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ABSTRACT

Motivation: Understanding the role of genetics in diseases is one of
the most important aims of the biological sciences. The completion
of the Human Genome Project has led to a rapid increase in the
number of publications in this area. However, the coverage of curated
databases that provide information manually extracted from the
literature is limited. Another challenge is that determining disease-
related genes requires laborious experiments. Therefore, predicting
good candidate genes before experimental analysis will save time
and effort. We introduce an automatic approach based on text
mining and network analysis to predict gene-disease associations.
We collected an initial set of known disease-related genes and
built an interaction network by automatic literature mining based on
dependency parsing and support vector machines. Our hypothesis
is that the central genes in this disease-specific network are likely
to be related to the disease. We used the degree, eigenvector,
betweenness and closeness centrality metrics to rank the genes in
the network.
Results: The proposed approach can be used to extract known
and to infer unknown gene-disease associations. We evaluated the
approach for prostate cancer. Eigenvector and degree centrality
achieved high accuracy. A total of 95% of the top 20 genes ranked
by these methods are confirmed to be related to prostate cancer.
On the other hand, betweenness and closeness centrality predicted
more genes whose relation to the disease is currently unknown and
are candidates for experimental study.
Availability: A web-based system for browsing the disease-specific
gene-interaction networks is available at: http://gin.ncibi.org
Contact: radev@umich.edu

1 INTRODUCTION
The completion of the Human Genome Project has opened the door
to new research opportunities and challenges. One of the major goals
of the post-genome era is to understand the role of genetics in human
health and diseases International Human Genome Sequencing
Consortium, 2001; Venter et al., 2001. While fewer than 100
gene-disease associations were known before the project started in
1990, currently more than 1400 have been identified.1 Determining
gene-disease associations will enhance the development of new
techniques for prevention, diagnosis and treatment of the diseases.

One of the most well-known databases that stores gene-
disease associations is Online Mendelian Inheritance in Man
(OMIM, 2007), which provides summaries of publications about
gene-disease relationships. However, it usually takes time before
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new discoveries are included in the curated databases. Given that
the amount of biomedical literature regarding the identification
of disease genes is increasing rapidly, one of the challenges that
scientists in this domain face is that most of the relevant information
remains hidden in the unstructured text of the published papers.

Another challenge is that the identification of new disease genes
requires laborious experiments. For example, the genetic linkage
analysis method is successfully used to determine the genomic
regions that are associated with a disease. However, these regions
often contain hundreds of genes and experimentally identifying the
actual disease genes out of the large amount of candidate genes
require considerable effort and time.

To address these challenges, we propose an approach based on
integrating automatic text mining and network analysis methods to
extract known disease genes and to predict unknown disease genes,
which can be good candidates for experimental study. We started
by collecting an initial set of genes (seed genes) known to be
related to a disease from curated databases such as OMIM. We
then used an information extraction approach based on dependency
parsing (de Marneffe et al., 2006) and support vector machines
(SVM) (Joachims, 1999) to build a disease-specific gene-interaction
network. A syntactic parse tree represents the syntactic constituent
structure of a sentence. On the other hand, a dependency parse
tree captures the semantic predicate-argument dependencies among
the words of a sentence. The nodes of a dependency parse tree
represent the words of a sentence and the edges represent the types
of the dependencies among the words such as subject, object and
modifier. We generated the dependency parses of the sentences that
contain at least two seed or neighbor genes (genes that interact with
seed genes), and extracted the paths between all pairs of genes
from the dependency parse trees. The motivating assumption is
that the path between a pair of gene names in the dependency
parse tree of a sentence captures the semantic relationship between
them. We defined an edit distance-based kernel function among
these dependency paths and used SVM to classify the sentences
as describing an interaction between a gene pair or not. We have
introduced this interaction extraction approach in (Erkan et al.,
2007) and have achieved significant improvement (55.61% F-score
performance for the AIMED data set2) compared to previous results
in the literature.

Our main hypothesis is that the most central genes in an interaction
network for a disease are likely to be related to the disease.
Therefore, after extracting the interactions from the literature, we
constructed a disease-specific gene-interaction network, where the
nodes are the seed genes and their neighbors, and two genes are
linked, if we have extracted an interaction between them. Next, we

2ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
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ranked the genes in the network by degree, eigenvector, betweenness
and closeness network centrality metrics. To our knowledge, this is
the first effort of building a gene-interaction network by automatic
literature mining and applying network centrality to predict gene-
disease associations on that network.

