = 2.95, p = 0.04. However, we
found no significant difference between experts (M = 3.27,
SD = 1.48) and novices (M = 2.57, SD = 1.23) in mean
judgment accuracy scores, t(42) = 1.24, p = 0.22. We then
conducted multiple regression to see if the entropy coefficient
and expertise level explained variance in judgment accuracy.
It was found that the entropy coefficient and expertise level
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explained a significant amount of the variance in teachers’
judgment accuracy, F(4, 39) = 22.52, p < 0.001, R2

adj. = 0.48).

The analysis confirmed that expertise level did not significantly
predict judgment accuracy (βstd. = 0.12, p = 0.73), however
entropy coefficient did significantly predict judgment accuracy
(βstd. = 0.54, p < 0.001). We found no significant interaction
term. The results suggest that the more frequently teachers varied
their monitoring of students (higher entropy), the more they
were able to judge students correctly. In addition, we found no
significant effect of averaged eye-tracking metrics on judgment
accuracy; average fixation duration (βstd. = 0.23, p = 0.65), and
number of fixations (βstd. = 0.06, p= 0.51).

DISCUSSION

The teaching profession heavily depends on visual information—
teachers must visually perceive, collect, and process information
and behavioral cues about their students in order tomonitor their
learning progress, adjust instruction, or draw conclusions about
underlying student characteristics (Doyle, 2006; Wolff et al.,
2016). Our eye-tracking experiment shed new light on teachers’
visual behavior by taking into account the sequential nature of
eye movements (i.e., scanpaths). Scanpath analyses in teacher
research are very rare to date, and are more related to teachers’
general classroom management skills (McIntyre and Foulsham,
2018). The present study aimed to bring together two lines of
research: research about teachers’ assessment competencies and
research about visual expertise.

Teachers’ Scanpaths Are Idiosyncratic and
Driven by Expertise
The first research question was related to the assumed
idiosyncratic nature of scanpaths in an assessment situation.
We were able to provide support for the original descriptions
by Noton and Stark (1971a,b) by showing that a teacher’s
own scanpaths resembled each other more closely than when
compared to those of other teachers (H1). This result ties in
well with previous studies across diverse psychological research
areas—for example, face recognition (Kanan et al., 2015),
memory and imagery research (Foulsham et al., 2012), and
recently, teacher research (McIntyre and Foulsham, 2018). The
results indicated that, in our experiment, teachers observed the
authentic teaching video sequences in their own way; therefore,
teachers seemed to be guided primarily by top-down (e.g.,
knowledge and schemata-driven gaze) rather than bottom-
up (eye-catching visual features, e.g., light-colored clothing)
visual processes. Furthermore, we extended the literature by
showing that teachers’ scanpaths were idiosyncratic even in a
teaching video sequence in which much motion and salient
cues were available (i.e., the whole-class instruction scene). Since
we assumed that teacher gaze is mostly guided by cognitive
schemata in a top-down process, we also expected cognitive
structures to change throughout professional development (H2).
Individual cognitive structures then converge to professionally
shared cognitive schemata and, therefore, we expected experts
to systematically differ from novices in their visual perception

behavior (Gegenfurtner et al., 2011; McIntyre and Foulsham,
2018). Indeed, results from this study indicate that expert
teachers share cognitive schemata that are more similar
to other experts when compared to cognitive structures
of novices.

Top-Down Driven Gaze: Experts’
Scanpaths Included Complex Recurring
Scans of All Students
We also found support for research question 1b by showing
that the visual strategy of expert teachers differed from the
visual strategy of novices on the micro-level, namely teachers’
recurring sub-patterns of gaze. Qualitative sub-pattern analysis
indicated systematic differences: Experts’ most identified and
recurring sub-patterns covered more individual students (i.e.,
four students) compared to novices (i.e., two students). Hence,
experts’ visual strategy maintained up-to-date information of
target students by checking up on all of them more regularly. On
the contrary, novices’ sub-pattern analysis pointed out another
visual strategy, as they made recurring transitions between just
two students. Based on these findings, the second research
question arose; which strategy was more successful in assessing
students and their underlying characteristic profiles? We
followed the idea that a quantification of the visual strategy was
required to explore the relationship between visual perception
and judgment accuracy. We quantified visual behavior using
Shannon’s Theory of entropy (Shannon, 1948), wherein higher
entropy values display more complexity. The results supported
the idea that expert and novice teachers followed rather distinct
visual strategies. The visual behavior of experts was more
complex compared to that of novices. Experts’ significantly
higher entropy values indicated that they monitored each student
with more equal frequency and transferred their gaze between
all possible combinations of students with approximately equal
frequency. However, novices’ significantly lower entropy values
indicated that they focused more on specific students and also
transferred their gaze between these specific students (which is
in line with our qualitative analysis above). Moreover, we found
that experts were more accurate in judging students and their
underlying student characteristic profiles, but this difference did
not reach statistical significance (perhaps due to the small sample
size). Finally, we performed regression analysis to explore the
relationship between entropy (as an indicator for the complexity
of visual behavior) and judgment accuracy, and found that visual
entropy explained a significant part of the variance in teachers’
judgment accuracy. The more a teacher was able to follow an
expert-like strategy (in the form of complex visual behavior),
the better their judgment was of students’ underlying learning-
relevant characteristics.

