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The influence of genetic variations on diseases or cellular processes is a main

focus of many investigations and results of biomedical studies are often only

accessible through scientific publications. Automatic extraction of this informa-

tion requires recognition of the gene names and the accompanied allelic variant

information. In a previous work, the OSIRIS system for detection of allelic

variation in text based on a query expansion approach has been communicated.

Remaining challenges associated with this system were the relatively low recall

for variation mentions and gene name recognition. To tackle this challenge, we

integrate the ProMiner system developed for the recognition and normalization

of gene and protein names with a Conditional Random Field based recognition

of variation terms in biomedical text. Following the newly developed normal-

ization of variation entities, we can link textual entities to dbSNP entries. The

performance of this novel approach is evaluated and improved results in com-

parison to state-of-the-art systems are reported.
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1 Introduction

Sequence variations, in particular Single Nucleotide Polymorphisms (SNPs), are considered key

elements in fields such as genetic epidemiology and pharmacogenomics. Researchers in these

areas are interested in finding genes associated with clinically relevant phenotypes, such as dis-

eases or drug responses, as well as in selecting the relevant sequence variants on candidate genes

for genotyping studies. Information on sequence variations can be found at public resources

such as dbSNP1 and HapMap.2 The NCBI database dbSNP serves as a central repository for

both SNPs and short deletion and insertion polymorphisms. It currently contains 51,312,474

variations for 43 different organisms. The data in dbSNP is integrated with other NCBI ge-

nomic databases, thus providing sequence mapping information on different genome features.

Each variation present in dbSNP is assigned to a unique identification code (the refSNP or “rs

number”).

The mapping of variations mentioned in texts to a unique database identifier (normalization)

is important from a biomedical perspective, because it provides the biological context to the

variations. Mapping a variation entity to a dbSNP identifier allows to link a text entity to a

database entry and thus enriches context. In consequence, all the information available for this

variation can be obtained: organism, genome location, validation status, populations in which

the variant has been sequenced, biological sequences where the variant has been mapped (gene,

mRNA, protein) and other pieces of information. Applied in a global scale, normalization of

variation terms would allow the linkage of two data sets: the scientific literature and the sequence

variation data from dbSNP.

Even the finding of variation mentions in text without proper normalization is of interest, as

it can improve information retrieval tasks for database curators.3 This kind of information will

allow semantic searches like: “Give me all articles mentioning a variation and diabetes”. It is

obvious that this will be of great help in the design of genetic studies.

The technology to automatically extract relevant information from text is called text mining.

In the last few years, many text mining applications for information retrieval and information ex-

traction have been developed in the Life Sciences domain.4, 5 Challenges commonly associated

with biological name recognition concern the handling of multiple names for the same entity

(synonymy), and the identification of entities composed of more than one word (multi-word

terms). In addition, identical names are used to identify different proteins, genes or other bio-

logical entities (polysemy). The BioCreAtIvE I6 and II7 assess the performance of different text

mining systems for gene mention recognition and for gene normalization to database entries.

In BioCreAtIvE II, Conditional Random Fields8 (CRF) were the most common systems used

with good performance for gene mention recognition and reached in our hands an F1-measure

of 86%.9 For human gene normalization the ProMiner system showed excellent performance

and reached an F1-measure of 80% on the tested abstract corpus.10

Contrasting to the extensive research carried out in the field of gene and protein name entity

recognition, only few initiatives have been directed to the task of retrieval of SNPs and other

types of sequence variants from the literature. Quite similarly to the problem of detection of

gene and protein names from biomedical literature, the identification of sequence variants is
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hampered by the lack of use of a standardized nomenclature11,a and by the ambiguity of the

terms under use. Even though some journals like “Human Mutation” enforce the use of the

variation nomenclatureb, not all journals do so and we are confronted with a large backtrack of

articles lacking these standards.

The first report on this subject was the approach called MuteXt, which was focused in col-

lecting single point mutations for two pharmaceutically interesting protein families, nuclear

hormone receptors (NR) and G-protein coupled receptors (GPCR), with the aim to populate

a database.12 The method searched full text articles for mutations on these protein families us-

ing regular expressions. The authors reported a recall of 49.3% and 64.5%, and a precision of

87.9% and 85.8% (for GPCR and NR, respectively). A continuation of this work is the approach

of the application “Mutation GraB”,13 aimed at the identification of protein point mutation across

different protein families. The system identifies terms representing point mutations, organisms

names and protein names using regular expressions, and then associates those terms by means

of a graph bigram approach, achieving an overall F1-measure of 75%.