2 RELATED WORK
The number of biomedical publications is increasing rapidly.
Currently, there are over 14 million articles indexed in PubMed.3 It is
difficult for curators to detect and curate the information available in
the biomedical literature. Therefore, the curated databases can cover
only a small portion of the available information. Thus, extracting
the available knowledge from the huge amount of biomedical
literature has become a major challenge. Most of the previous studies
that use text mining to extract gene-disease associations from the
biomedical literature are based on the co-occurrence frequencies of
genes and diseases. For example, Adamic et al. (2002) presented a
method based on determining whether the frequency of occurrence
of a gene in articles that mention a certain disease is statistically
significantly higher than the expected frequency of occurrence
computed by the Binomial distribution. They evaluated their
approach for breast cancer and confirmed the relevance of 7 out
of 10 highest ranked genes to breast cancer by using a human edited
breast cancer gene database.4 Another relevant study is conducted
by Al-Mubaid and Singh (2005). Given a disease name, a set
of documents that contain the disease name (positive-document
set) and a randomly-selected document set (negative-document set)
are extracted. Co-occurrence and term frequency-based concepts
from information theory are used to determine the genes that are
significantly associated with the disease. The authors found six genes
significantly associated with Alzheimer’s disease and confirmed the
correctness of their results through articles from PubMed.

Determining the genes that cause a disease usually requires
laborious experiments over a large number of candidate genes.
Therefore, another challenge in the domain is predicting and
prioritizing candidate disease genes, which can further be validated
by detailed experiments. Most proposed data mining approaches
make use of available curated databases and predict gene-disease
associations by using keyword similarity to known disease genes
and phenotypes. For example, GeneSeeker (van Driel et al.,
2002) is a web-based system that integrates positional and
expression/phenotypic data from nine different human and mouse
databases and provides a quick overview of interesting candidate
genes. The authors evaluated their approach for ten syndromes. On
average, the system reduced a list of 163 candidate genes to a list of
22 genes, which still contained the correct disease gene. Freudenberg
and Propping (2002) proposed a method based on clustering
diseases based on their phenotypic similarity, which is computed by
considering the similarity of the disease index terms in the OMIM
database. Candidate genes for a disease in a cluster are predicted by
selecting functionally similar genes to the genes associated with the
other diseases in the cluster. The authors performed a leave-one-out
cross-validation of 878 diseases using 10 672, genes. They reported
that in roughly one-third of the diseases, the correct disease gene was
within the top scoring 321 genes, and in the two-third of the diseases,

3http://www.ncbi.nlm.nih.gov/About/tools/restable_lit.html
4http://tyrosine.biomedcomp.com

the correct disease gene was within the top scoring 1600 genes. The
G2D system (Perez-Iratxeta et al., 2002, 2005) uses a method based
on fuzzy logic and co-occurrence of relevant keywords in biomedical
abstracts to associate pathological conditions with gene ontology
(GO) terms (Ashburner et al., 2000). Prediction of candidate genes is
performed by searching for genes homologous to the GO-annotated
and disease-associated genes. The authors evaluated their system
with 100 known disease-associated genes and found that the correct
disease gene was among the 8 top-scoring genes with 25% chance,
and among the 30 top-scoring genes with 50% chance.

Protein interactions play important roles in vital biological
processes such as cell cycle control, metabolic and signaling
pathways and disease pathways. These interactions can be
represented as complex networks, where the nodes are the proteins
and the edges represent the interactions between the pairs of
proteins they connect. This representation makes it possible to
analyze protein-interaction networks from a graph theory and
complex networks perspective. Most graph-theoretic studies of
protein-interaction networks extract the interactions from curated
databases (Jeong et al., 2001; Schwikowski et al., 2000; Spirin and
Mirny, 2003; Wuchty et al., 2003). There are also recent studies
that analyze protein-interaction networks constructed by mining
the literature (Chen and Sharp, 2004; Hoffmann and Valencia,
2005). It has been shown that the interaction networks constructed
in either way, share similar topological properties such as being
small-world and scale-free, with each other and with various non-
biological complex systems such as the WWW, the Internet, and
social networks (Chen and Sharp, 2004; Hoffmann and Valencia,
2005; Jeong et al., 2001).

Graph-theoretic analysis of protein-interaction networks has been
successfully applied in many biological domains. For example,
protein-interaction networks have been used for evolutionary
comparisons among organisms (Wuchty et al., 2003), for identifying
functional modules and network motifs (Spirin and Mirny, 2003)
and for predicting functional annotations based on network
connectivity (Schwikowski et al., 2000). Schwikowski et al. (2000)
used a majority-rule method that assigns to a protein the function
that occurs most commonly among its neighbors and reported an
accuracy of 70% for the yeast protein-interaction network.

