
Identifying Facemask-wearing Condition Using Image Super-

Resolution with Classification Network to Prevent COVID-19 

 

BOSHENG QIN, DONGXIAO LI 

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310058, China. 

Corresponding Author: DONGXIAO LI (lidx@zju.edu.cn). 

 
Abstract 

Rapid worldwide spread of Coronavirus Disease 2019 (COVID-19) has resulted in a global pandemic. Correct 

facemask-wearing is valuable in infectious disease control, but the effectiveness of facemasks has been diminished 

mostly due to improper wearing. However, there have not been any published reports on the automatic identification 

of facemask-wearing conditions. In this study, we developed a new facemask-wearing condition identification 

method in combination with image super-resolution with classification network (SRCNet), which quantified a three 

categories classification problem based on unconstrained 2D facial image images. The proposed algorithm contained 

four main steps: image pre-processing, face detection and crop, image super-resolution, and facemask-wearing 

conditions identification. Our method was trained and evaluated on public dataset Medical Masks Dataset containing 

3835 images with 671 images of no facemask-wearing, 134 images of incorrect facemask-wearing, and 3030 images 

of correct facemask-wearing. Finally, the proposed SRCNet achieved 98.70% accuracy and outperformed traditional 

end-to-end image classification methods using deep learning without image super-resolution by over 1.5% in kappa. 

Our findings indicate that the proposed SRCNet could achieve high accuracy identification in facemask-wearing 

conditions, which have potential application in epidemic prevention involving COVID-19. 

 

Introduction 

Coronavirus disease 2019 (COVID-19) is an emerging respiratory infectious disease caused by Severe Acute 

Respiratory Syndrome coronavirus 2 (SARS-CoV2) 1. Currently, COVID-19 had quickly spread to the majority of 

countries worldwide, affected more than 3.32 million individuals, and caused nearly 236,431 deaths, according to 

the report of World Health Organization (WHO) on the 3rd of May, 2020. To avoid tragedy in the world, a practical 

and straightforward approach to prevent the spread of the virus is emergently desired worldwide. 

Previous studies found that facemask-wearing is valuable to prevent the spread of respiratory viruses2-4. For 

instance, the efficiency of N95 and surgical masks in blocking the SARS transmission are 91% and 68% respectively5. 

The facemask-wearing can interrupt airborne viruses and particles effectively, such that these pathogens could not 

enter the respiratory system of a person6. As a non-pharmaceutical intervention, facemask-wearing is a noninvasive 

and cheap method to reduce mortality and morbidity from respiratory infections. Since the outbreak of COVID-19, 

facemasks are routinely used by the general public to reduce exposure to airborne pathogens in many countries7. 

Patients suspected or actual infection COVID-19 are required to wear facemasks1. Facemasks, when fitted properly, 

effectively disrupt the forward momentum of particles expelled from a cough or sneeze, preventing disease 

transmission5. However, the effectiveness of facemasks in containing the spread of airborne diseases in general 

public has been diminished mostly due to improper wearing8. Therefore, it is necessary to develop an automatic 

detection approach for facemask-wearing conditions, which could be contributing to personal protection and public 

epidemic prevention. 

The distinctive facial characteristics in facemask-wearing conditions provide an opportunity for automatic 

identification. Recent advances in computer vision and deep learning present the opportunity for development in 
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many fields9. As the main component of deep learning methods, deep neural networks (DNNs) have shown their 

superior performance in many fields, including object detection, image classification, and image segmentation10-13. 

One primary model of DNNs is convolutional neural networks (CNNs), which are widely applied in computer vision 

tasks. After training, CNNs can recognize and classify facial images even with slight differences for their powerful 

feature extraction capability. As one of the CNNs, the image super-resolution (SR) networks can restore image details. 

Recently, the SR networks go more in-depth, and the idea of auto-encoder and residual learning are added for 

performance improvement14,15. The SR networks are also applied for image processing before classification, which 

reconstruct images for higher resolution and restore details16-19. Moreover, the SR networks improve the 

classification accuracy significantly, especially for the dataset with low-quality images, and provide a feasible 

solution to improve facemask wearing conditions identification performance. Therefore, the combination of SR 

network with classification network (SRCNet) could utilize in facial image classification for accuracy improvement. 