Based on the outlined findings, the question arises why
complex gaze patterns were related to better judgment accuracy
in the study’s assessment task. In the following, we discuss
and combine our findings from two research strands, teacher
general judgment models and research with gaze metrics. With
regard to the first strand, we point out that our data is limited
with regard to being able to provide systematic theory testing.
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However, we tentatively want to link our findings with regard to
possible explanations that can be supported by relevant teacher
judgment models. Since these considerations are tentative, we
secondly discuss our findings in the light of further psychological
research from other application fields using similar metrics in
order to underline the usefulness of this study’s findings for
teacher research. First, from the perspective of research about
teachers’ judgment processes and in the light of dual-process
theories (Fiske and Neuberg, 1990; Chaiken and Trope, 1999;
Fiske et al., 1999), both experts and novices may have formed
their judgment in the more complex and systematic person-
specific mode (Fiske and Neuberg, 1990), but experts may have
managed to perform more effectively during the piecemeal
integration of all available information: Based on their experience
and knowledge, experts were better in identifying valid cues that
are related to the target characteristic (Herbig and Glöckner,
2009), and experts were better at collectingmany cues in a shorter
period (Elstein et al., 1978). Our experiment may tentatively
indicate that novices could not collect and combine all critical
cues of many students and that they were required to reduce
their attention to fewer students. Experts might knowmore about
the validity of the collected cues (whether the identified cue is
related to the target characteristic or multiple characteristics)
and weighted their cues according to their knowledge about the
validity (Chaiken and Trope, 1999; Herbig and Glöckner, 2009).
All this suggests that experts, compared to novices, may have
then been able to process more information effectively and had
more time to monitor all students, make comparisons between
them, and re-adjust their judgment until they terminated the
search for cues and found a satisfying solution. Hence, experts’
more effective systematic information processing resulted in a
more complex gaze distribution. Previous research results by
Dessus et al. (2016) underpin these assumptions. They found
that novice teachers engaged with a larger amount of cognitive
load and that the size of a gazed group of students was related to
experience level. Expert teachers were able to scan a larger group
of students and have a more comprehensive observation scheme,
which allows them to collect more fine grated information about
students. Furthermore, our results are, to some extent, in line
with a recent study by Karst and Bonefeld (2020). They used a
simulated classroom setting and novices’ click frequency (more
clicks indicating that the participant gathered more information)
as an indicator of attention allocation and found that novices
rated an individual within a group of students more highly when
they gave that particular student more attention (more clicks).
However, overall judgment accuracy was higher when teachers
allocated their attention across all students more equally. Both
investigations together indicate that teachers seem to be more
able to assess or rank multiple students adequately when they
follow a strategy in which they gather relevant information from
all students approximately equally.

Second, cognitive psychology and visual perception research
can help understand the relationship between gaze entropy and
assessment accuracy. For example, Shic et al. (2008), as well as
Krishna et al. (2018), suggest that a higher gaze entropy indicates
a preference for detailed exploration of the visual stimuli, whereas
a lower entropy corresponds to less exploratory behavior. Krejtz

et al. (2014) conclude that a more evenly distributed gaze across
different AOIs may be related to the viewer’s increased interest in
collecting information from all available AOIs. Furthermore, in
their comprehensive review about gaze entropy, Shiferaw et al.
(2019) pointed out that gaze entropy is related to the scene
complexity, the task demand, and top-down processing level
(see details in the integrated model of gaze orientation, Shiferaw
et al., 2019). Gaze entropy increases relative to complexity, task
demand, and with more top-down processing. Given the fact
that the teachers were asked to diagnose students they did
not know before and that the assessment task required that
teachers assess two student characteristics at the same time (high
complexity), experienced teachers’ higher entropy, in this case,
indicate increased compensatory top-down processing to meet
task demand (Shiferaw et al., 2019). Hence, because top-down
processes are mainly driven by task-related plans and current
goals derived from professional knowledge (Gegenfurtner et al.,
2011; Goldberg et al., 2020), the more complex and evenly
distributed gaze on all students might be the product of the
above-discussed strategy, namely that experts were able to
collect more fine graded information from all students to reach
a judgment.