Recently, protein-interaction networks have also been used to
predict gene-disease associations (Chen et al., 2006; Gonzalez et al.,
2007). Chen et al. (2006) used an initial gene list (seed genes)
for Alzheimer’s from the OMIM database, and built an interaction
network by extracting the interactions of the corresponding
proteins from the Online Predicted Human Interaction Database
(OPHID) (Brown and Jurisica, 2005). They defined a heuristic
scoring function for the genes based on their connectedness in the
graph. When building the network, only the interactions among the
seed genes and the interactions of seed genes with their neighbors
were considered. The interactions among the neighbors were not
taken into account. Thus, this approach is biased in favor of the seed
genes. A total of 19 of the top scoring genes are seed and only one is a
non-seed (inferred) gene. Gonzalez et al. (2007) started with a list of
seed genes obtained from the automatically mined CBioC database
and created an interaction network by extracting the interactions
of the seed genes from the CBioC database (Baral et al., 2005)
and curated databases such as BIND (Bader et al., 2003) and
MINT (Zanzoni et al., 2002). Like (Chen et al., 2006), they did
not take into account the interactions among the non-seed genes. To
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eliminate the bias in favor of the seed genes, they refined the scoring
function by considering just the interactions with seed genes and
including a measure for the impact of each gene on the connectivity
of the network. A total of 45% of their top scoring 20 genes are
non-seed and 66.67% of these non-seed genes are correctly inferred
genes, i.e. reported in OMIM or in the literature as being related to
the disease.

Our approach is different from previous approaches in two
aspects. First, we create a gene-interaction network by automatic
literature mining. Second, we use degree, eigenvector, betweenness
and closeness centrality to rank the gene-disease associations.
Centrality measures have successfully been applied in other
biological domains. For example, Jeong et al. (2001) studied the
protein–protein interaction network of yeast in order to predict lethal
mutations. They showed that the network is tolerant to random
errors, whereas errors related to the most central proteins (in terms
of degree) cause lethality. Similarly, Joy et al. (2005) and Hahn
and Kern (2005) found that there is an association between the
betweenness centrality and the essentiality of a gene (a gene is
essential if the organism dies when the gene malfunctions). Goh et al.
(2007) showed that central genes based on degree are also essential.
Centrality measures have originally been developed and used in non-
biological domains. For example, the Pagerank algorithm underlying
the popular search engine Google is based on eigenvector centrality
to rank the web pages (Page et al., 1998). Recently, eigenvector
centrality has also been used in document summarization to identify
the most important sentences (Erkan and Radev, 2004) as well as to
identify the most influential members of the US Senate (Fader et al.,
2007).

We built a disease-specific interaction network around a list of
seed genes that are known to be related to a disease. Besides
the interactions involving seed genes, we also considered the
interactions among non-seed genes (genes that interact with at least
one seed gene). We used centrality measures to infer gene-disease
associations. Our hypothesis is that, the genes that are central in
the created disease-specific network are likely to be related to
the disease. Our results confirmed this hypothesis. We achieved
a 75% non-seed gene proportion among the top 20 central genes
and 93.33% accuracy in relatedness of these non-seed genes to the
specified disease.

3 METHODS

3.1 Corpus
To construct the literature-mined gene-interaction network we used 48245
articles from PubMed Central (PMC) Open Access,5 which is an open access
digital archive of biomedical and life science journals. Unlike PubMed,
articles in PMC Open Access are full-text.

We pre-processed the corpus by segmenting the articles into sentences
with MxTerminator (Reynar and Ratnaparkhi, 1997). Gene names are
annotated with the Genia Tagger (Tsuruoka et al., 2005), whose developers
report an F-score performance of 71.37% for biological named entity
recognition.6

5http://www.pubmedcentral.nih.gov/about/openftlist.html
6http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

Table 1. The prostate cancer seed genes retrieved from OMIM Morbid Map

Gene Description

AR Androgen Receptor
BRCA2 Breast cancer 2, early onset
MSR1 Macrophage scavenger receptor 1
EPHB2 EPH receptor B2
KLF6 Kruppel-like factor 6
MAD1L1 MAD1 mitotic arrest deficient-like 1 (yeast)
HIP1 Huntingtin interacting protein 1
CD82 CD82 molecule
ELAC2 ElaC homolog 2 (Escherichia coli )
MXI1 MAX interactor 1
PTEN Phosphatase and tensin homolog
RNASEL Ribonuclease L (2’, 5’-oligoisoadenylate

synthetase-dependent)
HPC1 Hereditary prostate cancer 1
CHEK2 CHK2 checkpoint homolog (Schizosaccharomyces pombe)
PCAP Predisposing for prostate cancer

3.2 Initial list of seed genes
To build an interaction network for a disease and to infer gene-disease
associations from the network properties, we started with an initial list of
seed genes known to be related to the disease.