To our knowledge, there have not been any published reports related to SR network with classification network 

in facial image classification for accuracy improvement, especially regarding automatic detection of facemask-

wearing conditions. Therefore, we intend to develop a novel method in combining SR network with classification 

network (SRCNet) to identify facemask-wearing conditions in order to improve classification and accuracy with 

low-quality facial images. 

Our main contributions can be summarized as follows. 

1) Develop a new facial image classification method, which combining SR network with classification 

network (SRCNet) in facial image classification. 

2) Improve SR network structure, including activation function and the density of skip connections, which 

outperformed previous methods. 

3) Utilize deep learning method in automatic identification of facemask-wearing conditions. 

 

Methods 

This section describes the technology related to the SRCNet and facemask-wearing condition identification, 

including proposed algorithm, image pre-processing, face detection and crop, SR network, facemask-wearing 

condition identification network, datasets, and training details. Facemask-wearing condition identification is a kind 

of three categories classification problem, including no facemask-wearing (NFW), incorrect facemask-wearing 

(IFW), and correct facemask-wearing (CFW). Our goal is to form a function F(x), which inputs an unprocessed 

image and output the conditions of wearing masks for all faces in the image. The data was collected from the public 

dataset Medical Masks Dataset in the Kaggle (https://www.kaggle.com/vtech6/medical-masks-dataset). Informed 

consent was obtained from the participant to publish the images in an online open-access publication. 

 

Proposed Algorithm 

Fig. 1 offered the diagram of the proposed algorithm, which contained three main steps: image pre-processing, 

face detection and crop, and SRCNet for SR and facemask-wearing condition identification. After the pre-processing 

of raw images, all the face areas of images were detected using multitask cascaded convolutional neural network. 

The face areas were then cropped, and the size of cropped images varies. All cropped images were then sent to 

SRCNet for facemask-wearing condition identification. In SRCNet, all images were judged for the need of SR. As 

the size of input images of facemask-wearing condition identification network was 224×224, the cropped images 

which had size no more than 150×150 (width or length no more than 150) were sent to SR network, then for 

facemask-wearing condition identification. Otherwise, the cropped images were then directly sent for facemask-

wearing condition identification. The output was the possibility of the input images with three categories: NFW, 

IFW, and CFW. After passing the classifier, the pipeline output the final facemask-wearing condition results. 

https://www.kaggle.com/vtech6/medical-masks-dataset
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Figure 1. Diagram of the proposed algorithm. NFW = no facemask-wearing, IFW = incorrect facemask-wearing, 

CFW = correct facemask-wearing. 

 

Image Pre-processing 

The goal of image pre-processing was to improve the accuracy in following face detection and facemask-wearing 

condition identification. The SRCNet was designed to be applied in public for classification, which took uncontrolled 

2D RGB images as input. As the raw images taken in real life had a considerable variance in exposure and contrast, 

image pre-processing was needed for the accuracy of face detection and facemask-wearing condition identification. 

The raw images were adjusted using MATLAB image processing toolbox by mapping the values of the input 

intensity image to the new value, in which 1% of the values were saturated at low and high intensities of the input 

data. 

 

Face Detection and Crop 

As the SRCNet need to concentrate on the information from faces rather than the background to improve 

accuracy, a face detector was needed for the detection of faces and crop face areas. The uncontrolled 2D images had 

differences in face size, expression, and background. Hence a robust and high accurate face detector was needed. 

The multitask cascaded convolutional neural network was adopted for face detection, which performed well in 

getting face areas in real environments10. 

After getting the position of the face, the faces were then cropped from the pre-processed image as the inputs of 

SR network or facemask-wearing condition identification network depend on image sizes. 

 

SR Network 

The first stage of SRCNet was SR network. The cropped face images had a huge variance in size, which could 

possibly damage the final identification accuracy of SRCNet. Hence, SR was applied before classification. The 

structure of SR network was inspired by RED14, which used convolutional layers as auto-encoder and 

deconvolutional layers for image up-sample. The symmetric skip connections were also applied for preservative of 

image details. The detailed architectural information of SR network was shown in Fig. 2. 
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Figure 2. Structure of SR Network. 

 

The SR network had five convolutional layers and six deconvolutional layers. Except for the final 

deconvolutional layer, which mixed the information from the input image and output three feature maps 

correspondent to RGB, all other convolutional layers were connected with their corresponding convolutional layers 

via skip connections. With skip connections, the information was propagated from convolution feature maps to the 

corresponding deconvolutional layers. The network was then fit for solving the residual of the problem, which is 

denoted as: 𝐹(𝑋) = 𝑌 − 𝑋 (1) 

Where Y was the expected output image, X was the input image, and 𝐹(𝑋) was the function of the SR network. 

