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ABSTRACT

Motivation: In recent years,microarray technology has revealedmany

tumor-expressed genes prognostic of clinical outcomes in early-stage

breast cancer patients. However, in the presence of cured patients,

evaluating gene effect on time to relapse is quite complex since it

may affect either the probability of never experiencing a relapse

(cure effect) or the time to relapse among the uncured patients (disease

progression effect) or both. In this context, we propose a simple and

an efficient method for identifying gene expression changes that

characterize early and late recurrence for uncured patients.

Results: Simulation results show the good performance of the pro-

posed statistic for detecting a disease progression effect. In a study

of early-stagebreast cancer, our resultsshow that theproposedstatistic

providesamorepowerful basis for geneselection than theclassicalCox

model-basedstatistic.Fromabiological perspective,manyof thegenes

identified here asassociatedwith the speedof disease recurrence have

known roles in tumorigenesis.

Contact: broet@vjf.inserm.fr;kuznetsov@gis.a-star.edu.sg

1 INTRODUCTION

Since the inception of genome-wide transcript analysis technologies

such as serial analysis of gene expression (SAGE) and DNA

microarrays, there has been much interest in identifying gene

expression changes in primary human tumors associated with sur-

vival outcomes (class comparison) to better understand the disease

process and to develop so-called gene signatures (class prediction)

to improve patient prognosis (Simon et al., 2004). Although these

two issues are clearly different, they share a common key gene

selection process step which may be more crucial than the gene

signature modeling or the multiple comparison procedure

considered.

For the analysis of censored survival times, the semiparametric

Cox proportional hazard regression model is the favored choice and

the statistic being considered is usually the Wald statistic derived

from the corresponding univariate Cox partial likelihood function

(Cox, 1972, 1975). In practice, the genes with the largest statistics

are selected for further confirmatory analyses or for inclusion in

a gene signature (van’t Veer et al., 2002; Beer et al., 2002; Wang

et al., 2005).

For early-stage cancer in which a fraction of the patients may be

cured (sometimes referred to as long-term survivors) after the prim-

ary treatment, evaluating the association of gene expression changes

to tumor relapse is quite complex since it may relate either to the

probability of never experiencing a relapse (herein called cure or

long-term effect) or to the time-to-relapse among the patients who

are susceptible to relapse (herein called disease progression or short-

term effect) or both. From a clinical point of view, prognostic

factors with a cure effect are relevant for identifying non-

susceptible patients who will not benefit from adjuvant systemic

therapies but would otherwise sustain their side effects, whereas

those factors with a disease progression effect would be useful for

selecting patient with high risk for early relapse who may highly

benefit from more aggressive therapeutic strategies. Such clinical

problems arise for lymph-node negative primary breast cancer

patients for whom it is well accepted that more than half of

them are amenable to cure after the local-regional treatment

alone (EBCTCG, 1998).

However, the classical proportional hazard semi-parametric Cox

model, which does not explicitly modelize these two effects, is not

suited for evaluating the association between prognostic factor and

time-to-event in the presence of a heterogeneous clinical group with

cured patients (Maller and Zhou, 1996). Thus, a selection process

based on proportional hazard model-based statistics may lead to the

discarding of genes whose expression changes reflect rapidly

progressive disease in susceptible patients and as such should be

considered valuable therapeutic targets.

For long-term disease-free survival analyses, semi-parametric

cure models have been proposed that rely either on two-component

mixture models or bounded cumulative hazard models (for a review,

see Tsodikov et al., 2003). However, proposed methods for invest-

igating prognostic factors in cure models from a frequentist or

Bayesian framework usually require complex computations and

are too cumbersome for practical use in genome-wide analysis.

This latter problem prompted us to propose a simple and easy-

to-use statistic tailored for identifying genes with disease progres-

sion effects which can also take into account other conventional

prognostic markers. This statistic extends previous work on a cure

model in the two-sample comparison setting (Broët et al., 2001).
The paper is organized as follows. In Section 2, we introduce

the semi-parametric cure rate model that allows us to derive the

proposed statistic for testing the lack of disease progression

effect together with extensions for including additional independent�To whom correspondence should be addressed.
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variables. In Section 3, we present the results of simulation

experiments. In Section 4, we illustrate the performance and

usefulness of our approach using Affymetrix microarray data to

identify gene expression changes associated with early relapse

in a cohort of 130 early breast cancer patients. We conclude

with a discussion of the new insights obtained from our

approach.

2 TESTING FOR NO DISEASE
PROGRESSION EFFECT

In the following, we introduce the semi-parametric cure model that

allows us to derive a new statistic suited for testing for the lack of

disease progression effect. We also propose extensions for taking

into account clinical prognostic factors.

