
Jackson, Tarr, & Georghiades

1

Identifying Faces Across
Variations in Lighting:

Psychophysics and Computation

Cullen D. Jackson* (Cullen_Jackson@brown.edu)
Department of Psychology
Brown University

Michael J. Tarr (Michael_Tarr@brown.edu)
Department of Cognitive and Linguistic Sciences
Brown University

Athinodoros Georghiades
(athinodoros.georghiades@yale.edu)
Department of Electrical Engineering
Yale University

umans have the ability to identify objects under
varying lighting conditions with extraordinary
accuracy. We investigated the behavioral aspects

of this ability and compared it to the performance of the
Illumination Cones (IC) model of Belhumeur and
Kriegman (1998). In five experiments, observers learned
10 faces under a small subset of illumination directions.
We then tested observers' recognition ability under
different illuminations. Across all experiments recognition
performance was found to be dependent on the distance
between the trained and tested illumination directions.
This effect was modulated by the nature of the trained
illumination directions. Generalizations from frontal
illuminations were different than generalizations from
extreme illuminations. Similarly, the IC model was
sensitive to whether the trained images were near-frontal
or extreme. Thus, we find that the quality of the images in
the training set affects how good an estimate of the
complete illumination space is derived for both humans
and the model. Beyond this general correspondence, the
microstructure of the generalization patterns for both
humans and the IC model were remarkably similar,
suggesting that the two systems may employ related
algorithms.

Introduction

Invariant three-dimensional object recognition has been
an elusive goal in computer vision. Given the significant
attention paid to this problem it is remarkable how far
away we still are from a generic solution. At the same
time, such a solution appears possible in that biological
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vision systems are capable of highly accurate object
recognition across a wide range of image variability.
Indeed, the apparent ability of humans to recognize
objects in an invariant manner is often held up as an
existence proof for the ultimate solvability of this
problem.

Just how good is human object recognition? Human object
recognition abilities are often characterized as being near-
invariant with the few exceptions being limited to extreme
cases, such as accidental views (Biederman &
Gerhardstein, 1993). In particular, claims have been made
for invariance across changes in viewpoint, position, and
lighting, as well as possibly color, texture, and object
configuration. Moreover, our intuitions tell us that we
generally know what is out there despite a changing
world. On the other hand, when such intuitions are
evaluated empirically, they turn out to be false in many
instances.

Consider the oft-examined problem of recognizing
objects across rotations or observer movement. The
standard approach for many years in computer vision
assumed that viewpoint invariance was both desirable and
attainable using recovered three-dimensional part-based
models (Binford, 1971; Marr & Nishihara, 1978).
Motivated in part by this stance, the most well known
theory of biological object recognition has posited that
objects are represented as collections of three-dimensional
volumes (“Geons”; cylinders, cubes, etc.) that may be
recovered in a viewpoint-invariant manner (Biederman,
1987). In support of this theory, its major proponents
have claimed that human recognition performance is
“typically” viewpoint invariant (Biederman &
Gerhardstein, 1993).

Although there are conditions where this is true, they
are few and far between, hardly typical, and only obtained
by carefully following a “recipe” almost religiously (Tarr,
Williams, Hayward, & Gauthier, 1998). Indeed, the
results of many behavioral studies make plain that we
cannot rely on our intuitions in assessing our object
recognition abilities. For example, one type of experiment
examined how observers generalized from one view of a
simple three-dimensional volume – a Geon – to new views
of the same Geon (Hayward & Tarr, 1997; Tarr et al.,
1998). Despite Geons being very regular and highly
distinctive from one another, across a variety of tasks and
image conditions and with few exceptions, recognition of
familiar Geons in new views has been found to be
viewpoint dependent. That is, observers take progressively
longer and are less accurate in recognition as a function of
the rotation distance from the original view of the Geon.
Similarly, “paperclip” objects (Poggio & Edelman, 1990;
Bülthoff & Edelman, 1992) with single Geons inserted in
the center position are also recognized in a viewpoint-
dependent manner. Moreover, adding more Geons,
something that theoretically should make the objects more
distinctive from one another (Hummel & Biederman,
1992), actually dramatically increased the magnitude of
viewpoint dependency (Tarr, Bülthoff, Zabinski, & Blanz,
1997). Illustrating the degree to which intuition fails us,
following participation in a pilot version of the paperclip
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experiment with single Geons, one author exclaimed that
the experiment was “silly” in that he/she believed that
his/her recognition of these objects was completely
viewpoint invariant. Yet when their data was analyzed,
their recognition performance was clearly viewpoint
dependent! Thus, empirical data in one domain,
viewpoint, has undermined the idea that human
recognition performance is invariant and, by extension,
that invariant performance should be an ultimate goal for
computer vision systems. In part in response to such
findings, many recent recognition algorithms intended to
model biological vision rely on image-based views rather
than viewpoint-invariant object models (Fukushima,
2000; Lowe, 2000; Riesenhuber & Poggio, 2000; Ullman
& Sali, 2000). The critical property of all such models is
that they derive object representations that preserve the
appearance of object features as they appeared in the
image. Thus, when new images are near to those used in
the representation, recognition performance is better than
when new images are distant from the original images.
Hence, recognition is not invariant, but rather is sensitive
to the manipulation of stimulus parameters such as pose
or illumination.

Just what do we mean by invariant? In interpreting
results from studies of human object recognition, it is
important to understand what is meant by the term
“invariant.” One sense of “invariant recognition” literally
means that performance in terms of response times and
errors rates does not vary over changes in the input. A
second sense implies that although response times and
errors may be dependent on changes in the input, overall
recognition abilities are good, with there being a high
probability of identifying a given object regardless of how
it is transformed. Potential confusions arise in translating
human data to computer vision in that most behavioral
and brain scientists use “invariant” in the first sense to
characterize performance data in recognition tasks. That
is, when they refer to “invariant recognition,” they mean
cases where there is little or no sensitivity to a stimulus
manipulation. For example, obtaining the same response
times and errors rates in identifying an object at different
viewpoints (Biederman & Gerhardstein, 1993).