A related approach has been implemented in MEMA.14 In this work, regular expressions are

used for the extraction of polymorphism-gene pairs from MEDLINE abstracts. A difference with

MuteXt is that it considers polymorphisms of the substitution type both at the nucleotide and the

amino acid levels. Nevertheless, the MEMA system achieved a higher performance (75% recall

and 98% precision) for the extraction of allelic variants from texts.

The entity tagger Vtag15 was developed for the retrieval of several types of polymorphisms

and mutations (point mutations, translocations and deletions) related to cancer from the litera-

ture. It is based on CRFs. The reported performance of this method is quite good as it reaches

85% precision, 79% recall and 82% F1-measure.

Although these methods achieve good results at the performance level, none of them incorpo-

rate allelic variation data from sequence databases (e.g. dbSNP) and neither do they tackle the

problem of the normalization of the variation entities identified so far. These features, however,

are incorporated in the OSIRIS system.16 OSIRIS integrates different sources of information and

incorporates ad-hoc tools for synonymy generation with the aim of retrieving literature about

the SNPs of a gene. The retrieval is performed using the PubMed search engine. Although the

recall was not assessed, it achieved a high precision level (82%). In addition, it provides a first

way of linking a dbSNP entry with the articles referring to it. The OSIRIS system uses a query

expansion approach, which starts from the entries of dbSNP. This approach increases precision

but limits the possible recall to normalizable variants.

In the following we report on our integrated efforts using the ProMiner system for gene/protein

recognition and normalization, a machine learning based recognizer for complex variation men-

tions and a new system for normalization to dbSNP identifiers. The system achieves higher

performance than similar CRF-based approaches for recognition of variation mentions, and is

able to identify two types of variants: those that can be mapped to a dbSNP identifier and those

that are not present in the database, and therefore are not linkable to dbSNP entries. Both result-

ing sets are of value for database curators.

ahttp://www.hgvs.org/mutnomen/
bhttp://www3.interscience.wiley.com/cgi-bin/jabout/38515/ForAuthors.

html#CONVENTION
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BACKGROUND AND PURPOSE: The collagen alpha2(I) gene (COL1A2)
on chromosome 7q22.1, a positional and functional candidate for
intracranial aneurysm (IA), was extensively screened for susceptibility in
Japanese IA patients. METHODS: Twenty-one single nucleotide
polymorphisms (SNPs) of COL1A2 were genotyped in genomic DNA from
260 IA patients (including 115 familial cases) (mean age, 59.9 years) and
293 controls (mean age, 61.6 years). Differences in allelic and genotypic
frequencies between the patients and controls were evaluated with the
chi(2) test. Circular dichroism spectrometry was monitored with
collagen-related peptides that mimic triple-helical models of type I collagen
with Ala-459 and Pro-459 to estimate the conformation and stability of
alterations. RESULTS: Significant genotypic association in the dominant
model was observed between an exonic SNP of COL1A2 and familial IA
patients (chi(2)=11.08; df=1; P=0.00087; odds ratio=3.19; 95% CI, 2.22
to 6.50). This SNP induces Ala to Pro substitution at amino acid 459,
located on a triple-helical domain. Circular dichroism spectra showed that
the Pro-459 peptide had a higher thermal stability than the Ala-459
peptide. CONCLUSIONS: The variant of COL1A2 could be a genetic risk
factor for IA patients with family history.

state, location, gene, type

Figure 1: Example abstract (PMID 14739420) with tagged entities. The entities state, location

and type form the entity set variation together with the entity gene which are underlined in one

example.

2 Methods

The method described here is aimed at the identification and normalization of variation and

gene/protein terms in biomedical texts. For the gene terms we use the dictionary based Named

Entity Recognition (NER) system ProMiner17 (described in section 2.3) and for the variation

terms we use Conditional Random Fields (described in section 2.4) and a normalization function

(described in section 2.5). For the special case of identification of terms representing rs numbers

(dbSNP identifiers), we use the regular expression feature of the ProMiner system. The workflow

of the system involves two steps: first, several entities (described in section 2.1) are identified

and tagged using CRFs, ProMiner and regular expressions, second, the variation entities are

normalized to dbSNP identifiers (rs numbers) with the normalization function. The results are

stored in a database, and can be visualized using different technologies. Figure 1 shows an

example abstract with tagged entities, and Figure 2 depicts a diagram of the workflow of the

system.
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NER

CRF

ProMiner

RegEx

Normalization

Text DatabasedbSNP

ProMiner

Figure 2: Visualization of the workflow

2.1 Entity Types

The entities in which we focus are gene/protein and variation. For the variation entities, we fol-

lowed the description and annotation guidelinesc defined by the Institute for Research in Cogni-

tive Science at the University of Pennsylvania, which are also used for the BioTagger15 (which

includes the functionality of VTag). We define a variation as a small change in the nucleotide

sequence of the genome. Variations can be mapped to a gene locus in its coding or non-coding

regions, and thus exert effect at the level of protein function or gene function. Examples of vari-

ations are SNPs, short insertions and deletions, named variations as Alu sequences, and other

types of variations represented in the dbSNP database. From the point of view of a NER system,

a variation entity is defined by the combination of tokens that specify the following pieces of in-

formation: location of the variation, alternate alleles of the variation (original or/and altered) and

type of the variation. Although location and state are obligate requirements to define a variation

entity, type can be missing. For the normalization the additional entity gene is often required. In