In convolutional layers, the number of kernels was designed to increase by a factor of 2. With kernels size in 

4×4 and stride 2, after passing through the first convolutional layers for feature extraction, every time the image 

passed through a convolutional layer, the size of feature maps decreases by a factor of ½. Hence, the convolutional 

layers performed as an auto-encoder and extracted the feature from the input image. 

In deconvolutional layers, the number of output feature maps was symmetry to their corresponding 

convolutional layers to satisfy skip connections. The number of kernels in every deconvolutional network was 

decreased by a factor of ½ except the final deconvolutional layers, while with kernels size in 4×4 and stride 2, the 

size of feature maps increases by a factor of 2. After the information combination in the final deconvolutional layer, 

the output was the image with the same size as the input image. The deconvolutional layers acted as a decoder, which 

took the output of encoder as input and up-sampling to get a super-resolution image. 

It is worth mention that the function used for down and upsampling was stride in convolutional and 

deconvolutional layers rather than pooling and un-pooling layers, for the aim of SR network was to restore image 

details rather than learning abstractions. The pooling and un-pooling layers, however, damaged the details of images 

and deteriorated the restoration performance14. 

The function final deconvolutional layer combined all the information from the previous deconvolutional layer 

and input image and normalized all pixels to [0,1] for output. The stride for the final deconvolutional layer was set 

to 1 for information combination without up-sampling, with three output layers corresponding to RGB. The 

activation function of the final deconvolutional layer was Clipped Rectified Linear Unit, which forced the 

normalization of output and avoiding error in Loss computing. The definition of Clipped Rectified Linear Unit was 

as follow: 𝐶𝑙𝑖𝑝𝑝𝑒𝑑𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑖𝑛(1, 𝑚𝑎𝑥(0, 𝑥)) (2) 

Where x was the input value, 𝐶𝑙𝑖𝑝𝑝𝑒𝑑𝑅𝑒𝐿𝑈(𝑥) was the output of Clipped Rectified Linear Unit function. 

One main difference between our model and RED was that the improvement of activation function, which was 

changed from Rectified Linear Unit (ReLU) to Leaky Rectified Linear Unit (LeakyReLU), which were defined as 

follows: 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3) 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) + 𝑚𝑖𝑛(0, 𝛼 × 𝑥) (4) 

Where x was the input value, 𝛼  was scale factor, ReLU(x) was the output of ReLU function, and 

LeakyReLU(x) was the output of LeakyReLU function. 

The reason was that the skip connections propagate the image from input to output. For SR network, the network 
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shall have the capability to subtract or add values for pixels, where the ReLU can only add values for feature maps. 

LeakyReLU, however, activated neurons with negative values, which improve the performance of the network. 

Another difference was the density of skip connections. Rather than using skip connections every a few (two 

in RED) layers from convolutional layers to their symmetrical deconvolutional feature maps, the density of skip 

connections increased, and all convolutional layers were connected to their mirrored deconvolutional layers. The 

reason was to make all layers learn to solve the residual problem, which reduced the loss of information between 

layers while did not significantly increase network parameters. 

The gold of SR network training was to update all learnable parameters to minimize Loss. For SR network, the 

Mean Squared Error (MSE) was widely used as Loss14,20-22. For the reduction of overfitting, a regularization term 

(weight decay) for the weights was added to cross-entropy loss. Hence, the MES with 𝐿2 regularization was applied 

as loss function 𝐿𝑜𝑠𝑠(𝑤), which was defined as: 𝐿𝑜𝑠𝑠(𝑤) = 1𝑁 ∑ ||𝑌𝑖 − 𝑋𝑖||2𝐹𝑁
𝑖=1 + 12 × 𝜆 × 𝑤𝑇𝑤 (5) 

Where 𝑌𝑖 was the ground truth, 𝑋𝑖 was the output image, 𝐿𝑜𝑠𝑠(𝑤) was the Loss for collections of given 𝑤. 

It was worth mentioning the size of the input image can be arbitrary, and the output image had the same size 

as the input image. The convolutional and deconvolutional layers were symmetric for SR network. Besides, the 

network is predicted in pixel-wise. Whereas, for better detail enhancement, which needed to dedicate image input 

size for SR network training, the input images were resized to 224×224×3 with bicubic, which was the same as the 

input image size of facemask-wearing condition identification network. 

