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Abstract—A straightforward way to illustrate a 3D model is to use a line drawing. Faces in a 2D line drawing provide important

information for reconstructing its 3D geometry. Manifold objects belong to a class of common solids and most solid systems are based

on manifold geometry. In this paper, a new method is proposed for finding faces from single 2D line drawings representing manifolds.

The face identification is formulated based on a property of manifolds: each edge of a manifold is shared exactly by two faces. The two

main steps in our method are 1) searching for cycles from a line drawing and 2) searching for faces from the cycles. In order to speed

up the face identification procedure, a number of properties, most of which relate to planar manifold geometry in line drawings, are

presented to identify most of the cycles that are or are not real faces in a drawing, thus reducing the number of unknown cycles in the

second searching. Schemes to deal with manifolds with curved faces and manifolds each represented by two or more disjoint graphs

are also proposed. The experimental results show that our method can handle manifolds previous methods can handle, as well as

those they cannot.

Index Terms—3D models, face identification, geometry, graphs, line drawings, manifolds.
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1 INTRODUCTION

A2D line drawing is the simplest and most direct way of
illustrating a 3D object. It would be very helpful if such

a drawing can be used for generating a 3D model in a
CAD system. Unfortunately, current CAD tools cannot
directly convert a line drawing into a 3D object, denying
designers, especially conceptual designers, a convenient
means of input. Therefore, it is highly desirable to develop
algorithms that can convert a design sketch into a 3D
model. An object consists of faces. If the face configuration
of an object is known before reconstructing its 3D geometry,
the complexity of the reconstruction will be reduced
significantly. Roughly speaking, the conversion problem
can be divided into two subproblems: face identification
and 3D geometry reconstruction. In this paper, we only deal
with the face identification of 2D line drawings of manifold
objects. For 3D geometry reconstruction, the reader is
referred to references [1], [2], [3], [4], [5], [6], [7], [8].

A 2D line drawing is defined as the projection of a
wireframe object where all the edges (including silhouettes)
and vertices of the object are visible and the drawing can be
represented by a single edge-vertex graph.1 Manifold

objects belong to a class of common solids (see the next
section for the definition of a manifold). Most solid
modeling systems are based on manifold geometry. Fig. 1
shows two line drawings representing two manifolds,
together with their individual faces. Note that in Fig. 1a,
the cycle ð1; 2; 3; 4; 1Þ is not a real face, and in Fig. 1b, there is
a hole in the object. In Section 3, we point out that previous
algorithms that have been reported in the literature cannot
handle these manifolds if only 2D line drawings are given
(the 3D coordinates of vertices and the number of faces of a
drawing are unknown). It is more attractive to develop
algorithms that can find faces in drawings of both manifold
and nonmanifold objects. Some researchers have tried to
reach this goal [9], [10], [11]. However, while successfully
dealing with relatively simple nonmanifolds, their algo-
rithms fail to find correct faces of some kinds of manifolds
such as those in Fig. 1.

Face identification from line drawings with hidden lines
visible has many applications, which include

1. flexible sketching interface for conceptual designers
who still tend to prefer pencil and paper to mouse
and keyboard in current CAD systems [3], [12],

2. automatic conversion of existing industrial wire-
frame models to solid models [10], [12], [13],

3. providing rich databases (face topology) to object
recognition systems or reverse engineering algo-
rithms for shape reasoning [10], [12], and

4. interactive generation of 3D models from images
[7], [8].

A line drawing with hidden lines visible makes it possible
to reconstruct its complete 3D model. Given a line drawing,
the work of face identification can be done by a designer by
manually selecting the edges of the faces. However this is
troublesome. Our work in this paper can automate the
process and simplify the user interface.
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This paper proposes a new method for identifying faces
in a line drawing representing a manifold. The method is
built upon a fundamental property of 2-manifolds (or
simply manifold), which states that each edge of a manifold
is shared exactly by two faces [14]. First, a set of cycles,
which includes all the real faces, is generated from a line
drawing. Then a tree search algorithm is used to select
subsets of cycles from the set such that each edge of the
drawing is passed exactly twice by the cycles in each subset.
In order to speed up the search, a number of properties
relating to planar manifold geometry are proposed to
reduce the number of cycles. An algorithm incorporating
these properties is presented to efficiently discard most
cycles that cannot be real faces. Schemes to deal with
manifolds with curved faces and manifolds each repre-
sented by two or more disjoint graphs are also proposed.
Our method can handle manifolds previous methods can
handle, as well as those they cannot.

2 TERMINOLOGY

Before proceeding to the next section, we summarize some
graph theory and topology terms that will be used in this
paper. Some definitions are simplified. More detailed
descriptions, except for chord, virtual line, and internal face
can be found in [15], [16].

. Graph. A graph is defined to be a set of points
(vertices) that are interconnected by a set of lines
(edges). A graph G may be written as G ¼ ðV ;EÞ
with V and E being its vertex set and edge set,
respectively.

. Planar graph. A planar graph G is a graph that can
be drawn in the plane without any two of its edges
intersecting.

. Embedding. An embedding of a graph G is a
representation of G on a surface so that none of its
edges intersect. A planar graph can be embedded in
the plane.

. Degree. The degree of a vertex v, written dðvÞ, is the
number of edges adjacent to v.

. Cycle. A cycle in a graph is formed by a sequence of
vertices v0; v1; . . . ; vn where n � 3, v0 ¼ vn, the n
vertices are distinct, and there is an edge connecting
vi and viþ1 for i ¼ 0; 1; . . . ; nÿ 1. A cycle is denoted
by ðv0; v1; . . . ; vnÞ. The length of a cycle is the number
of edges it passes.

. Chord. A chord of a cycle is an edge connecting two
nonadjacent vertices of the cycle.

. Virtual line. A virtual line of a cycle is an imaginary
straight line connecting two nonadjacent vertices of
the cycle. It does not appear as an edge in the
drawing.

. k-connected. A graph is called k-connected if at least k
of its vertices and the edges adjacent to them must be
removed to make the remaining graph disconnected.

. Tree. A tree is a connected graph without cycles.

. Spanning tree. A spanning tree of a connected graph
G is a tree of G and contains all the vertices of G.

. Manifold. A manifold, or more rigorously 2-mani-
fold, is a solid where every point on its surface has a
neighborhood topologically equivalent to an open
disk in the 2D Euclidean space.

. Genus. The genus of a surface can be considered as
the number of holes that pass through it completely.
The genus of a graph G is the smallest genus of a
surface on which G can be embedded.

. Internal face. An internal face is a face inside an
object and not on its boundary. It is not a real face.
The cycles ð1; 2; 3; 4; 1Þ in Figs. 1a and 1b are two
internal faces.

3 RELATED WORK

Related work on interpretation of line drawings may be
divided into three areas: line labeling, 3D reconstruction
from multiple views of wireframe models, and face
identification and 3D reconstruction from single line
drawings with hidden lines visible. Papers related to line
labeling focus on finding a set of consistent labels from a
line drawing without hidden lines to test if it is legal, and/
or 3D reconstruction based on such a labeled line drawing
[17], [18], [19], [20], [21], [22], [23]. Papers in the second
group try to reconstruct a 3D CAD model from its multiple
(three, in general) orthographic projections [24], [25], [26],
[27]. More information can be found from three ortho-
graphic views for the reconstruction task than from a single
projected view, which is the premise of the third group, to
which our work here belongs. Note that we do not deal with
3D reconstruction in this paper; we discuss in the following
only the work on face identification from single line
drawings with hidden lines visible.