2.1 Cure model

Let Gij denote the gene vector for the i-th subject (i ¼ 1, . . . , n) and
the j-th gene (j¼ 1, . . . , p). For each patient i, let the random

variables Ti and Ci be the survival and censoring times which

are assumed to satisfy the classical condition of independent cen-

soring. We let Xi¼min(Ti, Ci) denote the observed time of

follow-up, di ¼ 1fXi¼Tig the indicator of death, YiðtÞ ¼ 1ft�Xig the

indicator of being at risk at time t. For each subject i and the gene j ,
the data consist of Xi, di and Gij. The hazard function of Ti corres-
ponding to every subject i with gene vector Gij is denoted by

lðt=Gij
Þ ¼ f ðt=Gij

Þ=Sðt=Gij
Þ‚ where f ðt=Gij

Þ and Sðt=Gij
Þ are the

probability density function and the survival function, respectively.

The corresponding cumulative hazard function is denoted by

Lðt=Gij
Þ ¼ � log ½Sðt=Gij

Þ�:
Here, we introduce the following semi-parametric bounded

cumulative hazard model (Broët et al., 2001; Tsodikov et al.,
2003) which is defined by the general survival function:

Sðt=Gij
Þ ¼ exp ½ � �e

b
1j
Gijð1 � e�HðtÞeb2jGij Þ�‚ ð1Þ

where H(t) is an arbitrary function increasing with time from zero to

infinity, which can be considered as a pseudo-cumulative hazard

function and � is a positive parameter. Here, b1j and b2j are para-

meters, belonging to R, for the cure and disease progression effects

of the gene j, respectively. This model is a semi-parametric model

since a parametric form is assumed only for the genes effects, the

function H(t) being treated non-parametrically. Moreover, it is

a cure model since the function Sðt=Gij
Þ is improper with its limiting

value e��e
b
1j

Gij

representing the probability of not experiencing the

event of interest. The cumulative hazard Lðt=Gij
Þ is bounded, being

� �e
b
1j
Gij . In this model, the parameter vector b1j quantifies the

genes’ cure (or long-term) effect and the b2j quantifies the genes’

disease progression (or short-term) effect on the pseudo-survival

function e�H(t) through a proportional hazard relationship. This

model can be written in terms of the hazard functions lðt=Gij
Þ as

follows:

lðt=Gij
Þ ¼ �hðtÞeb1j

Gij eb2jGij�HðtÞeb2jGij ‚ ð2Þ

where hðtÞ ¼ ½@HðtÞ/@t� is an arbitrary baseline hazard function. As
seen in (2), the cure effect acts in multiplying the hazard rate by

a quantity which is constant over time whereas for the disease

progression effect this quantity is changing over time. This latter

time-varying effect is related to the changes in composition of the

population since the susceptible patients group is progressively

exhausted as time goes on.

2.2 Test statistic

2.2.1 Score statistic We derive a score statistic for testing the

hypothesis (H0j : b2j ¼ 0) of no disease progression effect for the

j-th gene. Based on the previous model, the corresponding partial

log-likelihood is

LLðb1j‚b2jÞ ¼
Xn
i¼1

diðb1j
Gij + b

2j
Gij � HðtiÞeb2j

GijÞ

� ln
Xn
k¼1

YkðtkÞeb1j
Gkj e

b
2j
Gkj e�HðtiÞe

b
2j
Gkj

 !
2
664

3
775:

When there are ties among the events, we consider the modified

partial likelihood as proposed by Breslow (1974).

Thus, the components of the score vector deduced from the partial

likelihood under H0j can be written as follows:

V̂V
H0j

1 ¼
@LLðb1j‚b2jÞ

@b1j

j b2j¼0 ¼ 0

V̂V
H0j

2 ¼
@LLðb1j‚b2jÞ

@b2j

j b2j¼0

¼
Xn
i¼1

diF̂FðtiÞ Gj �
Pn

k¼1 YkðtkÞeb̂b1j
GkjGkjPn

k¼1 YkðtkÞeb̂b1j
Gkj

( )
‚

Where F̂FðtÞ ¼ 1 � ĤHðtÞ ¼ 1 + ln ½1 � ðL̂L0ðtÞ/�̂�Þ�.
Here, L̂L0ðtÞ is the left-continuous version of the Breslow’s estim-

ator (Breslow, 1972, 1974) for the cumulative hazard function under

H0j, �̂� is its value computed at the last observed failure time and b̂b
1j

is the maximum partial likelihood estimator of b1j under H0j.

In practice, L̂L0ðtÞ ¼
Pn

i¼1 di½
Pn

k¼1 YkðtkÞeb̂b1j
Gkj ��1

.