We evaluated our system for prostate cancer. We compiled 15 prostate
cancer seed genes from the Morbid Map component of the OMIM database.
OMIM Morbid Map shows the cytogenetic map location of disease-
associated genes described in OMIM. Table 1 lists the seed genes for prostate
cancer.

3.3 Gene name normalization
A gene name might have several different synonyms. For instance, AR
which stands for the androgen receptor gene, might appear as AIS, NR3C4,
SMAX1, HUMARA, DHTR or SBMA in biological text. To normalize the
gene names tagged by Genia Tagger and the seed gene names so that each
gene is represented by a single node in the interaction network, we used
the HUGO Gene Nomenclature Committee (HGNC) database7 (Wain et al.,
2004), which contains 24680 records. We matched the tagged gene names
against the approved symbol, approved name, previous symbols, previous
names, aliases and name aliases fields of the database. We unified each tagged
gene name with its corresponding approved gene symbol.

3.4 Extracting the gene-interaction network from the
literature

Although there are public databases that store the interactions among
proteins, they only cover a small portion of the information available in
the rapidly increasing biomedical literature. Therefore, the development
and application of text mining approaches to automatically extract protein
interactions from text is crucial to utilize the information hidden in the
unstructured text of biomedical articles.

3.4.1 Sentence filtering We used the initial list of seed genes to build
a disease-specific gene-interaction network mined automatically from the
literature. Before applying our text mining approach to extract gene-
interactions, we selected the potential interaction sentences from the PMC
Open Access corpus. A list of interaction words, which consists of 45 noun
and 53 verb roots, was compiled from the literature. We extended the list to
contain all the inflected forms of the words and spelling variations such

7http://www.genenames.org/index.html

i279



[21:28 18/6/03 Bioinformatics-btn182.tex] Page: i280 i277–i285

A.Özgür et al.

Fig. 1. The dependency tree of the sentence ‘These results suggest KCC3
is a new member of the KCC family that is under distinct regulation from
KCC1’.

as coactivate/co-activate and localize/localise. Our assumption is that a
sentence that describes an interaction between a pair of genes should contain
at least two genes and an interaction word. We created an expanded gene
list, by including the seed genes and all the genes that appear in the same
sentence with a seed gene. We filtered out the sentences that do not contain
an interaction word and at least two genes from the expanded gene list.

3.4.2 Sentence classification based on dependency parsing and SVM To
extract the gene interactions from text, we generated the dependency
parses of the sentences that we analyze, making use of the dependency
relationships among the words. We parsed the sentences with the Stanford
Parser8 (de Marneffe et al., 2006). From the dependency parse tree of
each sentence we extracted the shortest paths between all gene pairs. There
may be multiple paths between a gene pair, if either of the genes appears
multiple times in the sentence. Figure 1 shows the dependency tree we
obtained for the sentence ‘These results suggest KCC3 is a new member
of the KCC family that is under distinct regulation from KCC1’. The shortest
path (in this case the only path) between the genes KCC3 and KCC1 is
‘KCC3-nsubj-member-is-under-regulation-from-KCC1’.

Next, we defined the similarity between two dependency paths based on
word-based edit distance. Edit distance between two strings is the minimum
number of edit operations that have to be performed to transform the first
string into the second. The operations are defined as insertion, deletion or
substitution of a single word. We normalized edit distance by dividing it by
the length (number of words) of the longer path, so that it takes values in the
range [0,1]. We converted the distance measure into a similarity measure as
follows.

edit_sim(pi,pj)=e−γ (edit_distance(pi,pj )) (1)

A well-defined kernel function should be symmetric and positive definite.
Cortes et al. (2004) proved that the edit kernel is not always positive
definite. However, it is possible to make the kernel matrix positive definite
by adjusting the γ parameter, which is a positive real number. We tuned the
γ parameter with cross-validation experiments to 4.5.

We integrated this similarity measure as a kernel function to SVM by
plugging it in the SVMlight package (Joachims, 1999). We trained the system
by combining the AIMED9 and CB10 data sets, which were pre-processed by

8http://nlp.stanford.edu/software/lex-parser.shtml
9ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
10http://biocreative.sourceforge.net/biocreative_2.html

Table 2. Training data sets

Data set Sentences +Sentences − Sentences

AIMED 4026 951 3075
CB 4056 2202 1854

replicating each sentence for each different gene pair.11 The summary of the
pre-processed training data sets is provided in Table 2. The trained system
is used to classify the new sentences as describing an interaction between
a gene pair or not. We have introduced this interaction extraction approach
in a recent study (Erkan et al., 2007), and shown that it achieves an F-score
performance of 84.96% for the CB data set and 55.61% for the AIMED data
set, which is to our knowledge higher than the performances reported for the
AIMED data set so far. The reader can refer to (Erkan et al., 2007) for details
of the gene interaction extraction method. We have also used this method to
provide annotations for the BioCreative Meta-Server by classifying abstracts
as describing a protein interaction or not (Leitner et al., 2008).