While our study demonstrated that greater complexity (high
entropy) of teachers’ scanpath patterns contributed to a more
accurate judgment of students and their underlying student
profiles, previous literature, for example, about aircraft pilots
(Kasarskis et al., 2001) reported rather contrary findings,
indicating that experts employ lower entropy values compared to
novices or that lower entropy values are in some cases beneficial
(gaze guiding in advertisments; Hooge and Camps, 2013). To
understand why it may be advantageous to show scanpaths
with less complexity in some areas, it is essential to look at
the type of visual stimuli being evaluated by the participants.
For example, Kasarskis et al. (2001) were able to show that
experienced pilots had lower entropy values and exhibit a clearly
defined pattern of visual scanning during a landing task. The
experts left out task-redundant instruments and focused only
on the runway and the airspeed indicator. In this type of
study, the experts were able to reduce complexity, mostly by
hiding task-redundant instruments or regions, resulting in lower
entropy values. While pilots can actively hide task-redundant
instruments in trained routines (the exact method of scanning
the instrument panel varies between pilots, but some basic
features common to a “good” scan pattern are available), the
reduction of complexity is much more difficult for teachers in
the present study’s assessment situation. Aircraft instruments are
static, standardized, and a priority ranking in their importance
can be made (Brams et al., 2018). On the other hand, teachers
in our study had to observe several students simultaneously
who acted dynamically and were asked to judge personal
traits that are not readily identifiable —blinding out individual
students might be much more complicated than instruments
that are not required for the correct assessment (i.e., landing
a plane).

As this was only a very first study, much more research is
needed to understand the relation between gaze complexity and
assessment competence in more detail.

Frontiers in Education | www.frontiersin.org 12 January 2021 | Volume 5 | Article 612175

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Kosel et al. Visual Expertise and Assessment Competence

These results are essential to a better understanding of
teachers’ judgment processes, and highlight the advantage of
considering gaze sequences instead of only focusing on averaged
eye-tracking metrics such as fixation duration as previously
reported. In this context, it is crucial to note that we have
statistically controlled for averaged eye-tracking metrics in our
regression model and found no significant relationship between
averaged metrics and judgment accuracy. Furthermore, earlier
analysis with the same dataset (see details; Seidel et al., 2020)
indicated that expert and novice teachers only showed relatively
small differences in the number of fixations and average fixation
durations regarding the five different students. The results of the
present study underline that the way in which teachers ordered
their gaze was essential to drawing accurate conclusions about
underlying learning-relevant student characteristics.

Limitations and Further Research
The following limitations of the present study should be
addressed. We had no variation in the authentic classroom
video sequence used; thus, it remains unclear whether identical
findings can be replicated when other video sequences (and
other students) are presented. Furthermore, we used an
event-based (dwell-based) scanpath comparison method to
identify differences and similarities between experts and novices.
Therefore, we have not taken into account the time a teacher
spent at each AOI, which should be addressed in future research.
The differences in scanpath similarity could be even greater when
fixation time is taken into account, as previous research has
repeatedly shown that experts process information faster than
novices (Gegenfurtner et al., 2011). In addition, our analysis
could show that expert and novice teachers differed in their
visual behavior, but we know little about how they differ in their
interpretation of what they saw. Future research should focus on
a more comprehensive combination of eye-tracking and think-
aloud protocols or subjective reports to better understand what
cues teachers have noticed and, more importantly, how they
reason these cues in relation to the target of the assessment
(e.g., student characteristic). It should also be noted that in the
present study, teachers were asked to diagnose students they
did not know before and that the assessment task required that
teachers assess two student characteristics at the same time. These
research design factors may distort the eye-tracking metrics
because, for example, we do not know which characteristics of
the students caused more difficulty and may therefore have paid
more attention to finding valid cues for those characteristics.
Furthermore, the results of our statistical analysis need to be
interpreted with caution, mainly due to our relatively small
sample size, unequal number of experts and novices, and the
absence of control variables in regression analysis. Hence, future
studies might investigate whether our findings are replicable with

a larger sample size. It should also be noted that although the
average professional experience of the expert group is more than
12 years, the range was large and between 1.5 and 25 years. Even
if we could not identify descriptive differences between experts
with less work experience and experts withmore work experience
in the eye-tracking and assessment outcomes, the intermediates
might distort the results in an unknowable direction.

CONCLUSION

The present study contributes to the understanding of teachers’
process of assessing learning-relevant student characteristics.
Results show that experts use qualitatively and quantitatively
different strategies than novices in their visual behavior during an
assessment situation, taking the sequential order of their gaze into
account. We found that experts showed a more complex visual
behavior in which more information about various students
was used to form a judgment of students’ underlying learning-
relevant characteristics. Using Shannon’s entropy value, we were
able to quantify the complexity of visual behavior and found that
the more a teacher included all students equally in the assessment
process, the more students are judged accurately.
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