The corresponding observed information matrix ÎIH0j
under H0j is

obtained from the second derivatives and is given as follows:

@2LLðb1j‚b2jÞ
@2b1j

¼
Pn

i¼1 di

Pn

k¼1
YkðtkÞeb̂b1jGkj GkjPn

k¼1
YkðtkÞeb̂b1jGkj

� �2

�
Pn

k¼1
YkðtkÞeb̂b1jGkj G2

kjPn

k¼1
YkðtkÞeb̂b1jGkj

2
6664

3
7775

@2LLðb1j‚b2jÞ
@2b2j

¼
Pn

i¼1 di

Pn

k¼1
YkðtkÞeb̂b1jGkj GkjF̂FðtiÞPn

k¼1
YkðtkÞeb̂b1jGkj

� �2

�
Pn

k¼1
YkðtkÞeb̂b1jGkj G2

kjF̂F
2ðtiÞPn

k¼1
YkðtkÞeb̂b1jGkj

2
6664

3
7775

@2LLðb1j‚b2jÞ
@b1j@b2j

¼
Pn

i¼1 di

Pn

k¼1
YkðtkÞeb̂b1jGkj GkjF̂FðtiÞ

Pn

k¼1
YkðtkÞeb̂b1jGkj G2

kjF̂F
2ðtiÞPn

k¼1
YkðtkÞeb̂b1jGkj

� �2
�
Pn

k¼1
YkðtkÞeb̂b1jGkj GkjF̂F2ðtiÞPn

k¼1
YkðtkÞeb̂b1jGkj

2
6664

3
7775

Under H0j, the statistic of no disease progression effect SDPEj ¼
ð0‚ V̂VH0j

2 ÞÎI�1
H0j

ð0‚ V̂VH0j

2 Þ
0
is asymptotically distributed as a x2 with one

degree of freedom (Cox and Hinkley, 1974).

2.2.2 Extension for taking into account conventional clinical
prognostic factors In order to adjust for conventional clinical

factors, we propose a simple strategy which depends on the exist-

ence of a disease progression effect for the clinical factor. For the

following, denote Z the clinical covariate and Zl its discretized

counterpart (with L stratums; l ¼ 1, . . . , L).
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First, we test for the hypothesis of no disease progression effect

for the clinical covariate using the score statistic introduced above.

� If this latter hypothesis is rejected, we propose to consider a

stratified (from Zl) version of the cure rate model introduced

in the previous section. Thus, the components of the statistic are

found by summing the previous first and second derivatives

across each stratum.

� If this latter hypothesis is not rejected, the following extended

cure model is considered :

Sðt=Zi‚Gij
Þ ¼ exp ½ � �eb0Zi eb1jGij ð1 � e�HðtÞeb2jGij Þ�‚ ð3Þ

where Zi is the clinical covariate for the i-th subject and b0 the

corresponding regression coefficient.

Thus, the components of the score vector for testing the null

hypothesis of no disease progression effect for the j-th gene can

be easily written as follows:

V̂V 1 ¼
@LLðb0‚b1j‚b2jÞ

@b0

j b2j¼0 ¼ 0

V̂V 2 ¼
@LLðb0‚b1j‚b2jÞ

@b1j

j b2j¼0 ¼ 0

V̂V 3 ¼
@LLðb0‚b1j‚b2jÞ

@b2j

j b2j¼0

¼
Xn
i¼1

diF̂FðtiÞ

Gj �Xn
k¼1

YkðtiÞeb̂b0Zk e
b̂b
1j
Gkj Gkj

Xn
k¼1

YkðtiÞeb̂b0Zk e
b̂b
1j
Gkj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Here, L̂L0ðtÞ ¼
Pn

i¼1 di½
Pn

k¼1 YkðtjÞeb̂b0Zk eb̂b1jGkj ��1
where b̂b0 is

the usual partial likelihood estimators of b0 under the null hypo-

thesis and �̂� its value at the last observed failure time. The corres-

ponding observed information matrix is obtained from the partial

second derivatives in the same way as presented above. Thus, the

corresponding statistic SDPEj ¼ ð0‚0‚ V̂V 3ÞÎI�1
H0j

ð0‚0‚ V̂V 3Þ
0
is asymptot-

ically distributed under the null hypothesis as a x2 with one degree

of freedom.

3 SIMULATION

3.1 Method

A simulation study was performed to investigate the power prop-

erties of the proposed disease progression effect test statistic

(denoted DPE) in comparison with the classical proportional hazard

Cox model-based Wald test statistic (denoted PHM). Data were

generated to mimic the disease progression and cure effects of

a gene on the survival times according to the cure model described

previously with H(t) ¼ t. Censoring times were independently

generated from a uniform distribution. For each gene,

pseudo-expression values were independently sampled from a stand-

ard normal distribution. The number of subjects was chosen to be of

200. The following configurations were considered: plateau value

(e��) of 50 and 75%; censoring of 0 and 25%; b1 ¼ 0, 0.25, 0.5 and

b2 ¼ 0, 1, 1.25, 1.5, 2 that mimics realistic disease progression

and cure effects. For each configuration, 200 replications were

performed and the levels and powers of all tests were estimated

at the nominal level 0.05.

3.2 Results

Table 1 shows the simulation results for the uncensored case.