3.5 Network centrality for inferring gene-disease
associations

Centrality of a node in a graph defines how important a node in the graph is.

3.5.1 Degree centrality A graph can be represented by an adjacency
matrix A, where Aij =1 if there is an edge between nodes i and j; and Aij =0
if there does not exist an edge between nodes i and j. Degree centrality is the
simplest network centrality measure. It only takes into account the degree
of a node, which is the number of nodes that a given node is connected
to (Freeman, 1979). The degree ki of node i is calculated as follows.

ki =
n∑

j=1

Aij (2)

Degree centrality measures the extent of influence that a node has on the
network. The more neighbors a node has, the more important it is.

3.5.2 Eigenvector centrality In degree centrality each neighbor
contributes equally to the centrality of a node. However, in many real-world
situations not all the relationships (connections) between nodes in a network
are equally important in determining the centrality of a node. This notion is
defined as ‘prestige’ in social networks. Intuitively, the prestige of a person
does not only depend on the number of acquaintances he has, but also how
prestigious his acquaintances are. A node in a network is more central if it is
connected to many central nodes. The centrality xi of node i is proportional
to the sum of the centralities of its neighbors (Newman, 2003):

xi =λ−1
n∑

j=1

Aijxj (3)

Let’s represent the centralities of the nodes as a vector x= (x1,x2, ...,xn) and
rewrite Equation 3 in matrix form.

λx=Ax (4)

Here, x is an eigenvector of the adjacency matrix A with eigenvalue λ. By
Perron–Frobenius theorem, there is only one eigenvector x with all centrality
values non-negative and this is the unique eigenvector that corresponds to the
largest eigenvalue λ (Newman, 2003). Eigenvector centrality assigns each
node a centrality that not only depends on the quantity of its connections,
but also on their qualities.

11The pre-processed data sets are available at: http://belobog.si.umich.edu/
clair/biocreative
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3.5.3 Closeness centrality The closeness centrality of a node measures
the centrality of a node based on how close it is to other nodes in the
network. The smaller the total distance of a node to other nodes, the higher
its closeness is. The distance between two nodes is defined as the length of
the shortest path between them. We calculate closeness centrality measure
for a node by inverting the sum of the distances from it to other nodes in the
network (Freeman, 1979).

3.5.4 Betweenness centrality The betweenness centrality of a node is the
number of shortest paths between other nodes that run through the node in
interest (Freeman, 1977). For a node x, this measure is computed by taking
the sum of the number of shortest paths between pairs of nodes that pass
through node x divided by the total number of shortest paths between pairs
of nodes. Betweenness centrality characterizes the control of a node over the
information flow of the network. A node is considered central if it appears
on many paths that connect pairs of nodes (i.e. it acts as a bridge between
pairs of nodes in the network).

4 RESULTS AND DISCUSSION

4.1 Properties of the prostate cancer network
The prostate cancer-related gene-interaction network consists of 226
nodes (distinct genes) and 1187 edges (interactions among these
genes). The resulting graph is a small world network with diameter
6 and average shortest path 2.57. The clustering coefficient (Watts
and Strogatz, 1998) is 0.4497, which is significantly higher than
the clustering coefficient of a random graph with the same number
of vertices (0.0487). The degree distribution of the network is a
power law with exponent 2.24. The power-law degree distribution
and small-world characteristics of the network confirm the results
of previous studies (Chen and Sharp, 2004; Hoffmann and Valencia,
2005; Jeong et al., 2001).

4.2 Centrality and gene-disease associations
We used the Prostate Gene DataBase (PGDB) (Li et al., 2003), which
is a curated database of genes related to prostate cancer, for the initial
evaluation of the methods. In the next sub-section we analyze the
most central 20 genes in more detail.

Table 3 shows the precisions of the methods for the top ranked n
genes, i.e. the percentage of the top ranked ‘n’ genes that are marked
by PGDB as being related to prostate cancer. The entire network
(226 genes) is the neighborhood of the seed genes and 17.70% of
the 226 genes are related to prostate cancer. As the centrality score
of the genes decreases (i.e. as ‘n’ increases), the percentage of the
genes related to prostate cancer decreases, and the performances
of the four methods converge to each other. For genes with high
centrality, eigenvector, degree and betweenness metrics achieve
similar performances, whereas closeness centrality performs worse
than them.