A traditional wireframe model is a collection of all the

3D vertices and edges. Some methods mentioned below use

more or less the information of 3D vertex coordinates for

face identification from a wireframe model. Only 2D line
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Fig. 1. (a) and (b) Two line drawings. (c) and (d) Their corresponding faces.



drawings (without 3D information) are given in our
algorithm.

Markowsky and Wesley [28] proposed a topologically-
driven algorithm that can handle wireframes with straight
lines. However, their algorithm requires the 3D coordinates
of vertices to calculate the normals of planes and is limited
to objects with only planar faces.

Hanrahan [29] and Dutton and Brigham [30] used purely
topological methods to find the faces of a drawing. A drawing
(graph) is embedded in the plane with a planar embedding
algorithm [15]. The resulting regions represent the faces of the
corresponding object. These algorithms are suitable only for
objects of genus 0 whose drawings are 3-connected, because
of the requirement of a unique planar embedding for a
drawing. However, many drawings are not 3-connected such
as the one shown in Fig. 1a.

Another approach also using concepts from graph theory
was presented by Ganter and Uicker [31]. From the
spanning tree of the graph of a drawing, a set of
fundamental cycles is generated. Then, to identify the faces
of the drawing, a cycle reduction procedure is designed
using these two observations: 1) a cycle, if it is a true face in
a given object, has a minimum number of edges in common
with any other cycle and 2) the sum of all the edges is a
minimum when the cycles make up the true faces of the
object. The deficiency in this approach is that it cannot
handle objects with holes and internal faces.

Courter and Brewer [32] and Hojnicki and White [13]
improved Ganter and Uicker’s algorithm by employing
better cycle reduction schemes. Their algorithms are able to
detect internal faces automatically, but fail when dealing
with an object of genus > 0 if the number of faces of the
object is unknown.

Bagali and Waggenspack’s approach [12] is based on an
efficient shortest path algorithm for cycle generation. Their
algorithm is fast, conceptually simpler and easy to imple-
ment, but limited to 3-connected drawings of genus 0.

Shpitalni and Lipson [9] presented two algorithms for
the face identification problem. Their first algorithm, using
the planar embedding algorithm to locate faces of a
drawing, is similar to those in [29], [30]. Although they
put in more effort to find multiple interpretations of a
drawing that is not 3-connected, the algorithm is still
suitable only for manifolds of genus 0. Their second
algorithm is an optimization-based procedure. The criterion
they employed to formulate the face identification is based
on the observation that a human tends to choose a face
configuration in which as many edges as possible take part
in as many faces as possible. This algorithm is suitable for a
large set of drawings representing manifold and nonmani-
fold objects. However, it fails when handling the objects
with internal faces. For example, the internal faces
ð1; 2; 3; 4; 1Þ in Figs. 1a and 1b, are output as two real faces,
while the real face ð1; 4; 3; 2; 5; 6; 7; 8; 1Þ in Fig. 1a cannot be
found, resulting in a nonmanifold object like that in Fig. 2
when the object in Fig. 1a is seen from the right.

Liu and Lee [11] revisited the problem tackled by
Shpitalni and Lipson. They formulated the face identifica-
tion as a maximum weight clique problem and developed a
much faster algorithm to find faces in a line drawing. Their

algorithm outputs the same results of face identification,

and has the same problem, as Shpitalni and Lipson’s.
A distinct decomposition method for extracting face

topologies from wireframe models was proposed by

Agarwal and Waggenspack [10]. The method uses a

divide-and-conquer strategy to remove stars (tetrahedra,

N-sided pyramids, or multiply connected stars) from a

drawing. The real faces of the drawing are obtained by

combining triangles that are created from the stars. This

algorithm works for most manifolds and some simple

nonmanifolds, and does not take the internal face

ð1; 2; 3; 4; 1Þ in Fig. 1b as a real face. However, applying

their algorithm to the drawing in Fig. 1a, we found that it is

unable to recognize the internal face ð1; 2; 3; 4; 1Þ and also

outputs a nonmanifold similar to that in Fig. 2. Note that

this internal face is formed by the two touching faces

ð1; 2; 3; 4; 1Þ and ð1; 2; 5; 6; 7; 8; 1Þ, resulting in a real face

ð1; 4; 3; 2; 5; 6; 7; 8; 1Þ on the boundary of the object. Let us

consider another drawing shown in Fig. 1b (shown again in

Fig. 3a), on which Agarwal and Waggenspack’s algorithm

fails again. According to the rules of selecting a peak vertex

from which to create a tetrahedron in Agarwal and

Waggenspack’s method, vertex a may be chosen and two

pseudoedges bd and cd are added. After the tetrahedron

(Fig. 3b) is removed, the remaining object no longer

contains edges ab and ac, indicating that none of the

subsequently generated stars will contain them either. Thus,

edge ab appears only in triangles abc and abd, and edge ac

only in triangles abc and acd. Because each of these two

edges is contained in only two triangles, the cycle abc is not

considered as an internal face but a real face by Agarwal

and Waggenspack’s algorithm. However, if the object is a

manifold, abc is just one end of the hole (not a face).
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Fig. 2. The side profile of a possible nonmanifold that is made up of the

faces found from the drawing in Fig. 1a by Shpitalni and Lipson’s second

algorithm.

Fig. 3. A manifold to which Agarwal and Waggenspack’s algorithm fails

to be applied: (a) the drawing where the dashed lines are pseudoedges

and (b) a tetrahedron removed from the drawing.



The problem of generating faces that are topologically

correct but geometrically invalid was noticed by the

authors in [9], [10], [13]. Two examples are shown in

Fig. 4. Agarwal and Waggenspack [10] and Hojnicki and

White [13] used geometric checks to eliminate nonplanar

faces. These checks are possible only when the 3D

coordinates of the vertices of the drawings are available.

Shpitalni and Lipson [9] employed an image regularity,

skewed orthogonality, to select the most plausible faces. The

degree of skewed orthogonality of the two faces in Fig. 4b is

distinctly larger than that of the two faces in Fig. 4c. Thus,

Shpitalni and Lipson’s scheme can find the correct face

configuration for the drawing in Fig. 4a. But, it may fail in

dealing with the one in Fig. 4d because the pair of faces in

Fig. 4e does not exhibit more skewed orthogonality than

that in Fig. 4f.
For the face identification for manifolds of genus > 0,

Bagali and Waggenspack [12] pointed out that no known

topological algorithms exist that can solve the problem in

polynomial time with respect to the problem size (number

of vertices or edges of a drawing). If G is a connected graph

(representing a manifold) with e edges, v vertices, f faces,

and genus g, then Euler-Poincare formula [16] states that

f ¼ eÿ vþ 2ÿ 2g:

Given a general graph G, finding the genus of G was

proven to be NP-complete [33], which means that determin-

ing the number of faces of G is also NP-complete. Thus, the

two previous algorithms, developed by Shpitalni and

Lipson [9] and Agarwal and Waggenspack [10] for objects

with genus � 0, have exponential complexities.
In summary, the previous approaches to the face

identification from line drawings with hidden lines visible

are still not satisfactory although much work has been done.