 

Facemask-wearing Condition Identification Network 

The second stage of SRCNet was facemask-wearing condition identification. As CNN was one of the most 

common types of networks for image classification, which performed well in face recognition, CNN was adopted as 

facemask-wearing condition identification network in the second stage of SRCNet. The goal was to form a function 

G(x), where x was the input face image, and G(x) output the possibilities with three categories (MFW, IFW, CFW). 

The classifier then output the classification result based on the output possibilities. 

Mobilenet-v2 was applied as facemask-wearing condition identification network, which was a lightweight 

CNN and achieved high accuracy in image classification. The main features of mobilenet-v2 were residual blocks 

and depthwise separable convolution23,24. The residual blocks contribute to the training of deep network, which 

solved the problem of gradient vanishing and achieving benefits on back-propagating the gradient to bottom layers. 

As for facemask-wearing condition identification, there were slight differences between IFW and CFW. Hence, the 

capability of feature extraction or the depth of network became essential, which contributed to the final identification 

accuracy. The depthwise separable convolution was applied for the reduction of reducing computation and model 

size while maintaining the final classification accuracy, which separable convolution splits this into two layers, a 

separate layer for filtering and a separate layer for combining. 

Transfer learning was applied in the network training procedure, which was a kind of knowledge migration 

between source and target domain. The network was trained in three steps: initialization, form a general face 

recognition model, and knowledge transfer to facemask-wearing condition identification. The first step was 

initialization, as initialization contributed to the final identification accuracy and training speed25,26. Then was to 

form a general face recognition model using a large facial image dataset, where the network gained the capability of 

facial feature extraction. After watching millions of faces, the network then concentrated on facial information rather 

than interference like backgrounds and the difference because of image shooting parameters. The final step was for 

knowledge transfer between face recognition to facemask-wearing condition identification. The final fully connected 

layer was modified to meet with the category requirement of facemask-wearing condition identification. 
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The reason for adopting transfer learning was the considerable differences in data volumes and their 

consequences. The facemask-wearing condition identification dataset was relatively small compared with the 

general face recognition dataset, which might cause overfitting problems and a reduction in identification accuracy 

in the training process. Hence, the network shall gain knowledge about faces for the reduction of overfitting and 

improvement of accuracy. 

The softmax function was used as the final stage of classifier, which calculated the probability of all classes 

using outputs of direct ancestor fully connected layer neurons27. The definition was: 𝑝𝑖 = 𝑒𝑥𝑖∑ 𝑒𝑥𝑗𝑗 (6) 

where 𝑥𝑖 was the total input received by unit 𝑖, 𝑝𝑖 was the prediction possibility of the image belongs to 

class 𝑖. 
For image classification, the cross-entropy was widely used as loss function28,29. A regularization term (weight 

decay) can significantly avoid overfitting. Hence, the cross-entropy with 𝐿2 regularization was applied as loss 

function 𝐿𝑜𝑠𝑠𝑅, which was defined as: 

𝐿𝑜𝑠𝑠𝑅 = − ∑ ∑ 𝑡𝑖𝑗 log(𝑦𝑖𝑗)𝐾
𝑗=1

𝑁
𝑖=1 + 12 × 𝜆 × 𝑤𝑇𝑤 (7) 

For the cross-entropy term, 𝑁  was the number of samples, 𝐾  was the number of classes, 𝑡𝑖𝑗  was the 

indicator that the 𝑖𝑡ℎ sample belongs to the 𝑗𝑡ℎ class, which was 1 when labels corresponded and 0 when different, 

and 𝑦𝑖𝑗 was the output for sample 𝑖 for class 𝑗, which was the output value from softmax layer. For the cross-

entropy term, the 𝑤 was the learned parameters in every learned layer, and the 𝜆 was the regularization factor 

(coefficient). 

The training goal of the facemask-wearing condition identification network was to minimize the cross-entropy 

loss with weight decay. When training, the real classes were given in on-hot vectors, which took the form: 𝑉 = [𝑥0, 𝑥1, … , 𝑥𝑛] (8) 

Where 𝑉 represents the input label vector, 𝑥𝑖  (𝑖 ∈ [1, 𝑛]) represent the real class of the image, 𝑛 represent 

the class number. When the image was in 𝑖 class, then 𝑥𝑖 = 1 and 𝑥𝑘 = 0(𝑘 ≠ 𝑖). 