Conversely, when such behavioral and brain scientists
refer to “dependent recognition,” as in viewpoint
dependent or illumination dependent, they are not
referring to a condition where recognition completely fails
given changes in the stimulus. Rather, they are
characterizing the mechanisms whereby relatively invariant
recognition is achieved. View-sensitive recognition
mechanisms that take more time and are less accurate as a
stimulus is rotated in depth away from a familiar view
nevertheless generally support recognition across such
transformations. Observers are simply a bit slower and less
likely to be correct for the transformed as opposed to the
original viewing conditions. Thus, although human
recognition is not invariant in the first sense, it is invariant
in the second sense. For purposes of linking human and
machine vision this is a critical point – near-invariant
recognition is attainable, but the algorithms whereby it is
attained are not themselves invariant. As we shall see, it is

precisely this lack of invariance in the mechanisms of
recognition that informs us regarding the algorithms used
by humans and allows us to compare human abilities to
those of computer vision systems.

Illumination dependence in human object recognition. As
mentioned earlier and discussed above, the study of visual
object recognition in humans and other primates has
focused largely on the problem of recognition across
changes in viewpoint (for example, see Logothetis &
Pauls, 1995; Tarr, 1995). Other manipulations that have
been assessed in at least a few studies include
transformations in size, position, mirror-reflection, and
surface detail. For the most part, however, one of the most
dramatic transformations of an image has been ignored –
the recognition of objects over changes in lighting
direction. Why is this so? Computer vision scientists know
that a shift in illumination severely alters an image of an
object – often to such a degree that the object becomes
unrecognizable. Surely such a problem is obvious to
behavioral and brain scientists?

There are several reasons why recognition across
changes in lighting direction has been omitted from the
extant behavioral literature. First, until recently computer
graphics technology capable of creating realistic lighting
effects (shading gradients, specularities, and soft shadows)
was both difficult to use and expensive and therefore
essentially inaccessible to most behavioral and brain
scientists. Second, creating well-controlled manipulations
in lighting direction in the physical world is tedious and
time-consuming and, therefore, less appealing than many
other potential transformations, e.g., moving a camera
around an object. Third, although there has been
awareness about the fact that lighting affects the shading
gradients on a object’s surfaces and that such information
can be used to infer three-dimensional shape (Horn,
1975; Ramachandran, 1988), it has been less obvious that
the effects of a particular illumination context might affect
an object’s representation. That is, although lighting clearly
influenced processes involved in the derivation of
representations of three-dimensional objects, it was not
thought to impact the ultimate organization of such
representations – these being illumination invariant.

The most salient version of this type of thinking was
found in the hypothesis that object representations are
edge-based (Marr, 1982; Biederman, 1987). The key idea
was that an object’s edges were stable across variations in
the image and that from such canonical edge descriptions,
completely invariant, three-dimensional object models
could be derived. One strong critique of this approach is
that edge maps are rarely stable over even relatively small
changes in the image. Rather they are noisy and sensitive
to variations in shading gradients and specularities. Thus,
edge-based descriptions do not offer a likely basis for
human object recognition (Sanocki, Bowyer, Heath, &
Sarkar, 1998). Similarly, without a model of the lighting
for a given scene, it is difficult, if not impossible, to
discount edges that arise from shadows as opposed to
object contours. Thus, the edge descriptions for an object
under two different lighting directions may be drastically
different from one another.
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Given the non-viability of edge-based models, as well as
other lighting-invariant representational schemes, Tarr,
Kersten, and Bülthoff (1998) used computer graphics to
explore the question of whether human object recognition
was truly invariant with respect to variations in
illumination. In part, they were motivated by the finding
that cast shadows help constrain the perceived three-
dimensional layout of a scene (Kersten, Knill, Mamassian,
& Bülthoff, 1996; Kersten, Mamassian, & Knill, 1997).
Three notable findings emerged from Tarr et al.’s study:
1) Novel objects learned under one lighting direction were
more poorly recognized when shown under a new lighting
direction; 2) This illumination dependence was obtained
only when attached shadows were present in the scene; 3)
Overall recognition performance, although lighting
invariant, was worse in the absence of attached shadows.
Thus, shadows and shadow edges seem to be included in
object representations for one very good reason – although
they produce some lighting dependence in recognition
this is outweighed by the fact that shadows help to
disambiguate the three-dimensional appearance of objects.
It should be noted that the costs for changing lighting
direction were relatively small and that overall recognition
accuracy was quite high under both familiar and
unfamiliar illumination conditions. Again, the key point is
that it is the pattern of dependence in performance that
informs us regarding the mechanisms underlying the
human ability to attain near-invariant recognition in
practice.

It is worth noting that this study was restricted to novel,
relatively simple objects composed of a small number of
three-dimensional volumes. Left open was the question of
whether such effects of lighting direction would impact
known object classes in a similar manner. Indeed, a study
by Moore and Cavanagh (1998) suggested that familiarity
with the identity of an object might facilitate invariant
recognition over different lighting conditions. They found
that the ability of observers to recognize illuminated three-
dimensional objects rendered as two-tone or binary images
depended on whether the objects were familiar or
unfamiliar to the observers. When shown as two-tone
images, known objects were nameable while unknown,
novel objects were not (until observers were shown the
unknown objects as shaded, photorealistic images).
Therefore, both the sensitivity to lighting direction and
the overall recognition advantage seen for objects rendered
with attached shadows might break down for familiar
objects.

Although the behavioral literature is sparse, there are
hints that the recognition of some familiar object classes is
lighting dependent. Most notably, Johnston, Hill, and
Carman (1992) reported on the well-known horror-film
phenomenon that human faces lit from below look very
different from the same faces lit from above. Braje,
Kersten, Tarr, and Troje (1998) explored this somewhat
more systematically, finding that human faces lit from one
side were recognized more poorly when shown with the
light moved to the other side. Importantly this lighting
dependence was obtained both with and without shadows
on the faces. Thus, the representation and recognition of

at least one highly familiar object class, human faces, is
lighting dependent.