As expected, the estimated level of the DPE test under its proper

null hypothesis is within the binomial range [0.02–0.08]. In the

presence of a disease progression effect without a cure effect,

power gains of the proposed test are impressive as compared

with the Cox-model-based Wald test. In the presence of a cure

effect, power gains are lower but still interesting in comparison

to the PHM test as soon as a non-negligible disease progression

effect exists. It is worth noting that power gains increase with the

plateau value. When the cure effect is important, the PHM test is

more powerful than the DPE test. This is not surprising since the

DPE statistic is devoted for detecting disease progression effect

whereas the PHM statistic does not explicitly model these two

effects. Moreover, if no disease progression exists, the cure

model reduces to a proportional hazard model for which the

PHM test is optimal.

Table 2 shows the simulation results for the censored case. With

a 25% censoring rate, the observed levels of the proposed test

statistic do not exceed the binomial bounds. Since the null hypo-

thesis of no disease progression effect does not involve the plateau

value estimate, it is not surprising that the DPE test maintains

a correct type I error for censored cases. Concerning the power

it appears that the trends observed in the uncensored case remain

almost unchanged. Power gains for DPE are lower than in the

uncensored case, but still remain impressive as compared with

the PHM test as soon as no cure effect exists. When testing disease

progression effect with a moderate cure effect, power values of the

DPE and PHM tests are very close.

Table 1. Simulation results for no censoring, cure fraction 50 and 75%

Cure effect (b1) Disease progression effect (b2)

0 0.5 1 1.5 2 2.5

Cure fraction 50%

0

DPE 0.03 0.57 1.00 1.00 1.00 1.00

PHM 0.04 0.08 0.26 0.32 0.44 0.64

0.25

DPE 0.03 0.63 1.00 1.00 1.00 1.00

PHM 0.75 0.82 0.99 0.98 0.97 0.99

0.5

DPE 0.05 0.45 1.00 1.00 1.00 1.00

PHM 1.00 1.00 1.00 1.00 1.00 1.00

Cure fraction 75%

0

DPE 0.03 0.85 0.99 1.00 1.00 1.00

PHM 0.07 0.05 0.07 0.08 0.09 0.15

0.25

DPE 0.06 0.83 1.00 1.00 1.00 1.00

PHM 0.47 0.55 0.54 0.62 0.61 0.72

0.5

DPE 0.06 0.81 1.00 1.00 1.00 1.00

PHM 0.92 0.97 0.98 0.98 0.99 1.00

Identifying disease progression effect genes
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4 DISEASE PROGRESSION EFFECTS’ GENES
IN EARLY BREAST CANCER

4.1 Clinical and microarray datasets

The data come from an expression microarray study conducted

jointly between the Genome Institute of Singapore and the

Karolinska Institute (Stockholm, Sweden) and designed for invest-

igating the prognostic effects of gene expression changes on the

outcome of patients with primary invasive breast cancer (Miller

et al., 2005). Here, we selected a homogeneous clinical group of

130 patients having lymph-node-negative breast cancer with pos-

itive steroid receptor (either estrogen or progesterone receptors),

tumor size <50 mm, age between 35 and 80 years. All patients had

been treated by modified radical mastectomy or breast-conserving

surgery, followed by radiotherapy if indicated. None of these

patients received chemotherapy and only a small fraction (15%)

received hormonal therapy. Among the selected cases, 86 patients

(66%) had a tumor <20 mm (stage T1) and 44 patients (34%) had

a tumor between 20 and 50 mm (stage T2). The mean age at dia-

gnosis was 62 years. According to the Elston–Ellis grading system

(Elston and Ellis, 1991), 48 patients (37%) had tumor grade I,

66 (51%) grade II and 16 (12%) grade III. Protein levels of estrogen

receptor (ER) and progesterone receptor (PR) were assessed by

immunoassay (monoclonal 6F11 anti-ER and monoclonal

NCL-PGR, respectively, Novocastra Laboratories Ltd, Newcastle

upon Tyne, UK) and deemed positive if greater than 0.1 fmol/mg
DNA. One hundred fifteen (88%) patients had tumors with positive

ER and 123 (95%) with positive PR.

The clinical outcome considered in this study was the occurrence

of any relapse from the disease (i.e. local or regional relapse, meta-

stasis or disease-related death). Disease-free survival was calculated

from the date of treatment to the time of relapse from the disease or

last follow-up.

For gene expression analyses, the Affymetrix Human U133 oligo-

nucleotide arrays were used. Here, we considered U133A Chips

with 22283 probe sets. Standardization and normalization of the

data were carried out using the MAS5 procedure (Simon et al.,
2004).

In our study, the median duration follow-up was 10.7 years. The

five year disease-free survival was 76.1% [95%CI: 69.1–83.8] and

the 10 year disease-free survival was 65.5% [95%CI: 57.7–74.3]. At

the end of follow-up, 45 patients experienced a relapse from the

disease. Figure 1 displays the Kaplan–Meier estimates of the

disease-free survival (with the 95% confidence interval) for the

entire cohort and shows a clear plateau value after ten years of

follow-up.