 

Datasets 

Different facial image datasets were used for different network training for the improvement of the 

generalization ability of SRCNet. The public facial image dataset CelebA were processed and used for SR network 

training30. As the goal of SR network was for detail enhancement, a large and high-resolution facial image dataset 

was needed, where the CelebA met with all requirements. 

The process of CelebA included three steps: image pre-processing, face detection and crop, and image 

selections. All raw images were pre-processed, as mentioned above. The face areas were then detected by multitask 

cascaded convolutional neural network and cropped for training since SR network was designed for restoration 

detailed information on faces rather than the background. The cropped images, which were smaller than 224×224 

(input size of facemask-wearing condition identification network), or non-RGB images, were discarded 

automatically. All other cropped facial images were inspected manually, and images with blur or dense noise were 

also discarded. Finally, 70534 high-resolution facial images were split into a training dataset (90%) and a testing 

dataset (10%) and adopted for SR network training and testing. 

The training of the facemask-wearing condition identification network contained three steps. Each step used a 

different data set for training. For initialization, the goal was for generalization. A large-scale classification dataset 

was needed for better generalization, and the ImageNet dataset was adopted for network initialization11. During this 
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procedure, non-zero values were assigned to parameters, which increased the generalization ability. Besides, proper 

initialization significantly improved the training speed, informing the general face recognition model. 

A large-scale face recognition database was adopted to train the general face recognition model. The images 

from publicly available CASIA Web-Face datasets were screened manually, and those with poor image quality or 

the subject containing insufficient images were discarded 31. Finally, 493750 images with 10562 subjects were split 

into a training dataset (90%) and testing dataset (10%) and applied for general face recognition model training. 

The public facemask-wearing condition dataset Medical Masks Dataset was applied to fine-tuning the network 

to transfer knowledge from general face recognition to facemask-wearing condition identification. The 2D RGB 

images were taken in uncontrolled environments, and all faces in the dataset had their position coordinates with 

facemask-wearing condition labels. The Medical Masks Dataset was processed in four steps: face crop and labeling, 

label confirmation, image pre-processing, and SR. All faces were cropped and labeled using the given position 

coordinates and labels. All cropped facial images were then screened manually, and those with incorrect labels were 

discarded. Then facial images were confirmed and pre-processed using the methods mentioned above. For the final 

accuracy of SRCNet, the dataset was expanded for the case of not wearing a mask. The resolution of pre-processed 

images varies, as shown in Table 1. For accuracy improvement of facemask-wearing condition identification network, 

the facial image shall contain enough details. Hence, SR network was applied to adding details for images with low 

quality. Those sizes no more than 150×150 (width or length no more than 150) were processed using SR network. 

Finally, the dataset contained 671 images of NFW, 134 images of IFW, and 3030 images of CFW. The whole dataset 

was separated into a training dataset (80%) and a testing dataset (20%) for facemask-wearing condition identification 

network training and testing. 

 

Table 1. Image resolution statistics 

Resolution 

N×N 
NFW IFW CFW Total 

N≤64 307 34 1126 1467 

N≤112 199 33 984 1216 

N≤150 73 20 355 448 

N≤224 77 33 354 464 

N>224 15 14 211 240 

Total 671 134 3030 3835 

 

Training Details 

The training of SRCNet contained two main steps: SR network training and facemask-wearing condition 

identification network training.  

For SR network training, the training goal was to restore face details, which used the training set of CelebA to 

achieve. Based on the characteristics of Medical Masks Dataset, the input images were pre-processed as an imitation 

of low-quality images in Medical Masks Dataset. The high-resolution processed images in CelebA were first filtered 

with a Gaussian filter with kernel size of 5×5 and a standard deviation of 10. Then down-sampled to 112×112. Since 

the size of the input and output were the same, the down-sampled images were then up-sampled to 224×224 with 

bicubic as input, the same size as the input of facemask-wearing condition identification network. The Adam was 

adopted as optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8 32. The network was trained for 200 epochs with 

initial learning rate of 1e−4 and learning rate dropping factor of 0.9 after every 20 epochs. The mini-batch size was 

48. 

The first step of facemask-wearing condition identification network training was initialization. The network 
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was trained using the ImageNet dataset and training parameters proposed in 23. 