Figure 1, the underlined terms illustrate the entity set variation. Accordingly, we have selected

the following entity classes for the annotation of variations in our system:

type like deletion, single nucleotide polymorphism or insertion

location like codon 6 or position 30 in “A/G single nucleotide polymorphism (SNP) at position

30”, or -1131 in “-1131T>C”

state-original like Gly in “Gly->Ala”, A in “A/G single nucleotide polymorphism (SNP) at

position 30”

state-altered like Ala in “Gly->Ala”, G in “A/G single nucleotide polymorphism (SNP) at

position 30”

state-generic when it is unclear if the original or the altered state is meant, like Pro in “Pro-459”

gene/protein like MMP9 or cytotoxic T lymphocyte-associated molecule-4 (described in section

2.3)

2.2 Corpus Generation

For training and evaluation an initial corpus of 105 MEDLINE abstracts was annotated with all

the above mentioned entities. The annotation was performed at the level of title and abstract

using the tool WordFreak.18 An initial set of 578 articles was selected using PubMedd and the

chttp://bioie.ldc.upenn.edu/wiki/index.php/Main_Page
dhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
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following search query:

”Pathological Conditions, Signs and Symptoms”[MeSH] AND

”Polymorphism, Single Nucleotide”[MeSH] AND ”Humans”[MeSH] AND

hasabstract[text] AND English[lang] AND (”2004/01/01”[PDAT] :

”2005/01/01”[PDAT]) AND ”Chemicals and Drugs Category”[MeSH]

From this set, a subset of 105 abstracts which were annotated to human ENTREZ GENE iden-

tifiers (by ProMiner) was manually annotated for sequence variations. For the mapping of vari-

ation terms to database identifiers, a local repository of dbSNP database was used as reference.

Approximately half of the abstracts (61/105) referred to variations that could be mapped to a

dbSNP identifier.

Results obtained with an intermediate system trained on the set of 105 abstracts indicated that

there was a high level of false positives when tested on an independent set of articles. Thus,

102 abstracts containing terms representing “negative” training instances were annotated with

the aim to provide discriminative power to the system. This second corpus of 207 abstracts was

then used for training and evaluation of the system.

2.3 Dictionary based Named Entity Recognition and Normalization

For the recognition of human protein and gene names the ProMiner system19 with a gene and

protein dictionary extracted from the ENTREZ GENE database20 and the UniProt database21 was

used.

The ProMiner system consists of three different modules. The first module covers the genera-

tion and curation of a gene/protein name dictionary, which associates each biological entity with

all known synonyms. As the name and synonym fields in the databases often contain physical

descriptions (e.g. cDNA clone, RNA, 5’end), family names (e.g. membrane protein) or tissue

information (e.g. brain) the dictionary is cleaned in an automated process. Furthermore each

synonym is classified into one of several classes which are associated with specific parameter

settings in the subsequent search runs.

The second part of the system consists of an approximate search procedure which is geared

towards high recall and it accepts different parameter settings for each of the synonym classes

(e.g. search case sensitive or insensitive, with or without permutations). This procedure is

applied to detect all potential name occurrences on basis of the constructed dictionary.

In a last step, filters are applied to increase precision of the search results. The disambiguation

filter attempts to resolve ambiguous matches. This is important for the resolution of overlapping

matches (e.g. the protein name ’plasminogen activator’ should not match ’plasminogen activator

inhibitor’) but also to accept only unique matches in the case of ambiguous terms. Such matches

exist because two or more proteins might share a synonym or because acronyms are used in

different contexts (e.g. LPS is used for two different genes but in text mostly used as acronym

for lipopolysaccharide). Here names from acronym dictionaries are additionally detected in the

text to resolve these ambiguities.

The ProMiner system was tested in the BioCreAtIvE I and II assessment for the detection

of gene and protein names for the organisms mouse, fly, yeast and human.10, 17 The system
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Labels . . . O B-state B-location B-state O B-type

Text . . . or A 55 V ) single

Labels I-type I-type I-type O B-location I-location . . .

Text - nucleotide polymorphism in exon 4 . . .

Figure 3: Example for observation and label sequence for the text snippet: “. . . or A55V) single-

nucleotide polymorphism in exon 4 . . . ” after tokenization.

achieved for all tested organisms excellent results and for human an F1-measure of 80% with a

precision of 83% and a recall of 77%.