From classical univariate Cox survival analysis, age was not

significantly associated with the disease-free survival (p¼ 0.61),

whereas high tumor size staging (p¼ 0.005) and histological grad-

ing (p¼ 0.01) were significantly associated with lower disease-free

survival. Tumor size staging and histological grading were highly

correlated (p¼ 0.002). When adjusting for these two factors in

a multivariate Cox model, only tumor size staging showed a signi-

ficant effect on the disease-free survival (p¼ 0.02). When we tested

for a disease progression effect, the proposed test showed no stat-

istical significance for the tumor size staging (p¼ 0.3). Thus, we

decided to consider the statistic (denoted in the following SDPEj )

derived from the extended cure model [Equation (3)] introduced in

Section 2. We also calculated the corresponding Cox model-based

Wald statistic adjusted for tumor size (denoted in the following

SCoxj ) and the corresponding p-values denoted pS
DPE
j ‚ and pS

cox
j ‚

respectively. The error criteria considered for the selection process

was the classical false discovery rate (FDR) as introduced by

Benjamini and Hochberg (1995). We estimated the FDR from

the marginal distribution of the p-values without making any

assumption on the distribution related to the modified genes accord-

ing to the method proposed by Dalmasso et al. (2005).

4.2 Results

4.2.1 Results of the selection process Here we consider a typical

situation where the investigator is interested in obtaining a list of top

Table 2. Simulation results for 25% censoring, cure fraction 50 and 75%

Cure effect (b1) Disease progression effect (b2)

0 0.5 1 1.5 2 2.5

Cure fraction 50%

0

DPE 0.05 0.56 1.00 1.00 1.00 1.00

PHM 0.05 0.09 0.25 0.33 0.47 0.68

0.25

DPE 0.05 0.50 1.00 1.00 1.00 1.00

PHM 0.68 0.80 0.96 0.98 0.99 0.99

0.5

DPE 0.05 0.42 1.00 1.00 1.00 1.00

PHM 1.00 1.00 1.00 1.00 1.00 1.00

Cure fraction 75%

0

DPE 0.07 0.66 1.00 1.00 1.00 1.00

PHM 0.08 0.08 0.25 0.53 0.66 0.65

0.25

DPE 0.03 0.64 1.00 1.00 1.00 1.00

PHM 0.66 0.78 0.85 0.99 0.99 1.00

0.5

DPE 0.06 0.40 1.00 1.00 1.00 1.00

PHM 1.00 1.00 1.00 1.00 1.00 1.00
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Fig. 1. Kaplan–Meier estimate of the disease-free survival. Dashed lines

show the 95% confidence intervals.
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probe sets for a defined FDR threshold based on the ordered

p-values. Figure 2 displays the FDR estimate as a function of the

number of probe sets selected. Panel 1 gives the results for all the

probe sets whereas panel 2 displays a zoom on the first top 200

probe sets. As seen from these graphics, for a same FDR threshold,

we can select a larger number of genes from our proposed statistic as

compared with the Cox model-based statistics. When looking to the

second panel, the FDR curve for the Cox model-based selection

process shows a sharp increase with a value of 65% for the third

probe set whereas for the proposed selection process the curve is

slowly increasing. Choosing a classical 20% FDR cut-off for the

statistical significance gives us a list of 52 probe sets with the

proposed statistic and one probe set with the Cox model-based

statistic. It is worth noting that the smallest observed p-value for

our proposed statistic is 1.2 · 10�6 which is still significant when

considering a restrictive criteria such as the familywise error rate

(at a level of 5%) and using the Bonferroni procedure.

Figure 3 displays the survival curves for two representative probe

sets (among the 52 selected ones) where gene expression measure-

ments are dichotomized between those with high values (above the

median) and those with low values (below the median). These

figures show clearly the probe sets’ time-varying effect with the

two curves converging to a plateau value as time goes on. In the first

case, an increase of the probe set expression is related to early

relapse whereas for the other probe set it is the converse.

Among these 52 probe sets, one gene was selected with its three

probe sets and one gene with its two probe sets leading to a subset of

49 different genes (Table 3).

Figure 4 displays results of a local smoothing procedure

(Cleveland, 1979) of the time-dependent regression coefficient

estimate, based on the Cox model-based Schoenfeld residuals,

versus time (Marubini and Valsecchi, 2004). It clearly shows

that genes’ coefficients are not constant with their signs changing

over time. As expected, testing for non-proportionality of the

hazards leads to highly significant results for these genes (data

not shown).

4.2.2 Disease progression effect principal component In order

to explore the combined effect of the selected 49 disease progres-

sion effect genes on patient outcomes in a low-dimensional space,

we performed a principal component analysis on the variance-

covariance genes matrix and selected the largest principal compon-

ent. This component, which may be viewed as a super gene,
corresponds to the linear combination of the selected genes having

maximal variation among tumor samples. We then calculated for

each patient a corresponding super gene score and tested for a dis-

ease progression effect of the super gene. We observed a highly

significant disease progression effect (x2¼ 64.3, p< 10�15).

Figure 5 displays the survival curves obtained when the super
gene scores were dichotomized according to the median score.