It is more difficult to develop an algorithm that can perform

well on both manifold and nonmanifold objects. Even for

manifolds only, none of the previous algorithms can handle

both the objects in Fig. 1. When the case in Figs. 4e and 4f

appears, these algorithms cannot choose the correct pair of

faces if no information about the 3D coordinates of

the vertices is provided. In addition, it seems that it is

impossible to develop an efficient (polynomial) algorithm to
handle drawings with genus � 0.

4 FORMULATION OF FACE IDENTIFICATION

This section formulates the face identification as a search
problem with two steps: finding a set of cycles from a line
drawing and searching for subsets from this set such that
every edge of the drawing appears exactly twice in each
subset.

Recall that a 2D line drawing is a projection of a wireframe
object where all the edges and vertices of the object are drawn.
We also require that the object is observed from a general
viewpoint such that its curved boundary, if any, is projected
into curves, not straight lines. In Sections 4 and 5, we assume
that a drawing (manifold) can be represented by one
connected vertex-edge graph. A scheme to handle a manifold
represented by more than one connected graph is given in
Section 6. When a 3D manifold is projected onto the plane, the
boundary of any one of its planar faces forms a nonself-
intersecting cycle in the drawing, while the boundary of any
one of its curved faces forms one or more cycles separated by
silhouette lines or curves. Fig. 5 shows the drawing of a
manifold with planar and curved faces. Separated by the
silhouette line ab, one curved face is projected into two
nonself-intersecting cycles, while another curved face
ðc; d; e; f; cÞ into one self-intersecting cycle.

In a line drawing of a manifold, there are many cycles,
only a small subset of which represents the real faces of the
manifold. Many algorithms have been developed to find all
the cycles of a graph [34]. Any one of them can be used to
generate all the cycles of a drawing.

Suppose that all the cycles of a drawing are given. Now,
we consider how to find the real faces from them. The
fundamental property of manifolds, which states that each
edge of a manifold is shared exactly by two faces, is the
basis of our method. With this property, the face identifica-
tion problem is formulated as follows:

Definition 1. Given a line drawing of a manifold and the set SC
of cycles generated from it, 1) find subsets X1; X2; . . . ; Xm,
where m is the number of subsets and Xk � SC, 1 � k � m,
such that each edge of the drawing appears exactly twice in all
the cycles in Xk and 2) select solutions Y1; Y2; . . . ; Yn, where n
is the number of solutions and Yl 2 fX1; X2; . . . ; Xmg,
1 � l � n, such that jYlj ¼ maxfjX1j; jX2j; . . . ; jXmjg.

In this definition, jSj denotes the number of elements in
S which is a finite set. It is likely that m > n for a line
drawing. Fig. 6 shows such an example, where both subsets

1582 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 12, DECEMBER 2002

Fig. 5. A manifold where hidden edges are shown in dashed for easier
observation.

Fig. 4. Two examples of topologically correct but geometrically invalid

faces: (a) and (d) drawings, (b) and (e) correct faces, and (c) and (f)

geometrically incorrect faces.



of cycles in Figs. 6b and 6c satisfy the first condition in
Definition 1. However, we choose the former subset as the
solution because it contains more cycles than does the latter.
The second condition in Definition 1 stems from the
observation that human beings tend to choose as many
faces as possible when interpreting a line drawing. If n > 1,
more than one solution is found. In this case, further effort
is needed to select the most plausible one. This issue will be
discussed later.

The backtrack algorithm [35] can be used to find the
solutions Y1; Y2; . . . ; Yn while searching a tree that is
constructed by the cycles. More details about how to apply
it to this problem is discussed in Section 6. The key issue in
using the backtrack algorithm is that it is NP-complete and
thus consumes a large amount of computational time when
there are many cycles. It seems that no efficient algorithms
are available to solve the problem in Definition 1. The
problem becomes more difficult due to the fact that the
number of cycles of a graph is generally exponential in the
number of vertices [35]. Let us consider the drawing shown
in Fig. 5. There are 861 cycles in it and the backtrack
algorithm took 1,237 seconds (more than 20 minutes) on a
677 MHz Pentium III PC to find the unique solution
(13 faces). If the object is modified a little as shown in Fig. 7,
there are 1,487 cycles in it and the algorithm required
11,969 seconds (more than three hours) on the same PC to
find the 14 faces.

In general, the number of cycles in a drawing is much
larger than the number of real faces in the drawing. For
some manifolds (such as those consisting of only planar
faces), it is possible to find conditions that will exclude
some cycles from being real faces (see the next section).
Therefore, reducing the set of cycles while still keeping all
the real faces in it is a practical approach to solving the
problem.

5 FINDING CYCLES FACES

In this section, we exploit certain properties concerning the
possibility of a cycle being a real face, based on the
connectivities between the edges and the vertices within a
drawing. We first consider manifolds with only planar faces
and then manifolds with curved faces. An algorithm for
finding the cycles of a drawing is given. A scheme is also
proposed to deal with a manifold represented by more than
one disjoint graph.

Here, we reiterate that vertices, which are end points of
edges, are represented explicitly in a graph and the crossing
point of two edges is not a vertex and cannot be used to
form faces in a line drawing. Our algorithm takes a graph as

the input and such crossing points do no exist in the data
structure. However, the graph needs to be created from a
drawing, which might be drawn directly on a computer or
scanned in from a drawing on paper. In the former, the
online input information can distinguish whether a point is
a vertex based on, for example, the starting and ending
positions of a stroke. In a scanned-in drawing, a vertex can
be identified based on the continuity of the edges meeting
it. In cases where such an identification cannot be made
absolutely, user intervention may be required.

5.1 Planar Manifold Geometric Properties

It is not difficult for humans to interpret a drawing. In fact,
a drawing representing a planar manifold itself carries
useful geometric information that can be utilized to
eliminate cycles that cannot be real faces. All the lines in
such a drawing are straight. If two lines are not collinear in
a drawing and a face passes through them, then they
determine the plane in which the face lies. In addition, it is
assumed that every line that exists in a drawing represents
a real edge; that is, it separates two faces lying in two
different planes. Every edge is finite and terminates at two
end vertices, each formed by the intersection of three or
more planes (or edges). Consequently, every vertex has
degree � 3.

The following Property 1, which has been mentioned
before, is stated again for the frequent reference to it in the
proofs of the subsequent properties.

Property 1. Each edge of a manifold is shared exactly by two
different faces.

Corollary 1. At a vertex of degree 3, there must be three faces,
each containing a different pair of the three edges at the vertex.

Corollary 1 is a consequence of Property 1. It requires
that each of the three incident edges be fully used up, that
is, shared by two of the three faces and, therefore, is not
available to be part of any other face.

Property 2. A self-intersecting cycle is not a real face in a
drawing representing a planar manifold.

It is obvious that the projection of the boundary of a
planar face cannot form a self-intersecting cycle. Before
presenting the next property, we consider two cycles C1 ¼
ðk; l; b; n;m; j; kÞ and C2 ¼ ðk; a; o; c; d; e; f; g; h; i; j;m; l; kÞ in
Fig. 8. Obviously, they are not real faces. It is easy to see that
the chord lm prevents C1 from being a real face. C2 has
another chord kj and the next Property 3 states that this
chord also prevents C2 from being a real face.
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Fig. 6. (a) A cube, (b) the desired solution with six faces of the cube, and

(c) a subset of four cycles where each edge of the cube appears twice.

Fig. 7. An object obtained by a modification of the object in Fig. 5.



Property 3. A cycle cannot be a real face of a planar manifold if it

has a chord with at least one of the chord’s two vertices met

exactly by three lines.