Illumination dependence in machine vision systems. As
stated earlier, that illumination greatly influences the
appearance of an object has not gone unnoticed in the
computer vision community. Over the years many
different approaches have been proposed to deal with the
fact that changing the direction of lighting can impact
mean illumination, shading gradients, shadows, and
specularities. For whatever reason, particular emphasis has
been placed on recognizing human faces across variations
in lighting. The degree to which face recognition is
affected by lighting was elucidated by Moses, Adini, and
Ullman (1994) who pointed out that changes in
illumination accounted for the greatest image variance in
measuring the differences between images of faces, even
more than the variance that arose between individual
identities or changes in viewpoint. Despite the fact that
variations in lighting dramatically change an image,
lighting information may also facilitate the recovery of the
shape and the structure of a face. Consequently, it would
be less than optimal to deal with lighting variation by
completely discarding it, thereby reducing the probability
of correctly recognizing a face  under ambiguous
conditions. Thus, computational models of face
recognition have often focused on how to compensate for
illumination variability across multiple images in a
manner that also allows for some representation of the
lighting.

One approach to lighting variability that has recently
become quite popular relies solely on two-dimensional
images, rather than the explicit recovery of three-
dimensional scene parameters. These image-
based/appearance-based models reduce the dimensionality
of the image space (each pixel value in an image being a
coordinate in image space) by projecting it onto a lower-
dimensional feature space. The object is then recognized
by using a nearest neighbor classification scheme in the
new feature space. Three of the most widely cited versions
of this general method are referred to as Eigenfaces,
Fisherfaces, and Illumination Cones.

Eigenfaces. A technique common to computer vision for
the reduction of dimensionality is principal components
analysis (PCA) also known as Karhunen-Loeve expansion.
Given a set of sample images of different individual faces,
PCA produces a linear projection that maximizes the
determinant of the total co-variance matrix of the samples
across all individuals. The resulting eigenvectors of this
matrix have the same dimensionality as the sample images.
Since the eigenvectors characterize the feature space, each
individual face is represented by a linear combination of
the eigenvectors. This technique is sometimes called
“Eigenfaces” (Turk & Pentland, 1991a, 1991b). However,
since PCA maximizes the total scatter in the sample
images, both the between-individual variance and the
within-individual variance are retained. For recognition,
only the between-individual variance is useful. In fact, the
retention of the within-individual information allows
changes in illumination between images to influence the
resulting feature space. Since variations due to
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illumination are usually larger than those due to
individual identity, this can cause the feature space to
become muddled and, consequently, recognition is
difficult.

To compensate for the variability introduced by
illumination, Belhumeur, Hespanha, and Kriegman
(1997) and  Georghiades, Kriegman, and Belhumeur
(1998) point out that the first three principal components
are primarily due to changes in illumination and might be
discarded for purposes of recognition. In practice this
makes explicit the fact that Turk and Pentland (1991a,
1991b) used only the most appropriate eigenvectors in
their recognition algorithm. Georghiades and his
colleagues also implemented this approach in their
comparison of several models of face recognition under
variations in illumination. Consistent with their
observation, the Eigenface method did achieve better
recognition performance without the first three principal
components than it did with them. However, even with
this addition, under some lighting conditions the
Eigenface model failed 27% of the time and it showed a
gain of only 16% over the Eigenface model with all
principal components.

 Fisherfaces. To address the poor performance of the
Eigenface model across lighting variation, Belhumeur et
al. (1997) proposed an alternative method that attempted
to retain the benefits of linearly reducing the image space
into a low-dimensional feature space, but avoid the
problems of the Eigenface method. Belhumeur et al.
(1997) used Fisher’s Linear Discriminant to maximally
separate the between-individual and within-individual
variance in order to provide more consistent
discrimination between individual faces. By maximizing
the ratio between the determinants of the between-
individual and within-individual scatter matrices, they
were able to produce a set of eigenvectors with reduced
dimensionality but without the confound of variability
due to illumination. To avoid a singular within-class
scatter matrix, Belhumeur et al. (1997) created a
technique they refer to as “Fisherfaces”. This method uses
PCA to reduce the dimensionality of the image space, and
then applies Fisher’s Linear Discriminant to reduce
further the dimensionality of the feature space and achieve
a nonsingular within-class scatter matrix. The authors
empirically demonstrated that this technique could
successfully recognize individual faces over broad
variations in lighting across the sample images. Indeed,
under the same lighting conditions where Eigenfaces
produced 27% errors, Fisherfaces resulted in only a 5%
error rate. Thus, the application of Fisher’s Linear
Discriminant following PCA provided a significant gain
in illumination invariance.

Illumination Cones. Following the development of the
Fisherface model, Belhumeur and Kriegman (1998)
proposed an even more effective image-based model for
object recognition under variable lighting and viewpoint
conditions. This model is referred to as the “Illumination
Cone” (IC) method. An illumination cone is a convex
polyhedral cone containing the set of images for an object
under all possible point light sources. The dimensionality

of the image space is reduced since it is projected onto
object-specific illumination cones which have
dimensionality equal to the number of distinct surface
normals. Multiple images for each object are used as a
basis set to construct individual illumination cones. As few
as three distinct images for each object can determine a
given object’s cone. Critically, no explicit knowledge of
the lighting parameters of the scene is required to
construct the cone. While the IC method was designed for
use with convex objects with Lambertian surface
reflectance, several empirical studies have shown that the
method is quite capable of performing excellent
recognition with non-Lambertian, non-convex objects like
faces (Georghiades et al., 1998, 2000). As a measure of the
effectiveness of the IC model, a separate comparison of
the Eigenface, Fisherface, and IC approaches produced
error rates of 78%, 51%, and 37% respectively. Thus,
with regards to illumination invariance, the IC model
offers potentially far better performance than competing
approaches.

Applying the IC Model to Human Performance. Given
the superior performance of the IC model, it was used as
the standard for comparisons with human vision. In
particular, given that we assume human face recognition
performance is at least as good across lighting variation as
the best currently available computer vision algorithm,
even the IC model may be at somewhat of a disadvantage.
Adding to the unevenness of this comparison, human
observers have years of experience at face recognition and
presumably apply this class-level knowledge to the
recognition of even entirely novel faces. In contrast, the
IC model has no knowledge of faces beyond the training it
receives at the beginning of each experiment. On the other
hand, human observers are processing faces in the context
of a wide array of potential objects, whereas the IC model
knows only about faces.