As seen from the graph, for patients with low super gene scores

most of the relapse events occurred before five years, whereas for

the other group relapses occurred after five years, despite the two

groups having the same proportion of cured patients.

4.2.3 Biological insights of the disease progression effect
genes For classifying selected genes by categories, we used the

publicly available PANTHER (Protein Analysis Through

Evolutionary Relationships, Version 6.0 2005, http://panther.

appliedbiosystems.com) classification system software (Mi et al.,
2005). It includes interactive resources for analyzing gene expres-

sion data in relation to molecular functions, biological processes

(GO ontology) and known pathways. In our selected subset of

49 disease progression effect genes, 46 were annotated. We
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investigated which categories (biological process, molecular

function, pathway), if any, were statistically overrepresented in

this 46 genes subset. We compared the number of genes

observed in a specified category with the number that would be

expected (based on the 23 481 annotated genes ID from the NCBI

repertory) if there was no relationship between our selected

subset and the specified category. We considered 243, 255 and

82 categories for biological process, molecular function and

pathway, respectively. Table 4 displays the categories which

are statistically overrepresented in our selected genes subset

(at the 0.05 level).

When looking to the biological process categories, apoptosis,

oncogene, mRNA transcription and cell cycle genes were over-

represented. For the molecular function categories, genes having

a protein kinase activity were overrepresented. For the pathway

categories, we found an overrepresentation of genes having

immune/inflammation functions, reflecting the well-known role

of the microenvironment in cancer disease progression. Interest-

ingly, we also showed an overrepresentation of genes related to

the Wnt signaling pathway which is known to be implicated in

oncogenesis of a wide range of human cancers including breast

carcinomas (Howe and Brown, 2004).

Among the 49 disease progression effect genes, a high expression

of 38 genes was related to early relapse whereas for 11 genes a low

expression was related to early relapse. We also investigated if

chromosome locations were statistically overrepresented in this

49 gene subset. We compared the number of genes we observed

in a specified chromosome with the number that would be expected

if there was no relationship between our selected subset and the

chromosomal location. Here, chromosome 3 was significantly

overrepresented (p< 10�6) with 13 genes located on this chromo-

some. Moreover, it is worth noting that for the nine genes located on

the 3q arm, an increase of the expression was related to early

relapse.

4.2.4 Validation study For validating the disease progression

effect of our selected subset of probe sets, we considered an inde-

pendent breast cancer dataset from the study published by Wang

et al. (2005). In this latter study, gene expression of 286 lymph-

node-negative primary breast cancers was studied using Affymetrix

Human U133 oligonucleotide arrays. The authors identified a gene

signature of 60 probe sets for patients positive for ERs that is

a prognostic factor for the development of metastasis.

Firstly, we tested the null hypothesis of no disease progression

effect for our 52 selected probe sets on the 209 ER positive breast

cancers from the Wang et al. (2005) study. Secondly, we tested the

null hypothesis of no disease progression effect for the 60 probe sets

selected by Wang et al. (2005) on our series (using both DPE and

PHM statistics).

For these two groups of selected probe sets, we then compared the

number of probe set statistics being significant at the classical 5%

level with the number that would be expected if there was no

relationship between the expression of the probe sets and the

disease-free survival.

Among our 52 selected probe sets, 12 (23%) showed a disease

progression effect in the Wang et al. (2005) series, this number

being significantly higher than expected by chance alone (p < 10�6).

Among the 60 probes sets selected by Wang et al. (2005) four

(6.7%) and six (10%) showed a relationship with the disease-free

survival in our series, using DPE and PHM test statistics, respect-

ively. When comparing these latter results with the numbers that

would be expected if there was no relationship, we did not reach

statistical significance with either the DPE (p ¼ 0.55) or PHM (p ¼
0.07) test statistics.
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Table 3. List of the selected 52 disease progression effect probe sets

AffyID Gene symbol Unigene name Cytoband

Increased risk

218114_at GGA1 Golgi associated, gamma adaptin ear containing, ARF binding protein 1 22q13.31

222141_at KELCHL Kelch-like 22 (Drosophila) 22q11.21

222245_s_at FER1L4 Fer-1-like 4 (Caenorhabditis elegans) 20q11.22

205930_at GTF2E1 General transcription factor IIE, polypeptide 1, alpha 56 kDa 3q21–q24

209832_s_at CDT1 DNA replication factor (Interim) 16q24.3

209361_s_at PCBP4 Poly(rC) binding-protein 4 3p21

205977_s_at EPHA1 EPH receptor A1 7q34

204094_s_at KIAA0669 TSC22 domain family, member 2 3q25.1

213518_at PRKCI Protein kinase C, iota 3q26.3

200884_at CKB Creatine kinase, brain 14q32

218066_at SLC12A7 Solute carrier family 12 (potassium/chloride transporters), member 7 5p15