Proof. Consider part of the drawing of a manifold shown in

Fig. 9. From the condition in this property, assume that

cycle C1 ¼ ða; b; c; . . . ; i; j; k; . . . ; aÞ has a chord bj, the

degree of vertex b is 3, and the three lines meeting at

vertex b are ba, bc and bj. By Property 1, there must be

two faces passing through edge bj. By Corollary 1, one of

them must also contain ba and the other bc; let them be

C2 ¼ ðj; b; a; . . . ; jÞ and C3 ¼ ðj; b; c; . . . ; jÞ, respectively. If

C1 is a real face, then a; b; c, and j, being vertices in C1,

must be in one plane. Further, at least one of the two

vertices a and c is not collinear with bj. Without loss of

generality, let a be such a vertex. Then C2 and C1, both

containing a; b and j, must lie in the same plane, which

contradicts the assumption that two adjacent faces

sharing a common line are not coplanar. Hence, the

cycle C1 cannot be a real face of the manifold. tu

Let us consider Fig. 8 again. Cycles

C3 ¼ ðl; b; c; d; e; f; g; n;m; lÞ

and C4 ¼ ðl; b; a; i; n;m; lÞ cannot be real faces. The next

property points out that the chord bn prevents them from

being real faces.

Property 4. A cycle cannot be a real face of a planar manifold if

both of the following conditions are satisfied. 1) The cycle has a

chord with at least one of its two vertices being of degree 4.

2) When this chord has only one vertex of degree 4, it is not

collinear with any of the other three lines meeting at that

vertex; when both of the vertices of the chord are of degree 4, for

at least one vertex, the chord is not collinear with any of the

other three lines meeting at that vertex.

Proof. We suppose that such a cycle is a real face and show
that this leads to a contradiction. In Fig. 10, C1 ¼
ða; b; c; . . . ; j; k; . . . ; aÞ with a chord bj is such a cycle
where dðbÞ ¼ 4 and bj is not collinear with any line in
fba; bc; bdg. By Property 1, there are two different real
faces passing through the chord. Let the two faces be C2

and C3. Besides bj, these two faces must each contain a
different edge in fba; bc; bdg. Without loss of generality,
let C3 contain bd, and, hence, C2 must contain ba or bc; let
it be bc as shown in Fig. 10. Then, since they both contain
vertices b; c and j that are not collinear, C1 and C2 must
lie in the same plane. This contradicts the assumption
that the two adjacent faces sharing a common line are not
coplanar and thus completes the proof. tu

In Fig. 1a, the cycle ð1; 4; 3; 2; 5; 6; 7; 8; 1Þ has a chord
connecting vertices 1 and 2, and the degrees dð1Þ ¼ dð2Þ ¼ 4.
This cycle can be a real face because the chord is collinear
with both the line connecting vertices 1 and 8 and the line
connecting vertices 2 and 5.

Property 5. A cycle cannot be a real face of a planar manifold if
the cycle has a chord that is completely or partially enclosed
inside the cycle.

Proof. Suppose, to the contrary, that such a kind of cycles as
illustrated in Fig. 11 are real faces. Clearly, the chord ad
in Fig. 11a must lie in the plane of cycle C1. Since ad is
not an edge of this cycle, it must be an edge of two other
cycles (faces). Thus, it is contained in three faces, which
contradicts Property 1. When the chord ad in Fig. 11b is
partially enclosed inside the cycle C2, the enclosed part
of the line ad still lies in the same plane with C2.
Similarly, this part is also shared by three faces, which
again contradicts Property 1. Hence, C1 and C2 cannot be
real faces. tu

Property 6. Let the three vertices of a cycle consisting of three
lines be a, b, and c. This cycle must be a real face if any of the
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Fig. 8. A manifold used to illustrate some cycles that cannot be real

faces.

Fig. 9. Part of the drawing of a manifold (solid edges) where the cycle

C1 ¼ ða; b; c; . . . ; i; j; k; . . . ; aÞ has a chord bj. The dashed lines denote

three cycles C1, C2 ¼ ðj; b; a; . . . ; jÞ, and C3 ¼ ðj; b; c; . . . ; jÞ that pass

through vertex b.

Fig. 10. Part of the drawing of a manifold (solid edges) with three cycles

C1ÿ3 (dashed lines) where bj is a chord of C1 and vertex b is met by four

lines.

Fig. 11. (a) A cycleC1 ¼ ðf; a; b; . . . ; c; d; e; . . . ; fÞwith a chord ad enclosed
completely by it. (b) Another cycle C2 ¼ ðf; a; b; . . . ; c; e; d; g; . . . ; fÞ with a
chordadenclosed partially by it. The dashed lines denote the two cycles.



following three conditions is satisfied: 1) the degrees of at least
two vertices of the cycle are 3 (Fig. 12a), 2) dðaÞ ¼ 3, dðbÞ ¼ 4,

and line bc is not collinear with any line in fbd; beg (Fig. 12b),

and 3) dðaÞ ¼ 3, dðbÞ ¼ dðcÞ ¼ 4, and line bc is not collinear
with any line in fbd; beg or any line in fcf; cgg (Fig. 12c).

Proof. Consider Figs. 12a, 12b, and 12c which show three
cycles of length 3 all with dðaÞ ¼ 3. Because of
Corollary 1, there must be a real face F (the dashed
lines in Figs. 12a, 12b, or 12c) passing through lines ab
and ac in each drawing. Now, we consider the three
cases corresponding to the respective conditions.

1. Let another vertex of degree 3 be b. By Property 3,
line bc cannot be a chord of the real face F . Thus,
bc must be an edge of F , forming a triangular face.

2. For triangle abc, no two lines can be collinear.
Since bc is not collinear with any line in
fba; bd; beg, bc cannot be a chord of the face F by
Property 4. Thus, bc must be an edge of F .

3. For triangle abc, no two lines can be collinear. Since
bc is not collinear with any line in fba; bd; beg or any
line in fca; cf; cgg, bc cannot be a chord of the faceF
by Property 4. Thus, bc must be an edge of F . tu

The intersection of two 3D planes is a straight line, the
2D projection of which is straight too. This leads to the next
property. This property is suitable for both manifolds and
nonmanifolds, and also used in [9], [11].

Property 7. The common lines of two adjacent planar faces of an

object must be collinear in the drawing of the object.

Property 8. If two adjacent planar faces of an object have a

common line and a common vertex that is not one of the two

endpoints of the line, then the line and the vertex must be
collinear in the drawing of the object.

Proof. In the 3D space, one line and one point, if they are
not collinear, determine a plane. Thus, the common
3D line and vertex must be collinear in order to be shared
by the two different adjacent planes. The projection of
the line and vertex also presents collinearity in the
drawing. tu

Property 9. Let the four vertices of a cycle consisting of four lines

and without any chord be a, b, c, and d. This cycle is a real
face if either of the following conditions is satisfied:

1) dðaÞ ¼ dðbÞ ¼ dðcÞ ¼ dðdÞ ¼ 3, and at least one pair of

lines in fðae; cgÞ; ðbf; dhÞg are not collinear where ae, cg, bf ,

and dh are four lines that connect to vertices a, c, b, and d,
respectively, (see Fig. 13a) and 2) dðaÞ ¼ dðbÞ ¼ dðdÞ ¼ 3,
dðcÞ > 3, and line ae and vertex c are not collinear where ae is
a line that connects to vertex a (see Fig. 13b).