Even considering these differences between humans and
extant models, there is much to be learned by comparing
the two. First, incredibly little is known about how
humans generalize from known to unknown lighting
conditions. Therefore, to the extent there is any
correspondence between the biological and machine
systems, we have learned something regarding the types of
models that might be most effective in accounting for
human performance. Second, there is the possibility that
there will be significant correlations between human and
model performance. In this case, we can not only draw
stronger conclusions, but we can then refine future
algorithms in the direction of biological plausibility.

In order to provide the most useful comparisons
between human subjects and the IC model, we
implemented similar training procedures for both cases.
Moreover, to provide a more general picture of how both
compensate for lighting variation, we chose to include
experiments which used “extreme” training conditions,
e.g., lighting directions in which the majority of the face
was not illuminated, as well as more “standard” training
conditions, e.g., frontal illumination. Interestingly, few, if
any, computer vision studies have ever subjected their
models to more than the standard cases during training.



Jackson, Tarr, & Georghiades

5

Thus, the experiments presented here are useful for
understanding the behavior of the IC model independent
of the comparisons with human observers. Finally, there
are almost no studies of how humans deal with extreme
lighting during training, so again, the data obtained here
is valuable in and of itself. We would hold, however, that
the most informative analysis is the comparison between
the IC model and human behavior. Such specific
quantitative comparisons between a working model from
computer vision and behavior are not frequent in the
human psychophysical literature, yet they provide a
promising method for furthering our understanding of
algorithms in biological vision. We next review the
specific methods used in training and testing both our
human subjects and the IC model.

Methods

Human Psychophysics
Observers. The subjects for the five experiments were

106 human beings, mostly college students, between the
ages of 18 and 22 years. There was a median of 20
subjects across the five experiments, with an equal number
of males and females in each. All subjects had normal or
corrected-to-normal vision. Subjects were naïve to the
purpose of each experiment. When finished with the
session, observers were informed of the intent of each
experiment.

Apparatus and Stimuli. Stimuli were presented to the
observers on one of three Apple PowerMac 8100s with
NEC MultiSync XV15+ monitors. Connected to each
were an Apple Extended Keyboard II and Apple Bus
Mouse. The experiments were all programmed and run
using the RSVP Experimental Control Software (Williams
& Tarr, 2001).

All images and text in the experiments were displayed at
640x480 pixels of resolution. A strip of paper was placed
above the numbers at the top of the keyboard. The strip
was 22.7 cm long and 1.9 cm inches wide. The following
ten names were placed horizontally from left to right
along the center of the strip: Allen, Carla, David, Gary,
Janet, Laura, Michael, Nigel, Robert, and Tony. The strip
was positioned such that the first named (Allen) was
placed above the ‘1’ key and the last name (Tony) was
placed above the ‘0’ key. During the experiment, observers
made responses by pressing the number keys on the
keyboard under the name that the subject associated with
the given stimulus on the screen.

A study sheet was given to each observer at the
beginning of the experiments. The study sheet consisted
of ten images printed on a sheet of paper. The images
were placed in two rows on the sheet, five images along
the top and five images along the bottom of the sheet.
Each image was 295 x 338 pixels (screen size) and 2.9 x
3.4 cm printed. Names for the images were placed below
the faces. The individuals in the images were facing
forward and the illumination on each face was from the
front (see Figure 1).

Figure 1. Example of the images and names subjects
viewed prior to the start of the computer-based trials.
Subjects viewed these images for 10 minutes in order to
learn to associate the correct name to each face.

The images used in the computer-based trials were 651
images taken from the Harvard Face Database (Hallinan,
1 9 9 4 ,  1 9 9 5 ;  a v a i l a b l e  a t :
http://www.cog.brown.edu/~tarr/stimuli.html#ha).
The images taken from the database represent 10 different
individuals viewed under 66 different illumination
conditions. The individuals are in a fixed frontal pose for
all illuminations. The lighting space was sampled in
15° increments both horizontally and vertically to the
right of the camera axis. A schematic of the illumination
conditions is shown in Figure 2. While most of the
individuals have 66 images, three individuals have missing
or corrupted images and have less than the 21 images
normally associated with the region 75° from the camera
axis. This set of images was used in order to replicate the
methods used for the computational experiment presented
in Georghiades, Kriegman, and Belhumeur (1998) in a
human psychophysical experiment.

Figure 2. Schematic of the 66 different illumination
conditions used in both the human psychophysical and IC
model experiments. The illumination conditions
correspond to the intersections of the longitudes and
latitudes overlaid with bold lines. The center of the space
is denoted (0°, 0°). Adapted from an illustration in
Georghiades, Kriegman, and Belhumeur (1998).
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Procedure. Each experiment consisted of three phases:
name learning, training, and testing. In the first phase,
observers were asked to study a sheet of 10 faces with
corresponding names for 10 minutes. This time allowed
subjects to learn to associate the correct name with each
face. This phase was necessary because the observers were
asked in subsequent computer trials to identify other
images by the name associated with a face on the study
sheet. We told observers not to consult the study sheet
once the 10-minute study period ended. Observers were
told to turn the study sheet over so that the blank side
faced up and to set it aside during the remainder of the
experiment.

The training phase familiarized observers with a small
subset of illuminations for each face. This phase consisted
of 60 computer-based trials. In each trial, observers first
viewed a blank, white screen for 1000 ms followed by a
500 ms fixation point (+) in the center of the screen. The
stimulus image then appeared centered on the screen for
1000 ms. Observers then had as much time as needed to
correctly identify the image. Subjects used the number
keys (1, 2, 3...0) at the top of the keyboard, each labeled
with one of ten names, for their responses. A feedback
sound (the Macintosh default system “beep”) indicated an
incorrect response and no beep indicated a correct
response.

The testing phase of the experiment gauged how well
subjects had learned the representations of each face
during training. This part of the experiment contained
591 trials. Each trial was identical in design to a trial in
the second phase, except the stimulus images were shown
for 500 ms and observers only had 3000 ms to make a
response before the trial timed out. If no response was
made, it was recorded as such and was subsequently
dropped form further analysis. No feedback was given
during this phase.