211756_at PTHLH Parathyroid hormone-like hormone 12p12.1–p11.2

207493_x_at SSX2 Synovial sarcoma, X breakpoint 2 Xp11.23–p11.22

201637_s_at FXR1 Fragile X mental retardation, autosomal homolog 1 3q28

204701_s_at STOML1 Stomatin (EPB72)-like 1 15q24-q25

208877_at PAK2 P21 (CDKN1A)-activated kinase 2 3q29

210556_at NFATC3 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3 16q22.2

212782_x_at POLR2J Polymerase (RNA) II (DNA directed) polypeptide J, 13.3 kDa 7q11.2

206152_at CENTG1 centaurin, gamma 1 12q14.1

210983_s_at MCM7 MCM7 minichromosome maintenance deficient 7 (Saccharomyces cerevisiae) 7q21.3–q22.1

203486_s_at ARMC8 Armadillo repeat containing 8 3q22.3

217926_at HSPC023 HSPC023 protein 19p13.13

221219_s_at KLHDC4 Kelch domain containing 4 16q24.3

204995_at CDK5R1 Cyclin-dependent kinase 5, regulatory subunit 1 (p35) 17q11.2

47105_at FLJ20399 Dihydrouridine synthase 2-like (SMM1, S.cerevisiae) 16q22.1

213420_at DHX57 DEAH (Asp-Glu-Ala-Asp/His) box polypeptide 57 2p22.1

201908_at DVL3 Dishevelled, dsh homolog 3 (Drosophila) 3q27

220388_at FER1L4 Fer-1-like 4 (C.elegans) 20q11.22

221877_at CDNA FLJ38849 fis, clone MESAN2008936 19q13.31

216492_at FLJ00060 hypothetical gene FLJ00060 19q13.42

219178_at QTRTD1 Queuine tRNA-ribosyltransferase domain containing 1 3q13.31

201517_at NCBP2 Nuclear cap binding-protein subunit 2, 20 kDa 3q29

210981_s_at GRK6 G protein-coupled receptor kinase 6 5q35

204922_at FLJ22531 hypothetical protein FLJ22531 (Interim) 11q13.2

201074_at SMARCC1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin 3p23–p21

215093_at NSDHL NAD(P) dependent steroid dehydrogenase-like Xq28

212450_at KIAA0256 KIAA0256 gene product (Interim) 15q21.1

215722_s_at SNRPA1 small nuclear ribonucleoprotein polypeptide A’ 15q26.3

209430_at BTAF1 BTAF1 RNA polymerase II, B-TFIID transcription factor-associated 10q22–q23

Decreased risk

214162_at LOC284244 Hypothetical protein LOC284244 18q12.1

201008_s_at TXNIP Thioredoxin interacting protein 1q21.1

201009_s_at TXNIP Thioredoxin interacting protein 1q21.1

201010_s_at TXNIP Thioredoxin interacting protein 1q21.1

201041_s_at DUSP1 Dual specificity phosphatase 1 5q34

212124_at RAI17 Retinoic acid induced 17 10q22.3

219440_at RAI2 Retinoic acid induced 2 Xp22

210832_x_at PTGER3 Prostaglandin E receptor 3 (subtype EP3) 1p31.2

209189_at FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 14q24.3

206286_s_at TDGF1 Teratocarcinoma-derived growth factor 1 3p21.31

210218_s_at SP100 Nuclear antigen Sp100 2q37.1

219689_at LOC56920 Sema domain, immunoglobulin domain (Ig), short basic domain 3p21.1

203675_at NUCB2 nucleobindin 2 11p15.1–p14

AffyID, Affymetrix identification code for each probe set; risk, risk of early relapse.
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5 DISCUSSION

The discovery of disease progression genes characterizing early and

late relapse among uncured patients, which can only be accomp-

lished by investigating survival data with long-term follow-up,

advocates for the use of new statistics appropriate for identifying

such genes. We propose in this paper a new statistic tailored for

detecting disease progression effect genes which offers the invest-

igator a powerful new and easy-to-use tool for the gene selection

process. Furthermore, this statistic can be easily implemented using

classical statistical software with survival analysis capabilities.

Our test statistic stems from biological, clinical as well as stat-

istical considerations. From a biological point of view, it is likely

that a non-negligible fraction of genes measured at the time of the

treatment is direct or indirect witness of the speed of the disease for

the uncured patients. From a clinical perspective, the identification

of genes that drive early relapse may not only improve patient

prognosis, but also guide the discovery of new potential therapeutic

targets appropriate for patients with rapidly progressive disease.

From a statistical point of view, in such a mixed population

(cured and uncured patients), the susceptible patients group

which is progressively exhausted over time, leads to an observed

time-varying effect, which advocates the use of cure rate models

from which well-suited statistics can be derived.

As seen from the simulation study, the proposed statistic shows

excellent power performances for assessing a disease progression

effect as compared with the classical Wald statistic derived from the

Cox model. Power gains are impressive for no, or small differences
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Table 4. Comparison between the number (#) of selected genes for a speci-

fied category (biological process, molecular function, pathway obtained from

PANTHER software) with the number that would be expected if there was no

relationship between these genes and the specified category, together with its

corresponding p-values.