The second step was to form a general face recognition model. The output classes were modified to match with 

the class numbers (10562). For initialization, the weight and bias in the final modified fully connected layer were 

initialized in a normal distribution with 0 mean and 0.01 standard deviation. The network was trained for 50 epochs, 

with training dataset shuffled in every epoch. The learning rate was set to be 1e-4, with a learning rate drop factor 

of 0.9 in every 6 epochs. As we had tested, the loss became stable in around 6 epochs with a constant learning rate, 

and the learning rate drop factor of 0.9 in every 6 epochs could significantly increase the training speed. The network 

was trained using Adam as optimizer, with 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8 , and 1e-4 weight decay for 𝐿2 

regularization to avoid overfitting32. 

Transfer learning was applied for fine-tuning the facemask-wearing condition identification network, where 

the final fully connected layer was modified to match classes (NFW, IFW, and CFW). The weights and biases in the 

final modified layer were initialized by independently sampling from a normal distribution with zero mean and 

standard deviation 0.01, which produced superior results compared to other initializers. The Adam was adopted as 

optimizer with a learning rate of 1e-4, and 1e-4 weight decay for 𝐿2  regularization was also applied to avoid 

overfitting32. The network was trained for 8 epochs to reach high accuracy with a batch size of 16. All the parameters 

mentioned above were determined using a grid search method for the best identification accuracy on the testing 

dataset.  

Data augmentation was proven to have a significant impact on the final accuracy of the network for the reduction 

of overfitting33-35. For general face recognition network training, the training dataset was randomly rotated in a range 

of 10 degrees (in norm distribution), shifted vertically and horizontally in a range of 8 pixels, and horizontally flipped 

in every epoch. At the fine-tuning stage, augmentation was mild, with rotation in 6 degrees (in norm distribution), 

shift in 4 pixels (vertically and horizontally), and random horizontal flip in every epoch. 

 

Results 

The SRCNet was experimented using MATLAB, associated with deep learning toolbox for network training and 

image processing toolbox for image processing36. The SRCNet was trained using a single Nvidia GPU with CUDA 

and cuDNN enabled.  

 

SR Network Experiment Results 

For SR network, the most widely used full-reference quality metrics were peak signal-to-noise ratio (PSNR) and 

structural similarity index (SSIM) 37. The PSNR was metric for quantitatively evaluating image restoration quality, 

and SSIM compared local patterns of pixel intensities for luminance and contrast. 

The comparison with previous state-of-arts methods, including RED14, SRCNN20, and bicubic, was made to 

illustrate the performance of proposed SR network. All the methods were trained on training set of CelebA if needed 

and tested on the testing set. 

As in real application, the quality of images varied. Low-quality images were mainly manifested in resolution 

and blur. Hence, different quality images were simulated and used for testing the performance of SR network, which 

were by changing the resolution, the standard deviation σ, and the size of Gaussian filters. For testing with different 

image resolution, the testing set was first filtered with a Gaussian filter with a kernel size of 5×5 and a standard 

deviation of 10. Then down-sampled to 64×64, 96×96, 112×112, and 150×150 for evaluations. For testing with 

different standard deviation of Gaussian filters, the testing set was first filtered with Gaussian filters with kernel size 

of 5×5 and standard deviation of 5, 10, 15, and 20. Then down-sampled to 112×112 for evaluations. For testing with 

different kernel size of Gaussian filters, the testing set was first filtered with Gaussian filter with kernel size of 3×3, 

5×5, 7×7, 9×9, and standard deviation of 10. Then down-sampled to 112×112 for evaluations. 
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The size of input images was the same as outputs for SR network. For evaluation of the effect of SR network to 

facemask-wearing condition identification network, which took 224×224 RGB image as input, all the down-sampled 

testing sets were up-sampled to 224×224 as the input of SR network. The evaluation results were shown in Table 2, 

Table 3, and Table 4. Compared with RED, which was the innovation baseline, the proposed SR network 

outperformed in PSNR and SSIM. 

  

Table 2. Average PSNR and SSIM in Different Down Sampled Images. 