Each of the five experiments only differed in the set of
training images shown to subjects. These training sets are
illustrated in Figure 3. The training sets for the first,
second, and fifth experiments used six illuminations per
face. The third and fourth experiments only contained
one illumination for each face shown to subjects six times
during training.

Model Simulations
While replicating the method used by Georghiades et

al. (1998) with human psychophysical experiments, it also
was necessary to test the Illumination Cone (IC) model
under similar training conditions as used in the behavioral
experiments. Subsequently, the IC model was trained
using the same sets of illuminations as in the human
behavioural experiments, with some modifications to help
equate the experience of humans and the computational
model.

Figure 3. Training sets for the human psychophysical and
computational model experiments. The training set for
Experiment 1 contains illuminations within 15° of the
camera axis. The training set for Experiment 2 is a mirror
of Experiment 1 with extreme lighting directions.
Experiments 3 and 4 only have one illumination
condition each, (0°, 0°) and (75°, 0°), respectively, for
training. The training set for Experiment 5 contains the
illuminations along the horizontal meridian of the
illumination space, from (0°, 0°) to (75°, 0°). Adapted
from an illustration in Georghiades, Kriegman, and
Belhumeur (1998).

In the rendering of the Illumination Cone model used,
the training phase occurs with the construction of the
illumination cone for each individual face (Belhumeur &
Kriegman, 1998; Georghiades et al., 1998, 2000). These
cones are labeled with the correct name of the individual
face for later recognition. Thus, the IC algorithm
combines the tasks of name learning and training which
the human subjects performed during the comparable
psychophysical experiments. Since human subjects learned
the name for each face separately from the training task,
they always received input about the frontal (0°, 0°)
illumination condition separate from the illuminations in
the training set. Due to this additional illumination
component, the IC model was also given the (0°, 0°)
condition during training for all of the experiments in
which this illumination was not already a part of training,
except for Experiment 2 in which the addition of the (0°,
0°) component seemed to hinder the performance of the
IC model.

Another change in the training sets used with the IC
model occurred for Experiments 3 and 4. In the
corresponding human psychophysical experiments,
subjects only received one illumination condition repeated
six times during training. However, the IC model requires
at least three different images in order to construct the
illumination cone for each face. Moreover, humans
already know a great deal about how the appearance of
faces is generally affected by lighting direction. In order to
fulfill the need for three different images and compensate
for pre-existing knowledge in human subjects, in both
Experiments 3 and 4 the IC model was trained using a set
of seven different illumination conditions, of which six
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were randomly selected and the seventh was either (0°, 0°)
or (75°, 0°) respectively. These training sets are illustrated
in Figure 4. This was a departure from previous training
since the other experiments used uniformly-defined light
conditions, either within 15° of one single light or along
the same lighting axis. Also, since faces are a known class
to humans and observers usually generalize well to
unknown faces, by randomly choosing the training
conditions, we could determine how well the IC model
would generalize to other unknown conditions given a
non-uniform set of illuminations. An alternative method
might be to choose random illuminations from several
regions of the light sphere so that the entire light sphere
would be represented in the training set. This method
might provide a more robust generalization of the entire
light space.

Figure 4. Training sets for Experiments 3 and 4 for the
Illumination Cone (IC) model. Open circles are lighting
coordinates for Experiment 3 and filled circles are
coordinates for Experiment 4. Coordinate (30°, -15°) is a
training illumination for both experiments. Adapted from
an illustration in Georghiades, Kriegman, and Belhumeur
(1998).

Another component of the IC model was building the
basis matrix used to construct the illumination cone for
each face. This process involved setting two parameters,
one a saturation threshold and the other a shadow
threshold. In order to build the three basis vectors for each
face, the training images were input into the algorithm,
reflected along the vertical axis (in order to double the
number of images used in the calculations), thresholded
(according to the parameters discussed above), and then
reduced into three component vectors. These basis vectors
were then used to construct and label the illumination
cones for each individual face. Subsequently, the
illumination cone built for each individual contained
representations of all 66 illuminations in the lighting
space for that face. This enabled the model to later
identify the individual face in a novel image by comparing
the image to the illumination cones and choosing the cone
with the closest representation using a nearest-neighbor

algorithm computed through a non-negative least squares
solution.

Figure 5. Differences between individual human subjects
are similar to differences between subtle changes in the IC
model parameters. Each connected line in the top graph
shows an individual human subject. Each connected line
in the bottom graph is a separate run of the IC model
with slightly changed saturation thresholds. The shadow
thresholds were not changed due to model constraints.

While the performance of the IC model does not vary
across multiple instances of the same experiment, it does
vary according to the threshold parameters discussed
above, saturation and shadow. As previously discussed,
changing these parameters for an individual face changes
the creation of the illumination cone for that face. Thus,
the subtle manipulation of these parameters is analogous
to having different individual human subjects in the
psychophysical experiments. This phenomenon is
illustrated in Figure 5. The graph at the top of the figure
shows four human subjects in Experiment 3, and the
graph at the bottom shows four different saturation
thresholds for the IC model in the same experiment. The
differences between the four saturation thresholds are
within several hundredths of each other as this parameter
varies between 0 and 1.



Jackson, Tarr, & Georghiades

8

Results and Discussion

Similar analyses were run on the data from the human
psychophysical and the IC model experiments. Any
modifications between the two are presented below. For
all of the experiments, the lighting coordinates for each
image were recorded and the Euclidean distance from the
nearest training illumination to that coordinate was
computed. For clarity of presentation, these distances were
then mapped to the most appropriate lighting condition
bin: 15°, 30°, 45°, 60°, or 75°. Figure 6 shows an example
of the different illumination conditions that comprise
these five bins for the training set from Experiment 1. The
dependent variable across all experiments was percent
correct recognition, that is, identifying the individual face,
for each lighting condition for both human subjects and
the IC model.

Figure 6. Sampling of test images for Experiment 1 and
their respective distances from the closest illumination in
the training set. The training set for Experiment 1
consisted of illuminations at the following coordinates:
(0°, 0°), (0°, 15°), (0°, –15°), (15°, 0°), (15°, 15°), (15°,
–15°).