For baseline evaluation, we created a co-occurrence network by
linking two genes if they appear in the same sentence and at least
one of them is a seed gene. We ranked the genes by the number of
connections they make with the seed genes.

Betweenness centrality achieves the highest precision (90%)
for the top 10 genes. The precision of degree and eigenvector
centrality measures is 80%, and the precision of closeness centrality
is 70%. The baseline approach performs considerably worse (50%
precision).

Table 3. Percentage of top n genes associated with prostate cancer based on
the PGDB

Top n Degree Eigenvector Betweenness Closeness Baseline

10 80.00 80.00 90.00 70.00 50.00
20 75.00 80.00 70.00 55.00 45.00
30 60.00 63.33 63.33 56.67 43.33
40 55.00 57.50 52.50 47.50 32.50
50 46.00 50.00 48.00 42.00 28.00
75 33.33 36.00 34.67 33.33 34.67

100 26.00 28.00 26.00 27.00 27.00
125 23.20 25.60 23.20 23.30 22.40
150 20.67 22.00 20.00 20.00 18.67
175 18.29 20.57 18.29 18.29 17.14
200 17.50 19.00 18.50 17.00 15.00
226 17.70 17.70 17.70 17.70 13.27

When we consider the top 20 genes, the highest precision is
achieved by eigenvector centrality (80%). Degree centrality follows
eigenvector centrality with 75% precision, whereas the precision of
betweenness centrality drops to 70% and the precision of closeness
centrality drops to 55%. Degree, eigenvector and betweenness
centrality perform significantly better than the baseline method
(P-value <0.05, Fisher’s Exact Test (Fisher, 1970)).

To analyze the error tolerance of the gene-disease identification
approach, we performed experiments by randomly removing edges
from the gene-interaction network. When up to 25% of the edges
were removed randomly from the network, there was no decrease
in the precisions of the centrality metrics for the top 20 genes.
An insignificant decrease in the precisions of the metrics was
observed when 40% of the edges were removed. The precision of
degree centrality dropped by 13.3% (from 75 to 65%), eigenvector
centrality by 6.25%, betweenness centrality by 7.14% and closeness
centrality by 9.1%. This shows that the proposed approach is robust
against random errors.

4.3 Detailed analysis of the most central genes
For each centrality method, we performed a detailed evaluation for
the top 20 ranked genes by finding evidence of their association
to the disease from various resources as presented in Table 4. The
descriptions of the genes are presented in Table 5. Seed genes are
known to be related to the disease. To verify the newly found
(inferred) genes, we first used the PGDB database. If a gene is not
marked by PGDB as being related to prostate cancer, we manually
searched for articles indexed in PubMed that state that the gene is
related to prostate cancer and also checked whether the gene appears
in the KEGG pathway for prostate cancer,12 which is a manually
drawn pathway map of the currently known molecular interaction
and reaction network for prostate cancer.

Twelve of the genes in Table 4 are confirmed to be related to
prostate cancer by using the PGDB database. The centrality methods
were able to find four genes, which are not included in PGDB, but
were confirmed to be related to prostate cancer by manually

12http://www.genome.ad.jp/kegg/pathway/hsa/hsa05215.html
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Table 4. Genes inferred by degree, eigenvector, closeness and betweenness centralities

Gene Degree Eigenvector Closeness Betweenness Evidence

TP53 + + + + PGDB
BRCA1 + + + + PGDB
EREG + + + + None
AKT1 + + + + PGDB
MAPK1 + + + + Literature (Hao et al., 2007; Sarfaraz et al., 2006)
TNF + + + + PGDB
CCND1 + + + + PGDB
MYC + + + + PGDB
APC + + − − PGDB
CDKN1B + + + − PGDB
MAPK8 + + + + PGDB
NR3C1 − + + − Literature (Wei et al., 2007)
VEGFA + + + − PGDB
MDM2 + + + − KEGG and Literature (Wang et al., 2003; Zhang et al., 2003)
POLD1 − − + + None
SNORA62 − − + + None
CNTN2 − − − + None
PPA1 − − − + None
TMEM37 − − + − None
FZR1 − − + − PGDB
SSSCA1 − − + − None
BCL2 + − − − PGDB
INS + − − − KEGG and Literature (Ho et al., 2003)

‘+’ indicates that the given gene is found by the centrality method with score ranking within the top 20 and ‘−’ indicates that the gene is not among the top 20 genes inferred by
the method. Evidences for each gene-disease relationship are confirmed by using PGDB database, KEGG pathway for prostate cancer and articles indexed in PubMed.