# Genes

NCBI

# observed # expected p-value

Biological Process

Nucleoside, nucleotide and

nucleic acid metabolism

3010 16 6.15 0.000203

Protein modification 1110 8 2.27 0.00172

Protein phosphorylation 644 6 1.32 0.00194

tRNA metabolism 42 2 0.09 0.00342

Mesoderm development 537 5 1.1 0.00473

mRNA transcription 1711 9 3.5 0.00719

Cell cycle control 381 4 0.78 0.00764

Pre-mRNA processing 269 3 0.55 0.0177

Oncogene 107 2 0.22 0.0204

Skeletal development 120 2 0.25 0.0252

Lactation, mammary

development

13 1 0.03 0.0262

Cell cycle 886 5 1.81 0.0342

Induction of apoptosis 151 2 0.31 0.0384

Molecular function

Nucleic acid binding 2534 14 5.18 0.000393

Helicase 161 3 0.33 0.00443

Annexin 63 2 0.13 0.00748

DNA helicase 67 2 0.14 0.00842

Kinase 658 5 1.35 0.0109

Protein kinase 512 4 1.05 0.0205

Other transcription factor 323 3 0.66 0.0284

Calmodulin related protein 149 2 0.3 0.0375

Other RNA-binding protein 157 2 0.32 0.0412

Kinase modulator 158 2 0.32 0.0416

Pathways

Wnt signaling pathway 357 5 0.73 0.000807

Angiogenesis 218 4 0.45 0.00104

T cell activation 121 3 0.25 0.00199

Inflammation mediated by

chemokine and cytokine

signaling pathway

332 4 0.68 0.00474

B cell activation 102 2 0.21 0.0186

JAK/STAT signaling

pathway

22 1 0.04 0.044

#, number; p-value, degree of significance.
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in the cure effect. In any case, our proposed score test maintains

a correct type I error.

For the early breast cancer series considered in this work, a long-

term survivor fraction exists, and having a large number of patients

followed up to the first decade post surgery allows for an interpret-

able time sequence for tumor relapse. Based on the results, the

proposed statistic leads to the selection of a larger subset of

genes for a reasonable FDR as compared with the Cox model-based

statistic. When looking to our selected genes, they exhibit a clear

time-varying effect which explains why they are not selected using

the classical Cox-based statistic. Moreover, we could easily under-

stand that early evaluation (say at five years) may emphasize dif-

ferences that will disappear with longer follow-up. This latter fact

may explain recent findings regarding gene signatures for early

breast cancer, where around two-thirds of patients have a negligible

risk of tumor recurrence after 10-years (Bland and Copeland, 1998)

and may be considered as cured (or long-term survivors). Recently,

van’t Veer et al. (2002) have identified a microarray-derived gene

expression signature that predicts for distant metastasis. This

70-gene signature was derived from the probability of being free

of metastasis at five years and later evaluated on the time-to-distant

relapse with a longer follow-up (van de Vijver et al., 2002). In this

latter work, the authors reported that the hazard ratio for distant

metastasis as a first event was estimated to be 8.8 (95%CI : 3.8–20)

between the ‘poor’ versus the ‘good’ profile groups for the first five

years and only 1.8 (95%CI : 0.69–4.5) after five years. Thus, we

may hypothesize that this time-varying effect reflects the presence

of disease progression effect genes in the signature.

In our study, we considered a classical top-gene selection strategy
(based on the FDR criteria) even though key genes are not neces-

sarily those with larger transcriptional variations. We also validated

the prognostic potential of our selected subset of genes on an inde-

pendent dataset published by Wang et al. (2005). Adjusting for

tumor size, this latter variable being the classical clinical reflection

of cell proliferation, leads us to explore different biological path-

ways involved in rapid progressive disease. Here, our study emphas-

izes the potential interest of genes involved in the Wnt signaling
pathway (Howe and Brown, 2004).

Of particular interest is the overrepresentation of genes located in

chromosome 3 and especially on the 3q arm. This finding is likely

related to genomic amplification since it is consistent with recent

comparative genomic hybridization results which show that gain of

3q is a strong predictor of recurrence in lymph node-negative invas-

ive breast carcinomas (Janssen et al., 2003). Notwithstanding that it
was not the main purpose of our work, we investigated the interest

of combining disease progression effect genes in a unique super
gene component. As seen from our results, it clearly leads to a more

powerful prognostic factor and thus warrants further investigations

for prediction purposes.

In this work, we considered the same proportional hazard disease

progression shape for each gene, however other disease progression

effect shapes (e.g. accelerated life model) may also be considered

and will require future exploration. We conclude that the proposed

statistic is a powerful new approach for identifying genes with

disease progression effects which could be valuable prognostic

indicators useful in therapeutic decision making and for identifying

candidate genes and pathways for future targeted therapies. Finally,

this study emphasizes the need for deriving new statistics for

genome-wide analysis where gains of power are a crucial issue.
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