Human Psychophysics
Subjects that failed to respond to more than 10% of the

test trials were removed from the study. This procedure
ensured that the results contained only observers who
made actual responses to a majority of the test trials. This
reduction in the data changed the median number of
subjects across experiments from 20 to 18. For the
remaining subjects, trials with no response were dropped
from all analyses. The mean percent correct recognition
for each test lighting condition (15°, 30°, 45°, 60°, and
75°) across subjects and the within-subject standard error

of the mean were computed and are illustrated as the
human psychophysical data marked as circles in Figures 7-
11 (Experiments 1-5 respectively).

Across all five experiments, as the distance between the
test illuminations and the training set increased, the
identification performance of the subjects decreased. This
performance drop-off was most pronounced in
Experiments 1, 3, and 5, where the images in the training
sets contained mostly frontal or near-frontal illuminations
or, in the case of Experiment 5, the trained lighting
conditions were all along the horizontal meridian of the
lighting sphere. In contrast, the performance decrease
across lighting conditions was less apparent in
Experiments 2 and 4 where the training sets contained
extreme illuminations that produced images with
pronounced shadows.

One explanation for the fall-off in performance with
distance in Experiments 1 and 3 is that the 60° and 75°
lighting conditions included images with extreme
illuminations. Because so much of the face was in shadow,
subjects could not discern the identity of the face. In
contrast, in Experiments 2 and 4, subjects actually saw
these extreme illuminations during training and were
therefore able to identify the individual faces at test in
these otherwise difficult-to-recognize lighting conditions.
Furthermore, the 60° and 75° lighting conditions were
comprised of near-frontal illuminations, therefore identity
was easy to establish despite the unfamiliarity of the
lighting direction.

Note that although during the initial name association
task subjects had the benefit of viewing the frontal (0°, 0°)
illumination condition before the start of each
experiment, this experience alone did not dramatically
help them in the subsequent recognition tasks. For
example, in Experiments 2 and 4, they were still worse for
this lighting condition compared to the extreme lighting
conditions that were seen during training. This is
surprising because the most typically encountered “real-
world” image, e.g., canonical, of a face is likely to be the
frontal view with frontal illumination (from above);
consequently we would expect human subjects to perform
better with familiar near-frontal illuminations (e.g., the
images in the 60° and 75° lighting conditions in
Experiments 2 and 4).
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Figure 7. The circles represent mean percent correct for
the human subjects in Experiment 1. The error bars are
the within-subject standard error of the mean. A single
case of the Illumination Cone (IC) model for Experiment
1 is represented by the squares.

Figure 8. The circles represent mean percent correct for
the human subjects in Experiment 2. The error bars are
the within-subject standard error of the mean. A single
case of the Illumination Cone (IC) model for Experiment
2 is represented by the squares.

Figure 9. The circles represent mean percent correct for
the human subjects in Experiment 3. The error bars are
the within-subject standard error of the mean. A single
case of the Illumination Cone (IC) model for Experiment
3 is represented by the squares. Note that the IC model
was only tested with four new illumination types (bins)
because of the manner in which lighting directions in the
training set were randomly selected. See text for an
explanation for this selection procedure.

Figure 10. The circles represent mean percent correct for
the human subjects in Experiment 4. The error bars are
the within-subject standard error of the mean. A single
case of the Illumination Cone (IC) model for Experiment
4 is represented by the squares.
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Figure 11. The circles represent mean percent correct for
the human subjects in Experiment 5. The error bars are
the within-subject standard error of the mean. A single
case of the Illumination Cone (IC) model for Experiment
5 is represented by the squares.

Illumination Cone (IC) Model
The data points marked with squares in Figures 7-11

illustrate the recognition performance of the IC model
and can be compared to the performance of the human
observers in Experiment 1-5. We attempted to maximize
the performance of the IC model by trying a variety of
saturation and shadow thresholds for each face in each
experiment. The resulting model performance in each
figure represents the best attempt at manipulating these
thresholds. Because of the variable nature of the IC model
due to these parameters, the recognition performance
shown for each experiment may not actually represent
optimal performance. Evidence for this exists in the
recognition performance of the model for the training
illuminations. Only in Experiment 1 does the model
correctly recognize all of the faces at the training
illuminations.

Importantly, as with our human subjects, the
recognition performance of the IC model in each
experiment decreased as the distance of each test
illumination from the training set increased. The only
minor exception to this pattern occurs in Experiment 4; in
this experiment, recognition performance actually
increased by 5% between 15° and 30° and then resumed
its downward trend. This change in pattern was probably
due to the span of the training illuminations across the
lighting sphere. Since the training conditions were
randomly selected for this experiment, the illuminations
comprising the 30° bin may actually map onto the average
of the illuminations in the training set. Another
consequence of using a randomly selected set of lighting
directions for the training set was that Experiment 3
included only four test lighting condition “bins”.
Specifically, when the distances of each test illumination
from the training set were computed, none of the lighting
directions extended beyond the 60° bin (the greatest
distance being 54°). Similarly in Experiment 4, the
greatest distance of any tested illumination from the

training set was 67°. However, because this lighting
direction was equidistant between the 60° and 75° bins,
and its performance was poor in relation to the 54° and
62° lighting directions, it was placed into the 75° bin.

As with our human subjects, the IC model was sensitive
to whether it was trained with near-frontal or extreme
illuminations. Specifically, in Experiment 1, training with
near-frontal illuminations produced 45% correct
performance at its worst. In contrast, in Experiment 2,
training with extreme illuminations produced 15% correct
at its worst. The results of Experiments 3 and 4, analogous
to Experiments 1 and 2, but with single lighting directions
at training, were less clear-cut in that we attempted to
approximate human experience by including six additional
randomly selected lighting directions (for the specific
images used, see Figure 4). Even still, performance for
Experiment 3, 78% correct at its worst, was better than
for Experiment 4, 72% correct at its worst, again
indicating that the IC model is sensitive to the quality of
the images with which it is trained.