Proof. In either case, there are exactly three real faces
passing through vertex a by Corollary 1. Let the faces be
C1, C2, and C3 where C1 passes through lines ab and ad,
C2 through ae and ad, and C3 through ae and ab (see
Figs. 13a and 13b). From Property 3, we know that if C1

passes through vertex c, neither line bc nor cd can be a
chord of C1. Therefore they must be edges of C1. Thus, it
follows that C1 ¼ ða; b; c; d; aÞ in either condition.

Now, suppose C1 does not pass through vertex c (i.e.
ða; b; c; d; aÞ is not a real face). Then, C1 must pass
through lines bf and dh. This causes C2 and C3 to pass
through dc and bc, respectively, due to Corollary 1. In
this case, C2 cannot pass through bc; otherwise, it will
further pass through bf , preventing C2 from being a real
face because of the chord ab (see Property 3). Similarly,
C3 cannot pass through dc. Now, let us consider two
cases corresponding to the two given conditions.

1. In Fig. 13a, when C1 does not pass through c, both
C2 and C3 can only pass through line cg, resulting
in the fact that these two faces have two common
lines ae and cg. Thus, ae and cg must be collinear
by Property 7. In other words, if ae and cg are not
collinear, C1 must pass through c, making
ða; b; c; d; aÞ a real face. Because of the symmetry
of Fig. 13a, we can also show that lines bf and dh
must be collinear if ða; b; c; d; aÞ is not a real face.
Therefore, if at least one pair of lines in
fðae; cgÞ; ðbf; dhÞg are not collinear, ða; b; c; d; aÞ
must be a real face.

2. In Fig. 13b, when dðcÞ > 3, C2 and C3 may pass
through any one or two edges except bc and dc
meeting at vertex c. Anyway, line ae and vertex c
are shared by C2 and C3. By Property 8, ae and c
must be collinear. Thus, ða; b; c; d; aÞmust be a real
face if ae and c are not collinear. tu

We now consider several examples shown in Fig. 14.
From Property 9, we know that the six cycles of length 4 in
Fig. 14a are all real faces, and from Property 6, triangles
ða; b; d; aÞ and ðc; b; d; cÞ in Fig. 14b, and ði; e; f; iÞ, and
ði; e; h; iÞ in Fig. 14c are real faces too. More real faces of
length 4 can also be found from Figs. 14b and 14c. However,
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Fig. 12. Three cycles of length 3 with different degrees of vertices: (a)

dðaÞ ¼ dðbÞ ¼ 3, (b) dðaÞ ¼ 3; dðbÞ ¼ 4, and (c) dðaÞ ¼ 3; dðbÞ ¼ dðcÞ ¼ 4.

The dashed lines denote the face F passing through lines ab and ac in

each case.

Fig. 13. Two cycles of length 4 consisting of four lines (a) dðaÞ ¼ dðbÞ ¼
dðcÞ ¼ dðdÞ ¼ 3 and (b) dðaÞ ¼ dðbÞ ¼ dðdÞ ¼ 3, dðcÞ > 3. The dashed

lines denote the three faces C1, C2 and C3 passing through vertex a.



the cycle ða; b; c; d; aÞ in Fig. 14b is not a real face since it has
a chord bd. The cycle ða; b; c; d; aÞ in Fig. 14c cannot be
considered as a real face because ak is collinear with cj and
bi is collinear with gd (Property 9). In addition, two adjacent
cycles ða; b; c; h; g; f; e; aÞ and ða; d; c; h; i; j; e; aÞ in Fig. 14b)
can be two real faces in that the common lines between
them, ae and ch, are collinear (Property 7).

Property 10. Let the four edges connected to a vertex v of degree 4
be va, vb, vc, and vd, respectively. If cycles C1 ¼
ða; v; b; . . . ; aÞ and C2 ¼ ðc; v; b; . . . ; cÞ are known to be two
real faces, then all the cycles passing through both edges va and
vc cannot be real faces.

Proof. If such a cycle C3 that passes through va and vc is a
real face, then each edge in fva; vb; vcg has been shared
by two real faces in fC1; C2; C3g. Since a real face passing
through edge vd must also pass through an edge in
fva; vb; vcg (say, va), then va is shared by three real faces,
which contradicts Property 1. Thus, C3 cannot be a real
face. tu

Property 11. Two cycles cannot be two real faces of a planar
manifold if they have the same virtual line and enclose it
completely.

Proof. Suppose, to the contrary, that the two cycles can be
two real faces. It is clear that a line must lie on a planar
face if it is enclosed completely by the face. Thus, the
virtual line lies on both the faces, meaning that it is the
intersection of the two faces. However, since it does not
appear to be a visible edge of the drawing, the two cycles
cannot be real faces. tu

Property 11 allows us to find some cycles that are
topologically valid but geometrically incorrect. Fig. 15 shows
such an example where two cycles ða; b; c; d; k; i; h; g; aÞ and
ða; f; e; d; k; l; j; g; aÞ have the same virtual line gk, which is
completely enclosed by the two cycles. Obviously, the two
cycles cannot be real faces of the manifold.

A set of properties relating to the drawings representing
planar manifolds has been defined. In the next section, we

will see how these properties are used to identify many of
the cycles that are or are not real faces, thus remove them
from and greatly improve the efficiency of, the subsequent
searching for the remaining real faces.

5.2 An Algorithm Based on the Properties

There are two schemes that can use the properties
developed in the last section to reduce the number of
cycles in a drawing. One scheme is to generate first all the
cycles using one of the available algorithms [34] and then
according to the properties to eliminate as many cycles that
cannot be real faces as possible. Another scheme is to
combine the properties into a cycle-search algorithm such
that most of the cycles unable to be real faces are not
generated. Obviously, the second scheme is more efficient.
Let us take two examples to see how the properties are
used.

Fig. 16a is the drawing of a stair model, in which there
are 4,228 cycles and only 14 cycles are real faces. If we first
search for all the cycles of length 4, then we obtain 12 cycles.
According to Property 9, we know that all these are real
faces. Thus, the lines am, bn, co, dp, eq, fr, gs, ht, iu, jv, kw,
and lx, can be deleted from the drawing because each is
shared by two real faces. In the remaining drawing, there
are only two cycles

ða; b; c; d; e; f; g; h; i; j; k; l; aÞ

and ðm;n; o; p; q; r; s; t; u; v; w; x;mÞ, which must be real
faces because of Property 1. For this drawing, we can easily
find a very small set of cycles by Properties 1 and 9. We do
not even need to search for real faces from within them
since they already are.

However, we are not always so lucky with most other
drawings. For the object shown in Fig. 16b, we can only
determine that one cycle C1 ¼ ða; b; c; d; aÞ is a real face by
Property 9 at first. Now, suppose that a depth-first search
algorithm [35] is employed to find other cycles. Since C1 is a
real face and no pair of its four edges are collinear, from
Property 7, we know that another real face passing through
edge ab is not allowed to pass through edges ad or bc. Thus,
it must pass through edges ae and bf . It is clear that edge ef
is not collinear with any of the edges eh, ae, and ej. From
these facts and Property 4, we can deduce that among all
the cycles that pass through edges ab, ae, and bf , only one
cycle C2 ¼ ða; b; f; e; aÞ may be a real face. By Property 1,
edge ab must be shared by another cycle besides C1.
Therefore, C2 must be a real face. Similarly, cycles
ða; e; h; d; aÞ, ðb; c; g; f; bÞ, and ðc; d; h; g; cÞ are real faces too.
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Fig. 14. (a) A rectangular block, (b) the block with a wedge removed, and

(c) the object in (b) with another wedge removed.