Table 5. Gene names normalized by Hugo and their description

Gene Description

TP53 Tumor protein p53 (Li-Fraumeni syndrome)
BRCA1 Breast cancer 1, early onset
EREG Epiregulin
AKT1 V-akt murine thymoma viral oncogene homolog 1
MAPK1 Mitogen-activated protein kinase 1
TNF Tumor necrosis factor (TNF superfamily, member 2)
CCND1 Cyclin D1
MYC V-myc myelocytomatosis viral oncogene homolog (avian)
APC Adenomatosis polyposis coli
CDKN1B Cyclin-dependent kinase inhibitor 1B (p27, Kip1)
MAPK8 Mitogen-activated protein kinase 8
NR3C1 Nuclear receptor subfamily 3, group C, member 1

(glucocorticoid receptor)
VEGFA Vascular endothelial growth factor A
MDM2 Mouse double minute 2, human homolog of; p53-binding

protein
POLD1 Polymerase (DNA directed), delta 1, catalytic subunit 125kDa
SNORA62 Small nucleolar RNA, H/ACA box 62
CNTN2 Contactin 2 (axonal)
PPA1 Pyrophosphatase (inorganic) 1
TMEM37 Transmembrane protein 37
FZR1 Fizzy/cell division cycle 20 related 1 (Drosophila)
SSSCA1 Sjogren’s syndrome/scleroderma autoantigen 1
BCL2 B-cell CLL/lymphoma
INS Insulin

searching for evidence in the literature (articles indexed in PubMed)
and in the KEGG pathway for prostate cancer. Two genes (MDM2
and INS) are part of the KEGG pathway for prostate cancer. For
these genes, we also found articles in the literature that support their
association to prostate cancer. For example, (Wang et al. (2003) and
Zhang et al. (2003)) state that ‘MDM2 has a role in prostate cancer
growth via p53-dependent and p53-independent mechanisms’. For
the INS (insulin) gene, Ho et al. (2003) state that ‘Polymorphism of
the insulin gene is associated with increased prostate cancer risk’.
Supportive evidence for the association of NR3C1 to prostate cancer
is presented by Wei et al. (2007), who show that it is differentially
expressed in androgen-independent prostate cancer. For the gene
MAPK1, Sarfaraz et al. (2006) state that ‘apoptosis induced by
cannabinoid receptor CB1 and CB2 agonists leads to activation of
ERK1/2 leading to G1 cell cycle arrest in prostate cancer cells’.
Here, ERK2 is a synonym of MAPK1. Another article that provides
supportive evidence for the MAPK1-prostate cancer association
includes the statement ‘lysophosphatidic acid (LPA), the receptor
LPA(1), ERK2 and p38alpha are important regulators for prostate
cancer cell invasion and thus could play a significant role in the
development of metastasis’ (Hao et al., 2007). For the remaining
seven genes in the table, we found neither positive nor negative
evidence for their association to prostate cancer.

Using degree centrality, among its top 20 ranking genes, 5 genes
of the original 15 seed genes are found (AR, BRCA2, CD82, PTEN
and CHEK2). The remaining 15 genes (75% of the top 20 genes) are
inferred genes in which we were able to confirm the association of
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Table 6. Definitions used in the evaluation of the top 20 genes

term definition

Seed gene: Agene, which is one of the prostate cancer genes retrieved from OMIM Morbid Map (i.e. one of the genes in Table 1)
Inferred gene: A non-seed gene
Percentage of inferred genes: (Number of inferred genes / 20) × 100
Confirmed inferred gene: An inferred gene found to be related to prostate cancer based on PGDB, KEGG pathway for prostate cancer and

published articles
Percentage of confirmed inferred genes: (Number of confirmed inferred genes / Number of inferred genes) × 100
Percentage of confirmed genes: ((Number of confirmed inferred genes + Number of seed genes) / 20) × 100

Table 7. Summary of the results for the top 20 genes

Degree Eigenvector Betweenness Closeness Baseline

Number of seed genes 5 6 7 2 3
Number of inferred genes 15 14 13 18 17
Percentage of inferred genes 75 70 65 90 85
Number of confirmed inferred genes 14 13 8 13 10
Percentage of confirmed inferred genes 93.33 92.86 61.54 72.22 58.82
Percentage of confirmed genes 95 95 75 75 65

14 genes (93.33% of the inferred genes) to prostate cancer, except for
1 gene: EREG. For this exceptional gene, we did not find negative nor
positive evidence, which implies that the gene may still potentially
be a prostate cancer gene.