 Our interpretation of these results is that, as in the
human psychophysical experiments, extreme shadows in
the training images do not allow the IC model to
construct a robust representation of the lighting space for
each face. In contrast, when the faces are clearly
illuminated during training, the IC model is apparently
able to create a much better approximation of the actual
lighting space.

Finally, Experiment 5 used training lighting directions
that spanned both near-frontal and extreme lighting
directions, all lying along a horizontal meridian of the
lighting sphere. Here performance was remarkably poor at
all but the test lighting condition closest to the training
set. This result suggests that the IC model is quite bad at
creating a generic lighting model for an object when the
trained lighting directions are all accidentally aligned.
Apparently when lighting changes only interact with a
singular aspect of an object’s geometry, insufficient
information is available regarding how the surfaces of an
object will appear when illuminated from an orthogonal
direction. This is exemplified by the fact that the IC
model was quite bad at identifying faces when the lighting
direction was shifted vertically relative to all training
illuminations.

Comparing Psychophysical and Computational Results
How do we compare the performance of a putative

model of human performance with actual observations of
human performance? One approach would be to take the
comparison at face value and simply assess where the
model performance is better, where human performance is
better, and where the two are essentially the same.
However, this sort of comparison is rife with peril in two
respects. First, nearly every extant computational model of
vision deals only with a small part of the “vision problem”;
in contrast, the human observer is always applying a
complete vision system which includes massive early
filtering, sophisticated mid-level organization, and a
remarkably rich representational space. Thus, there is little
reason to believe that a model should perform anywhere
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near as well as a human (let alone a pigeon or rat!).
Second, even if a model did approach the level of human
performance, it would most likely be doing so for very
different reasons. Thus, the fact that the IC model actually
does in many cases come close to the absolute
performance of our subjects is not particularly
informative.

Given this context, is it possible to make any statement
about models of computer vision vis a vis human vision?
Indeed it is. Specifically, a good computer vision model
intended to capture some aspect of human vision is
responsible only for that aspect. That is, it would be a
mistake to claim that a given model does any more than
model one specific mechanism of human vision. In the
case of the IC model, that specific mechanism is how a
recognition system generalizes from known to unknown
lighting conditions for a given image of an object. This
mechanism is but one factor that mediates the overall
performance of the larger system, but it is the particular
element that mediates how performance modulates across
light variation. This means that the patterns of
generalization from known to unknown light conditions
may be compared for the IC model and our human
subjects (although we are intrigued by the fact that model
accuracy and human accuracy are sometimes quite close!).

The overall general gradient of performance between
the IC model and humans is illustrated in the correlations
shown in Table 1. The first set of correlations represent
the data with the training sets included in the calculations,
while the second set does not contain this data. The
correlations without the training sets are probably more
representative of the pattern between human performance
and the IC model. As mentioned earlier, because the
model is not a perfect representation of actual human
vision but merely a possible representation of a specific
chunk, it always performs very well on images that were
previously viewed, i.e., training images. On the other
hand, humans can apply a great deal of class knowledge to
the recognition of faces, so although they are always
poorer at recognizing training images, they are typically
much better at test images than the IC model. That is,
humans generally know how the appearance of a human
face will change with changes in lighting direction and
they can use this general information to make inferences
about the appearance of specific faces.

Experiment With Training
Data

Without Training
Data

1 0.992 0.991
2 0.388 0.962
3 0.966 0.944
4 0.796 0.941
5 0.896 0.905

Table 1. Correlations (Pearson’s r) between the IC model
and psychophysically assessed human subject performance
for Experiments 1-5.

The Microstructure of Generalization. Beyond the fact
that as test images were further and further from training
images, both human observers and the IC model exhibited
a general decrease in recognition accuracy, there is the
question of how specific lighting directions affected
performance. A general characteristic of the human-model
comparison is the degree of similarity in the deviations
from linearity in both recognition functions. In certain
cases, when there was a deflection in the response of
humans, a similar deflection was found for the model;
other times this was not the case. However, some of the
more subtle similarities between the two patterns of
performance are not visible in Figures 7-11 because we
“binned” the data into five qualitative categories for
purposes of clarity of presentation. In particular, in the
raw data, there was generally an inflection point in
performance at the 45° distance from training for both
human observers and the IC model. Another specific
similarity between humans and the IC model is that both
showed poorer overall performance in Experiment 5
relative to their own respective performance in
Experiments 1-4. Thus, both human subjects and the IC
model appear sensitive to an accidental alignment of all
lighting directions during training. Such microstructure
comparisons are important for understanding exactly how
humans and computational systems compensate for
lighting variability and should be explored in more detail
in future studies.

General Discussion

To date there has been surprising little work on how
biological systems compensate for variations of lighting in
a scene. To some extent this stems from a failure to
recognize the difficulty of the problem and the
assumption that edge-based models are able to produce
lighting-invariant descriptions. Other factors include an
inability to readily generate stimuli under varying lighting
conditions and a lack of models that make any concrete
predictions about the representation of lighting
information and its impact on recognition. At the same
time, because they were often intended as working, real-
world systems, recognition models in computer vision ran
head on into the problem of lighting. As the lighting
direction shifts, mean illumination, shading gradients,
shadows, and specularities on an object may all change in
dramatic fashion.

Recent work brings together these two threads. First,
several studies of human recognition under varying
lighting conditions reveal that we are indeed sensitive to
changes in illumination (Tarr et al., 1998), even for
highly-familiar classes such as faces (Braje et al., 1998).
Second, unlike some earlier models within computer
vision (e.g., Turk & Pentland, 1991a, 1991b), a new
image-based approach to object recognition allows for the
recognition of objects across varying lighting conditions
(Hallinan, 1994; Belhumeur & Kriegman, 1998).
Consider the fact that human vision is sensitive to
variations in lighting. Although the inclusion of lighting
parameters in high-level object representations may seem
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inefficient at first glance, there is evidence that such
information is critical in the disambiguation of three-
dimensional structure, particularly for unfamiliar objects
(Tarr et al., 1998) or under-constrained scenes (Kersten et
al., 1996; Kersten et al., 1997). Thus, not only do human
observers derive shape information from shading gradients
and surface orientation from specularities, but we also
draw on shadows to provide constraints on the otherwise
ambiguous three-dimensional layout of a scene. However,
there is some cost to relying on such information –
recognition performance, which without the presence of
such information might be lighting invariant, becomes
lighting sensitive. That is, the object representations we
remember and use for recognition include information
about the particular lighting conditions under which
objects were actually seen. Therefore, changing the
lighting from a familiar to an unfamiliar configuration will
negatively affect recognition. As mentioned, we have
observed this effect for both novel and familiar objects.
Examination of the pattern of this illumination sensitivity
is the first step towards understanding the specific
algorithms being used by the human visual system to
compensate for variations in lighting.