Fig. 15. A drawing where two cycles ða; b; c; d; k; i; h; g; aÞ and

ða; f; e; d; k; l; j; g; aÞ have the same virtual line gk (not an edge) and

are not real faces.

Fig. 16. Two manifolds.



As a result, edges ab, bc, cd, ad, ae, bf , cg, and dh can be
deleted from the drawing because each of them has been
passed exactly by two real faces. In the remaining drawing,
can we still determine which cycles are real faces? Consider
the cycles passing through edge eh. From Property 10, we
know that these cycles can only pass through edges hi and
ej based on the real faces found so far. Clearly, there are still
many such nonself-intersecting cycles in the remaining
drawing (self-intersecting cycles are excluded due to
Property 2). But, all these cycles except C3 ¼ ðe; j; i; h; eÞ
enclose chord ij and cannot be real faces according to
Property 5. Thus, C3 must be a real face such that edge eh is
shared by two real faces. Similarly, cycle ðf; n; r; g; fÞ is also
a real face. Therefore, edges eh and fg can be further
deleted. Now in the remaining drawing, we are not able to
directly determine which cycles are real faces with the help
of the properties. An edge is deleted only after all the cycles
passing through it are generated. However, Properties 2
and 3 can still be used to eliminate most of the cycles that
cannot be real faces. There are totally 11,052 cycles and
16 real faces in Fig. 16b. Using the algorithm presented in
the following, only 37 cycles are generated, seven of which
are already known to be real faces. Obviously, the proper-
ties are very efficient for excluding cycles that cannot be real
faces.

It has to be mentioned that the checking of the conditions
stated in the properties while searching is based on the
original drawing instead of its reduced one (in which some
edges have been deleted). Consider the drawing in Fig. 16b.
By the analysis above, we can delete edges ab, bc, cd, ad, ae,
bf , cg, and dh from the original drawing at first. In the
remaining drawing, we cannot say that cycle ðe; f; g; h; eÞ is
a real face according to Property 9, because neither of the
conditions in Property 9 is satisfied in the original drawing.
That an edge is deleted only means that no cycles in the
subsequent search can pass through it.

Note that, using Properties 2 and 3 we may often avoid
much fruitless search, before generating cycles that cannot
be real faces. Let us consider again the drawing in Fig. 16b.
Suppose we are now searching for cycles passing through
edge js: ðj; s; n; r; v1; v2; . . . ; vu; jÞ, where v1; v2; . . . ; vu 2
S ÿ fj; s; n; rg and S is the set of vertices of the drawing
(or remaining drawing after deleting some edges). Ob-
viously, there are many different cycles obtainable by the
permutations of some of the vertices v1; v2; . . . ; vu. However,
with the fact that edges js and nr intersect, we know that all
these cycles cannot be real faces, and thus we can stop the
search algorithm to generate these cycles.

The complete algorithm is summarized in 11 steps
below. Explanations for some of the steps are given after
the algorithm, which is called the DFSP algorithm in what
follows because it is actually a depth-first search (DFS)
algorithm with the properties incorporated to guide the
search.

1. Initialization:

a. Set a 2D array MI indicating if any two edges
intersect.

b. Set a 2D array MCL indicating if any two edges
are collinear.

c. Set a 2D array MCE indicating that all edges can
coexist in any cycles.

2. Search for cycles of length 3 and check if they are
real faces according to Property 6.

3. Search for cycles of length 4 and check if they are
real faces according to Property 9.

4. If there are real faces found, update MCE to indicate
that some pairs of edges cannot coexist in subse-
quently-generated cycles according to Property 7.

5. Delete edges each being passed by two real faces.
Denote the remaining drawing as G.

6. Stop if no edge exists in G.
7. Pick up from G an edge that is passed once by a real

face. If there is no such edge, pick up any one.
Denote the chosen edge as l and its two end vertices
as v1 and v2.

8. Search for cycles that pass through l in G:

a. According to MCE , check if there is an unambig-
uous path ðv2; v1; v

1; v2; . . . ; vnÞ, where all these
vertices are different.

b. If such a path exists (case 1), put the sequence s1:
vn; vnÿ1; . . . ; v1; v1; v2 into a 1D array Mpath;
otherwise (Case 2), put the sequence s2: v1; v2

into Mpath.
c. Based on Mpath, MI , MCL, and MCE , starting

from v2, find a set Sc of cycles passing through s1

(in Case 1) or s2 (in Case 2), using the DFS
algorithm in [35] incorporated with several
searching rules derived from some of the
properties.

9. Update MCE according to Properties 7 and 10 if there
is only one cycle in Sc and edge l is passed twice by
two cycles so far.

10. Delete edge l from G. Denote the reduced drawing
as G1. Check if there are vertices of degree 1 in G1. If
so, delete edges connecting to these vertices from G1.
Repeat this procedure until all the degrees of vertices
in the last-reduced drawing Gm are at least 2 or until
no edges exist.

11. Set G ¼ Gm and go to Step 6.

We now explain some of the steps in the DFSP algorithm.
The 2D array MCE is used to indicate the pairs of edges that
cannot coexist in subsequently-generated cycles. It is ob-
tained according to Properties 7 and 10 after real faces have
been found. For example, in the drawing shown in Fig. 16b,
after the real face ða; b; c; d; aÞ has been found, edge ab cannot
coexist with edges bc; cd, or ad in other real faces (Property 7).

In Step 7, an edge that is passed once by a real face has
the priority of being chosen. This is because it is more likely
to obtain an unambiguous path ðv2; v1; v

1; v2; . . . ; vnÞ from
such an edge. On this path from v2 to vn, no deviation from
it is allowed at vertices v1; v

1; v2; . . . ; vnÿ1, which is why an
unambiguous path is termed. We hope that n is as large as
possible. For the drawing in Fig. 16b, suppose edge ab is
chosen after the real face ða; b; c; d; aÞ has just been found.
An unambiguous path passing through ab is ðb; a; eÞ
because edges ab and ad cannot coexist. This path cannot
be longer since edge ae can coexist with three (not only one
of) edges ef , ej, and eh according to MCE obtained so far.
With this unambiguous path ðb; a; eÞ, searching for paths
from vertex b to vertex e is more efficient than searching for
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paths from vertex b to vertex a, although both paths all
correspond to cycles passing through edge ab. Starting from
vertex b, suppose the algorithm now reaches vertex f . In the
former case, the algorithm will not go to vertex n or g
because otherwise, the chord ef will render the cycles
found not real faces by Property 4. However, in the latter
case, the algorithm does not know there is a chord ef when
it goes to vertex n or g from f because vertex e has not yet
been in Mpath, which stores the path obtained so far.

The DFS algorithm ([35], pp. 348-353) mentioned in
Step 8(c) can be used to generate all the cycles passing
through sequence s1 or s2. However, since we can use some
of the properties to eliminate many cycles unable to be real
faces while searching, it is more efficient to incorporate the
following search rules into the DFS algorithm.

Rule 1. Before adding a new vertex (corresponding to a new
edge) into Mpath, the DFS algorithm checks if the new
edge intersects any edge in the path found so far by
examining MI . If so, try another vertex; otherwise, test
the condition in Rule 2.