The result of eigenvector centrality is as successful as degree
centrality method with 95% of the top ranked 20 genes having
supportive evidence. Eigenvector centrality found 6 seed genes (AR,
BRCA2, CD82, MXI1, PTEN and CHEK2) and 14 inferred genes.
Out of the 14 inferred genes, 13 are confirmed (92.86% of the
inferred genes) and the same gene EREG is not.

Using closeness centrality, we found 2 seed genes (AR and
BRCA2) and inferred 18 new genes. A total of 13 of the inferred
genes (72.22% of the inferred genes) have evidence, which indicate
that they are related to prostate cancer and 5 inferred genes (EREG,
POLD1, SNORA62, TMEM37 and SSSCA1) do not have such
affirmative evidence.

Betweenness centrality found the most seed genes among the four
centrality methods. In its result, we have 7 seed genes (AR, BRCA2,
CD82, MXI1, PTEN, CHEK2 and KLF6) and 13 inferred genes, of
which 8 inferred genes (61.54% of the inferred genes) are verified to
have relation to the disease. The five inferred genes that we were not
able to confirm are EREG, POLD1, SNORA62, CNTN2 and PPA1.

Table 6 lists the definitions used in Table 7, which shows the
summary of the results for the top 20 genes.

We observed that degree and eigenvector centrality methods
generate highly accurate results; 95% of the top ranked 20 genes
are actually related to prostate cancer. They are significantly better
than the baseline method in which only 65% of the top 20 genes are
prostate cancer genes. We used Fisher’s Exact Test (Fisher, 1970)
to measure the significance level of the differences in performances
between the centrality methods and the baseline method. Degree and
eigenvector centrality perform significantly better (P-value <0.05)
than the baseline approach in terms of the percentage of the
confirmed genes and confirmed inferred genes. These methods are
good candidates for use in practice for mining existing genes related

to a particular disease. On the other hand, although closeness and
betweenness centrality methods are not statistically significantly
better than the baseline method in finding known prostate cancer
genes, compared to degree and eigenvector centrality they introduce
more genes that are not currently identified as related to the disease
of interest. These methods can be used to generate new hypothesis
on gene-disease research, which are candidates for experimental
validation. In our experiments, even though we were not able to
find evidence of whether gene EREG is related to prostate cancer or
not; the fact that all four centrality methods suggest that this gene
gives more confidence to EREG-prostate cancer relation. We believe
that EREG is a strong candidate for prostate cancer gene research.

As discussed in Section 2, the scoring function proposed
by Chen et al. (2006) is based on the connectedness of the genes.
However, the interactions among the non-seed genes are not
considered. Thus, their approach is biased toward seed genes. Out
of the top 20 genes, 19 are seed and only 1 gene is an inferred (non-
seed) gene. Gonzalez et al. (2007) alleviate this bias by computing
connectedness by considering only the interactions with the seed
genes. However, they do not consider the interactions among the
non-seed genes either.Atotal of 45% of their top scoring 20 genes are
non-seed and 66.67% of these non-seed genes are correctly inferred
genes. Our approach of building the network by literature mining,
including the interactions among the non-seed genes, and applying
network centrality measures achieved a higher proportion of non-
seed (inferred) genes and a higher accuracy of the inferred genes.
For example, with closeness centrality the proportion of inferred
genes is 90 and 72.22% of these inferred genes are correct; with
degree centrality the proportion of inferred genes is 75 and 93.33%
of these genes are correct.

5 CONCLUSION
We have presented a new approach to predict gene-disease
associations based on text mining and network analysis.
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We collected an initial list of seed genes known to be related
to a disease and constructed a disease-specific gene-interaction
network by extracting the interactions among the seed genes and
their neighbors automatically from the biomedical literature by using
SVM with dependency path edit kernel. Next, we used degree,
eigenvector, closeness and betweenness centrality metrics to rank
the genes in the network according to their relevance to the disease.
We hypothesized that the genes that are central in the constructed
disease-specific network are likely to be associated with the disease.

We evaluated our approach for prostate cancer and showed that
degree and eigenvector centrality metrics achieve highly accurate
results (95% of the top 20 genes are actually related to the disease),
whereas closeness and betweenness centrality metrics introduce
genes that are currently unknown to be related to the disease. We
were able to extract genes, which are not marked as being related to
prostate cancer by the curated PGDB even though there are recent
articles that confirm the association of these genes with the disease.
The proposed approach can be used to extract known gene-disease
associations from the literature, as well as to infer unknown gene-
disease associations which are good candidates for experimental
analysis.
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