The results of the present study provide one of the first
direct comparisons between the performance of human
observers and a functional computer vision recognition
system. Although neither the behavioral task used here,
the recognition of static views of faces, nor the
implemented algorithm used for recognition, the
Illumination Cone (IC) model, address the question of
how generic object recognition is achieved, both the task
and the model capture critical aspects of the recognition
process. Specifically, we were interested in how biological
and machine vision systems compensate for the dramatic
changes in the appearance of objects that occur with
variable lighting. Human faces were used as the stimulus
domain because they offer a paradigmatic recognition
problem that is both complex and of great interest.
Building on recent work in both research communities we
tested the generalization performance of human observers
and the IC model under similar training conditions. In
each of five experiments observers and the model learned
the identity of ten faces under a small subset of lighting
directions and were then tested with the same faces
appearing under new lighting directions. The ability to
generalize from familiar to unfamiliar illumination
conditions was then compared across human subjects and
the IC model.

Critically, we manipulated the nature of the training
images in each experiment. Experiment 1 used a set of
near-frontal lighting directions, Experiment 2 used the
mirror of this set, creating extreme illumination
conditions, Experiment 3 used a single frontal lighting
direction, Experiment 4 used the mirror of this, a single
extreme direction, and, finally, Experiment 5 used a set
that spanned the horizontal meridian of the lighting
sphere. Across these different training conditions we
obtained the following results:

•  Although the IC model exhibited higher accuracy for
the exact images shown in training, it often
performed worse than humans for the same faces
under new lighting directions.

•  Humans were much better at generalizing from
extreme lighting directions than was the IC model.
On the other hand, recognition performance for
subjects and the model was similar when
generalizing from near-frontal lighting directions.

•  Humans were able to perform at a more constant
level with new illuminations distant from the
training set when the training set was comprised of
extreme lighting directions. In contrast, when the
training set was comprised of near-frontal
directions, generalization fell off rapidly with
distance from training images.

•  When the training set was comprised of lighting
directions along the horizontal meridian, humans
were far better than the IC model at generalizing to
test images arrayed vertically around this horizontal
axis.

We wish to reiterate that some of the above differences
are inherent in the comparison we are making between the
full vision system of humans and extremely limited vision
system implemented in the IC model. Moreover, although
humans must recognize faces in the context of their
familiarity with 1000’s of similar objects (in particular
other faces), they may also use their knowledge of the
general geometry of faces as a class to make inferences
regarding the appearance of new faces under novel
lighting directions (for a similar class-level mechanism for
making inferences about novel viewpoints, see Tarr &
Gauthier, 1998). These factors lead us to expect human
observers to display both better generalization across all
unfamiliar illumination conditions and dramatically better
generalization for lighting directions far from the training
set as compared to the IC model. At the same time, the
fact that the IC model has few competitors for an
individual face under the trained illumination conditions,
while humans have 1000’s, leads the model to perform
better than humans for the exact images used in training.

Even given these differences, there is remarkable
similarity in the performance of our human subjects and
the IC model. It is worth remembering that even the fact
that humans show any systematic lack of lighting
invariance is somewhat contrary to “standard” thinking in
the psychophysical literature. To date, all studies of
illumination dependence in human object recognition
have only compared changed to unchanged lighting in a
qualitative manner – never examining how recognition
performance varies as a function of distance from known
illumination conditions. Under these circumstances it is
difficult to infer much about the computational
algorithms used to compensate for lighting variability,
even more so because most qualitative comparisons have
revealed only small effects of changing lighting direction
(Braje et al., 1998; Tarr et al., 1998). Here we extend
these findings in a more systematic fashion, exploring not
only how performance varies as the lighting direction is
moved further and further from the original training
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conditions, but how well human vision generalizes across
both standard and unusual lighting conditions, for
instance, when most of the face is in shadow due to
extreme lighting directions. A second important feature of
the present study is the execution of analogous
experiments in both humans and machine vision systems.
Specifically, we employed a computational model
specifically designed to account for lighting variability in
scenes. The performance of this model in each experiment
was then directly compared to the generalization pattern
obtained from human observers. These comparisons are
summarized above, but overall it is clear that both humans
and the IC model show a similar sensitivity to lighting
direction, although specific effects are mitigated somewhat
by the highly-familiar nature of faces for human subjects.

Such results indicate that one important future study
involves extending the present methods to entirely novel
object classes for which neither humans nor any
computational model would have pre-existing knowledge.
A second important direction is to compare human
performance to recognition systems that address the
question of lighting variability using different algorithms
from the IC model. For example, the approaches
implemented in both the Lades et al. (1993) and Atick,
Griffin, & Redlich (1996) systems should be considered
among others. In terms of the conditions under which
these and other models are compared to human observers,
there are also more complex lighting manipulations that
might be implemented. One of the most important is the
inclusion of multiple simultaneous light sources for each
image. Such complexity may make images more difficult
to interpret, but also provide additional constraints on the
extraction of a lighting model for the scene, as well as the
structure of the object. Finally, we should consider that
our human subjects benefited from their prior experience
with faces. Currently the IC model (as well as most other
recognition models that address lighting variability) does
not represent information about an object class – rather a
separate and unique illumination cone is constructed for
each individual face. However, it is apparent that class-
level knowledge about how illumination generically affects
the appearance of members of the class is a desirable
feature to incorporate into future models. More generally,
this last point illustrates that a consideration of human
visual abilities in the context of models drawn from
computer vision is not a one-way street. Both approaches
benefit from the comparison and ultimately more robust
machine vision systems and better accounts of biological
vision will result.
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