Rule 2. If the new edge cannot coexist with any edge in the
path by examining MCE , try another vertex; otherwise
test the conditions in Rule 3.

Rule 3. If adding the new vertex leads to a chord in the path
(such as the chord ef in the path ðe; a; b; f; nÞ in Fig. 16b)
and the chord can prevent cycles passing through this
path from being real faces according to Properties 3 and
4, then try another vertex, otherwise put the new vertex
into Mpath.

Rule 4. When a cycle has been generated, check if it encloses
a chord using the inside algorithm in [36] (p. 354). If so,
discard the cycle according to Property 5.

In Step 9, if only one cycle is found in Step 8(c) and edge l is
passed exactly twice by the cycles found so far, then this cycle
must be a real face (Property 1). In this case, more pairs of
edges that cannot coexist in the subsequently-generated
cycles may be determined according to Properties 7 and 10.
Thus,MCE needs to be updated. In Step 10, deleting one edge
may lead to vertices of degree 1 in the reduced drawing.
Edges connected to these vertices have no contributions to
further search for cycles and should be deleted.

5.3 Dealing with General Manifolds

A general manifold is defined here as a manifold of genus
� 0 and possibly with curved faces. If there are curved
edges in a line drawing representing a manifold, the
manifold is a general one. It is intuitively clear that, the
DFSP algorithm cannot be applied to such drawings
because most of the properties are only suitable for planar
manifolds. For general manifolds, the problem of face
identification becomes more complicated. Note that all the
previous methods can only deal with line drawing models
involving simple geometry.

It is reasonable to consider that a drawing representing a
manifold is a planar one if all its edges are straight lines.
The approach to dealing with general manifolds in this
paper is first to transform a general manifold to a planar
manifold, to which the DFSP algorithm is then applied. The
transformation is performed simply by replacing all the
curved edges with straight lines. Fig. 17 shows three

examples. We can see that each face of a planar manifold
has a corresponding face in its corresponding general
manifold. In other words, for these drawings, the face
identification from a general manifold is equivalent to that
from its transformed planar manifold. In what follows, we
say that such a general manifold and its transformed one
are equivalent. Can an equivalent planar manifold always
be created?

Consider the drawing of a cylinder in Fig. 18a. If the four
curved edges abc, adc, efg, and ehg are replaced by four
straight lines, the drawing will not represent a manifold.
However, if one line bf is added (Fig. 18b), then the
drawing in Fig. 18c, obtained by straightening all the curved
edges in Fig. 18b, represents a planar manifold. More
importantly, the two drawings are equivalent. After finding
the five faces (Fig. 18d) of the planar manifold in Fig. 18c,
we obtain the faces (Fig. 18e) of the general manifold in
Fig. 18b. Note that the added (artificial) line, not a real or
silhouette edge, is still shared by two faces separated by it.

Because of the transformation, one curved face may be
divided into two or more. A face combining process can
merge these separated faces into one and discard added
lines. Let a common edge be an edge shared by two faces.
Suppose such an edge meets two other edges each
belonging to one of the two adjacent faces. If these two
edges meet smoothly, then it is reasonable to combine the
two adjacent faces into one, discarding the common edge.
For the faces in Fig. 18e, since edges ab and bc (or edges ef
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Fig. 17. Replacing curved edges with straight lines where hidden edges

are shown in dashed for easier observation.

Fig. 18. Finding faces in a cylinder.



and fg) meet smoothly in Fig. 18b, the common edge bf is
eliminated and the two faces ða; b; f; e; aÞ and ðc; b; f; g; cÞ are
combined into one face ða; c; g; e; aÞ. Now, the four faces
shown in Fig. 18f can be obtained, which are the faces of the
cylinder in Fig. 18a.

Adding the line bf in the drawing (Fig. 18b) not only
allows the application of the DFSP algorithm to this object,
but also eliminates the ambiguity of interpretation of the
drawing in Fig. 18a) caused by multiple face configurations.
We have two valid solutions (Figs. 18f and 18g) to the
drawing in Fig. 18a, but have only one (Fig. 18f) when the
line bf is added. If we do need the faces in Fig. 18g instead
of those in Fig. 18f, then the added line should be bh
connecting the two curved edges abc and ehg.

Let us consider another drawing shown in Fig. 19a. If the
two curved edges bc and ij are replaced by two straight lines
(Fig. 19b), cycles ða; b; c; d; e; f; g; aÞ and ðh; i; j; k; l;m; n; hÞ
will be self-intersecting and discarded by the DFSP algorithm.
However, if a line op between the two curved edges is added
(Fig. 19c), the drawing in Fig. 19c is equivalent to that in
Fig. 19d, which is obtained by straightening the four curved
edges of the former. That is to say, if the 10 faces of the planar
manifold in Fig. 19d can be found, the 10 faces of the general
manifold in Fig. 19c can be found too. Furthermore, since the
curved edges boandoc (or ipandpj) meet smoothly in Fig. 19c,
two faces ðb; o; p; i; bÞ and ðo; c; j; p; oÞ should be combined
together to form one face ðb; c; j; i; bÞ. Thus, nine faces of the
object in Fig. 19a are obtained.

The DFSP algorithm can always be used for a line
drawing representing a curved manifold if sufficient
artificial edges are added to the curved faces. The validity
is based on this observation: 1) every curved face can be
approximated with one or more planar patches and, thus, a
curved manifold can always be approximated by a planar
manifold and 2) if the transformed object is a planar
manifold, the properties and the algorithm developed for
planar manifolds can be applied to it. Therefore, the
algorithm combined with the scheme (adding artificial
lines, straightening curves, then combining faces and
discarding the artificial lines) can be used to find the faces
of a curved manifold from an appropriate planar approx-
imating manifold. Note that only the first step of adding

artificial lines in the scheme is done manually by the user
when making the line drawing.

At this stage, we do not define how many artificial lines
must be added to a curved line drawing; the user has the
choice. For example, for the line drawing shown in Fig. 18b,
if one more artificial line connecting the curved edges adc
and ehg is added, the four faces as shown in Fig. 18f will
still be obtained.

Through numerous observations and experiments, we
have found that a transformed planar manifold can be used
to find the faces of its corresponding curved manifold if two
conditions are satisfied: 1) no two lines overlap after
straightening curved edges (e.g., see Fig. 18) and 2) cycles
that belong to real faces are not self-intersecting (e.g., see
Fig. 19). A stricter condition that implies the above two is
that a straight line obtained by straightening a curve should
be very close to the curve. With this condition, a
transformed planar manifold will be a good approximation
to its corresponding curved manifold. Although this
condition may require adding more artificial edges to a
line drawing, it will guarantee that from the transformed
planar manifold, we can find the faces of its original curved
one. Giving more edges to a drawing imposes a little more
work on a designer. But, doing this often provides better
visual perception of a drawing and reduces ambiguity of
interpretation.

5.4 Dealing with Manifolds Represented by More
Than One Graph

In Section 1, we require that a line drawing be represented
by a single edge-vertex graph, which is also the assumption
in previous related papers. However, there are manifolds
each of which is represented by two or more disjoint
graphs. Fig. 20a shows a manifold where a hole passes
through a cube and Fig. 20b gives another example where
one face of a smaller cube is on a face of another cube. In
these cases, a face may be enclosed by more than one cycle.
To identify the cosurface cycles, more information is
required. In our work, we use dashed artificial lines to
connect these cycles. For the two drawings in Fig. 20, ab, cd,
ef , gh, ij, and kl are such lines. These lines are dashed to
indicate that they are not edges and cannot be used to
construct cycles.
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Fig. 19. Finding faces in another general manifold. Fig. 20. Two manifolds with faces enclosed by two cycles.