PSNR 

Down Sample Proposed SR network RED SRCNN Bicubic 

64×64 25.7461 25.7343 25.9489 27.1157 

96×96 27.6264 27.6412 27.8157 27.4728 

112×112 29.1508 28.8447 28.1890 27.4700 

150×150 28.7863 28.5277 28.3934 27.3977 

SSIM 

Down Sample Proposed SR network RED SRCNN Bicubic 

64×64 0.8984 0.8974 0.8886 0.9083 

96×96 0.9238 0.9232 0.9237 0.9166 

112×112 0.9397 0.9366 0.9294 0.9176 

150×150 0.9311 0.9293 0.9260 0.9172 

 

Table 3. Average PSNR and SSIM in Different Standard Deviation σ of Gaussian Filters. 

PSNR 𝛔 Proposed SR network RED SRCNN Bicubic 

5 29.3795 29.0487 28.3087 27.5618 

10 29.1508 28.8447 28.3934 27.4700 

20 29.0887 28.7877 28.1599 27.4467 

30 29.0765 28.7764 28.1544 27.4421 

50 29.0722 28.7726 28.1525 27.4402 

SSIM 𝛔 Proposed SR network RED SRCNN Bicubic 

5 0.9423 0.9390 0.9312 0.9187 

10 0.9397 0.9366 0.9294 0.9176 

20 0.9390 0.9360 0.9290 0.9173 

30 0.9389 0.9358 0.9289 0.9172 

50 0.9388 0.9358 0.9289 0.9172 
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Table 4. Average PSNR and SSIM in Different Kernel Size of Gaussian Filters. 

PSNR 

Kernel Size Proposed SR network RED SRCNN Bicubic 

3×3 31.0008 30.9300 29.9178 30.5641 

5×5 29.1508 28.8447 28.3934 27.4700 

7×7 25.3330 25.2739 25.5768 25.5098 

SSIM 

Kernel Size Proposed SR network RED SRCNN Bicubic 

3×3 0.9616 0.9593 0.9489 0.9482 

5×5 0.9397 0.9366 0.9294 0.9176 

7×7 0.8820 0.8808 0.8846 0.8895 

 

As can be observed from Table 2, after the size of the image reached 150×150, the performance of the network 

decreased. The reason was that the network was trained to restore blurred images with low resolution. As the increase 

of image resolution, the resolution, and detail of facial image increase, which undermined the condition of using the 

network. Hence, only images with size no more than 150×150 (width or length no more than 150) were processed 

with SR network. In this case, the SR network significantly outperformed bicubic. 

As the images in Medical Masks Dataset had a considerable variance in resolution, which required the SR 

network had good performance in different resolution images. Hence, different SR methods were compared and 

visualized with different resolutions of small and blurred images38. The testing image was first blurred with a 

Gaussian filter with a kernel size of 5×5 and a standard deviation of 10. Then down-sampled to 64×64, 96×96, 

112×112, and 150×150 respectively before restoration. The visualized results were shown in Fig. 3. Although all SR 

methods can enhance face details, the proposed SR network outperformed other methods in all resolutions. The 

images restored by the proposed SR network were closer to the ground truths, which was due to high PSNR and 

SSIM. 

 

 

Figure 3. Visualize result with 64×64, 96×96, 112×112, and 150×150 blurred images. The details of images were 

highlighted. 

 

SRCNet Results 

After training, the SRCNet was tested using the testing set of Medical Masks Dataset based on the hold-out 

method. The proposed algorithm was tested using ablation experiment. The comparison in accuracy and the 

confusion matrix of SRCNet were reported. 
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The ablation experiment was designed to illustrate the importance of transfer learning and SR network. The 

performance of the SRCNet with or without transfer learning or proposed SR network were compared, as shown in 

Table 5. The transfer learning and SR network increased the identification accuracy considerably by reducing the 

overfitting problem and increasing facial details. Finally, the SRCNet reached an accuracy of 98.70% and 

outperformed the mobilenet-v2 without transfer learning or SR network by over 1.5% in kappa. 

 

Table 5. Performance of Facemask-Wearing Condition Identification Network 

Method Accuracy Mask Wearing Accuracy Personal Protection Accuracy κ 

1 98.70% 99.09% 98.83% 96.22% 

2 98.17% 98.57% 98.44% 94.69% 

3 97.91% 98.70% 98.17% 93.90% 

4 97.26% 98.57% 97.39% 92.12% 

1: Proposed SRCNet. 2: Proposed SRCNet without SR network, which was an end-to-end facemask-wearing 

condition identification network with transfer learning. 3: Proposed SRCNet without transfer learning. 4: Proposed 

SRCNet without transfer learning or SR network, which was an end-to-end facemask-wearing condition 

identification network without transfer learning. 