At first, each graph is treated separately by the whole
algorithm (see the next section). After all the cycles
considered as faces in each graph have been found, the
dashed lines are used to identify the real faces each
enclosed by more than one cycle. Now, let us take the
drawing in Fig. 20d, which contains two disjoint graphs, as
an example to see how the faces are found. First, six cycles
are found as faces for each graph by the DFSP algorithm.
The two cycles C1 ¼ ðh; e; f; g; hÞ and C2 ¼ ðd; a; b; c; dÞ are
among the 12 cycles. They are considered to be located on
the same surface with the help of the two dashed lines ij
and kl, forming the real face enclosed by C1 and C2. Thus,
11 faces are obtained for the object in Fig. 20b.

For the object in Fig. 20a, at first, all the faces of the block
and the cylinder are found from the two disjoint graphs.
Then four of them are used to form two real faces each
enclosed by two cycles, resulting in an object with a hole.

6 FINDING REAL FACES FROM CYCLES

With a set of cycles generated by the DFSP algorithm, we
can construct a state-space tree and use a backtrack
algorithm to find the solutions while searching in the tree.
Let us see a simple example. Suppose there are only five
cycles. A state-space tree constructed is illustrated in Fig. 21.
A node of the tree defines a problem state and all the nodes
define the state space of the problem. For our problem, each
node except the root denotes a combination of some cycles.
All possible combinations of different numbers of cycles
determine the size of the tree. The total number of nodes is
equal to C0

p þ C1
p þ . . .þ Cp

p (¼ 2p) if there are p cycles.
Although the tree is huge when p is a large number, it is

not necessary to expand all the nodes of the tree. Let SC be
the set of cycles generated by the DFSP algorithm from a
drawing and Z � SC be a subset denoted by some node. If
the cycles in Z cause any edge of the drawing to be used
more than twice, this node will be deleted; otherwise, it will
be expanded by adding a new cycle i into Z. The new
subset Z [ fig, denoted by a new node of the tree, will be
tested again. When a solution is found or the bottom (the
solid circles in Fig. 21) of the tree is reached, backtrack one
level and search again. Besides, Property 7 can be used to
eliminate more nodes of the tree. Let us take the drawing in
Fig. 19d as an example. Suppose that cycle ðf; g; n;m; fÞ has
already been in Z but cycle ðf; e; d; c; j; p; i; h; n; g; fÞ has not.
Then, the latter cannot be added to Z because both the
cycles pass through edges ng and gf that are not collinear.

As mentioned before, there are multiple solutions found
by the backtrack algorithm for some drawings such as those
in Figs. 4a and 4d. Property 11 provides a scheme to
eliminate some solutions with topologically-valid-but-geo-
metrically-incorrect cycles. Besides, employing skewed-
orthogonality detection to select the most plausible faces
[9] is another scheme.

Now, we summarize the proposed method for face
identification from a line drawing representing a manifold
in the following steps. Suppose the line drawing is
represented by N disjoint graphs G1; G2; . . . ; GN .

1. i 1.
2. Generate a set SCi of cycles from Gi using the DFSP

algorithm.
3. Find subsets of cycles from SCi such that each edge

of Gi appears exactly twice in each subset using the
backtrack algorithm.

4. Employ Property 11 and the skewed-orthogonality
detection to select the most plausible faces if there
exist multiple subsets.

5. Combine faces if there exist artificial lines that
separate curved faces.

6. i iþ 1. Go to Step 7 if i ¼ N ; otherwise, go to
Step 2.

7. Find the real faces each enclosed by more than one
cycle if there exist artificial dashed lines.

7 EXPERIMENTAL RESULTS

In this section, we present a number of examples to
demonstrate that our method can successfully identify the
faces of drawings representing manifold objects. Fig. 22
shows eleven drawings in the experiments, each together
with the faces found by our method. Note that the shaded
faces are ones enclosed by two cycles. Obviously, the results
accord with human interpretation of the drawings. Table 1
summarizes the main parameters. The numbers in column 2
list the total cycles in each drawing and the numbers in
column 3 are the cycles found by the DFSP algorithm.
Comparing these numbers between the two columns, we
can see that the DFSP algorithm eliminates most of the
cycles that cannot be real faces, making the backtrack
algorithm run fast to find the solutions.

For the two drawings Figs. 22c and 22f, the backtrack
algorithm finds multiple solutions. (Fig. 4 has shown the
multiple solutions where only different cycles in the
solutions are given for each object.) However, Property 11
can be used to select the most plausible one.

For each of the drawings (a), (d), (e), (g), (h), (i), (j), and
(k), the backtrack algorithm does not even need to perform
searching in the state-space tree. This is because all the
cycles generated by the DFSP algorithm from each of these
drawings already share each edge exactly twice. On a
677 MHz Pentium III PC, the whole algorithm takes less
than 0.1 second to identify the faces for each of the
drawings in Fig. 22.

8 CONCLUSIONS

A new method has been proposed for finding the faces from
single 2D line drawings representing manifold objects, a class
of common solids. The faces identified from a drawing

1590 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 12, DECEMBER 2002

Fig. 21. A state-space tree.
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Fig. 22. Eleven line drawings and their faces found. Each of the shaded faces is enclosed by two cycles.



provide important information for the reconstruction of its 3D
geometry. The face identification is formulated based on a
property of manifolds: each edge of a manifold is shared
exactly twice by two faces. The two main steps in our method
are to search for cycles from a given drawing and to search for
real faces from a state-space tree constructed by thecycles. The
problem in this formulation lies in the backtrack algorithm
taking a very long time to search for solutions if there are too
many cycles (> 500, for example), the number of which is
generally exponential in the number of vertices of a drawing.

Our strategy in handling the computational problem is to
seek special properties which can be used to identify certain
cycles early, either as faces or nonfaces, which leads to the
removal of most of the cycles to be searched by the backtrack
algorithm for real faces. Most of the presented properties
relate to planar manifold geometry and the DFSP algorithm
based on these properties is suitable for drawings represent-
ing planar manifolds. To make this algorithm work with a
general manifold (with curved faces), we transform the
general manifold to a planar one by simply replacing all its
curved edges with straight lines. This scheme is successful if
the planar manifold is a good approximation to the curved
manifold. A good approximation can always be obtained by
adding lines on curved faces. From the examples in this paper,
we can see that adding lines on the curved faces is easy and not
a burden to a designer. More importantly, doing so allows us
to handle more complex manifolds. To deal with a manifold
represented by two or more disjoint graphs, our scheme is to
treat each graph separately and then to identify the real faces
each enclosed by more than one cycle with the help of added
dashed lines. From the analysis in Section 3 and the examples
in Section 7, it is not difficult to see that our method can deal
with various drawings representing manifold objects, includ-
ing drawings the previous methods cannot handle.

While we have painstakingly investigated the properties
established in this paper, we do not exclude the existence of
other properties that can allow the state of a cycle to be
identified early.

On a 677 MHz Pentium III PC, our method takes less than
0.1 second to find the faces for each of the drawings in Fig. 22.
Since the backtrack algorithm is NP-complete, it will suffer
from large computation if the number of cycles it has to deal
with is still too large after applying the properties to reduce
the number. We leave this problem to further research.
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