Accuracy: Accuracy in three categories classification (NFW, IFW, and CFW). Mask Wearing Accuracy: Accuracy 

in whether wearing a mask (facemask-wearing, NFW). Personal Protection Accuracy: Accuracy in whether having 

well personal protection (fail to have personal protection, including NFW and IFW, having personal protection, two 

categories classification). κ: kappa in three categories classification. 

 

The example of identification results was shown in Fig. 4. Although the face positions and types of facemasks 

vary, the SRCNet correctly identified all facemask-wearing conditions with high confidence (over 0.9999). As 

analyzed from failed cases, the critical states (wearing facemask between CFW and IFW), image quality, and blocked 

faces were the three main reasons for identification errors. 

 

 

Figure 4. Identification Examples. The labels showed the identification results and confidences of SRCNet. CFW = 

correct facemask-wearing (green), IFW = incorrect facemask-wearing (yellow), NFW = no facemask-wearing (red). 

 

The confusion matrixes were measured and shown in Fig. 5. The testing dataset contained facial images of NFW, 

IFW, and CFW. The method we proposed correctly classified 767 images, only 10 prediction errors, which 

outperformed those without transfer learning or SR network in every category. 
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Figure 5. Comparison in Confusion Matrix. NFW = no facemask-wearing, IFW = incorrect facemask-wearing, CFW 

= correct facemask-wearing. 

 

Discussion and Conclusion 

Discussion 

Our study presented a novel algorithm to identify facemask-wearing condition, which involved four main steps: 

image-pre-processing, face detection and crop, SR, and facemask-wearing condition identification. We proposed 

SRCNet with refined SR network to improve performance with low-quality images. 

The study was based on large-scale facial image datasets and Medical Masks Dataset. For SR network, we 

improved network architecture, including the activation function and density of skip connections. The innovations 

obtain performance gains considerably in detail enhancement and image restoration compared with previous state-

of-art methods, which were evaluated in PSNR and SSIM. For facemask-wearing condition identification, the 

proposed SRCNet innovatively combined SR network with face identification CNN for performance improvement. 

Transfer learning was also applied in facemask-wearing condition identification network training. Finally, the 

SRCNet achieved 98.70% accuracy in three categories classification (NFW, IFW, and CFW), and outperformed 

traditional end-to-end image classification methods without SR network by over 1.5% in kappa. These findings 

indicate that by using SR before classification, CNN can achieve higher accuracy. Besides, our experiment proved 

that deep learning methods could identify facemask-wearing conditions, which have the potential application in 

epidemic prevention involving COVID-19. 

The identification of facemask-wearing conditions has many similarities with facial recognition. However, the 

development of facemask-wearing condition identification network is challenging for several reasons. The limitation 

in dataset is one main challenge. The facemask-wearing condition dataset is generally small, and the image quality 

is not well enough compared with general face recognition dataset. Besides, the various performances of wearing 

facemask incorrectly largely increase the difficulty of identification. To overcome these challenges, the SRCNet was 

introduced, which utilized SR network and transfer learning before classification. The SR network solved low-

quality image problem, and transfer learning solved the challenge of small dataset with various wearing facemask 

incorrectly, which get performance improved considerably. 

To our knowledge, there have not been any studies in facemask-wearing condition identification with deep 

learning. In our study, facemask-wearing condition was detected with 98.70% accuracy, which indicated that 

SRCNet has great potential to support the automatic facemask-wearing condition identification. The design of 

SRCNet also has consideration in network complexity, which can be applied in public using internet of things (IoTs) 

and is meaningful to urge the public correctly wearing facemasks for epidemic prevention. 

 

Conclusion 

We developed a new facemask-wearing condition identification method in combination with SR network with 

classification network (SRCNet) in facial image classification. The proposed algorithm contained four main steps: 

image-pre-processing, face detection and crop, SR, and facemask-wearing conditions identification. The SRCNet 

achieved 98.70% accuracy and outperformed traditional end-to-end image classification methods using deep 
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learning without SR network by over 1.5% in kappa. Our findings indicate that the proposed that SRCNet could 

achieve high accuracy in facemask-wearing condition identification, which is meaningful for the prevention of 

epidemic diseases involving COVID-19 in the public. 

 

Code availability 
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https://github.com/BrightQin/SRCNet. 
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