2.4 Conditional Random Fields

Conditional Random Fields8, 22 are a probabilistic model for computing the probability P (~y|~x)
of a possible label sequence ~y = (y1, . . . , yn) given the input sequence ~x = (x1, . . . , xn) which

is also called the observation. In the context of NER the observation sequence ~x corresponds to

the tokenized text. This is the sequence of tokens which is defined by a process called tokeniza-

tion: splitting the text at white space, punctuation marks and parentheses. In our case, as we aim

to identify variation entities as an entity set, we use a very fine tokenization, also splitting at all

number-letter changes in the text. It can be seen in Figure 3 that this is required to distinguish

between states and locations, which altogether define the grouped entity variation.

The label sequence is coded in a label alphabet similar to L = {I-<entity>, O, B-<entity>}
where yi = O means that xi is not an entity, yi = B-<entity> means that xi is the beginning of

an entity and yi = I-<entity> means that xi is the continuation of an entity. In our case we use

the alphabet

L = {O, B-location, I-location, B-type, I-type, B-state-original, I-state-altered . . .}

as described in section 2.1. An example for an observation sequence with a label sequence is

depicted in Figure 3.

A CRF in general is an undirected probabilistic graphical model

P (~y|~x) =
1

Z(~x)

n
∏

j=1

Ψj(~x, ~y) (1)

where Ψj are the different factors given through the independency graph like in figure 4.23

These factor functions combine different features fi of the considered part of the text and label

sequence. We use mainly morphological features of the text tokens for every possible label

transitione. A subset of the used features is depicted in table 1. They have usually a form similar

eIn the I,O,B-format like mentioned above for the existence of one entity there are 5 possible transitions: B → B,

O → O, I → I , O → B and B → B.
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Table 1: Examples for used morphological features15, 22

Orthographic Feature Reg. Exp.

Init Caps [A-Z].*

Init Caps Alpha [A-Z][a-z]*

All Caps [A-Z]+

Caps Mix [A-Za-z]+

Has Digit .*[0-9].*

Single Digit [0-9]

Double Digit [0-9][0-9]

Natural Number [0-9]+

Real Number [-0-9]+[.,]+[0-9.,]+

Alpha-Num [A-Za-z0-9]+

Roman [ivxdlcm]+ or [IVXDLCM]+

Has Dash .*-.*

Init Dash -.*

End Dash .*-

Punctuation [,, ,.;:?!−+‘’ ”]

to

fi

(

yj−1, yj , ~x, j
)

=











1 if yj−1 = B-type and yj = I-type

and xj starts with a capital letter

0

Next to the commonly used morphological features we incorporate special variation related fea-

tures (mostly inspired by the BioTagger15). These are, for instance, the membership of a to-

ken to a list of different types of variations (deletion, duplication, insertion, inversion, tran-

sition, . . . ), and the use of different regular expressions matching to frequently used terms

for locations (e.g. nucleotide [0-9]+, amino acid [0-9]+, chr|chromosome
[1-9]|1[0-9]|2[0-2]|X|Y, . . . ). In the case of the entity state, the case-insensitive mem-

bership to the long and short forms of amino acids is important (Alanine, Ala, Asparagine, Asn,

. . . ). This is especially useful for finding natural language formulations like “. . . induces Ala to

Pro substitution at amino acid 459. . . ”.

Additionally we use the so-called offset conjunction which adds for every token features of

the preceding and the succeeding tokens, incorporating contextual information to the token to

be labeled. The features are inspired by the programs BioTagger15 and Abner.24

A special case of the general CRF, in fact the one in figure 4, is the linear-chain CRF where

the factors are given in the form

Ψj(~x, ~y) = exp

(

m
∑

i=1

λifi

(

yj−1, yj , ~x, j
)

)

(2)
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~x

yt yt+1 yt+2 yt+3

(a) Independency Graph

~x

yt yt+1 yt+2 yt+3

(b) Factor Graph23

Figure 4: Linear-chain CRF

so that the CRF can be written as

P (~y|~x) =
1

Z(~x)
· exp





n
∑

j=1

m
∑

i=1

λifi

(

yj−1, yj , ~x, j
)



 (3)

The normalization to [0, 1] is given by

Z(~x) =
∑

~y∈Y

exp





n
∑

j=1

m
∑

i=1

λifi

(

yj−1, yj , ~x, j
)



 .

Here Y is the set of all possible label sequences over which we sum, so that we get a feasible

probability.

In the special case of linear-chain CRF well-known algorithms from the field of Hidden

Markov Models like forward-backward propagation can be used to compute the normalization

factor.25 The optimization of the parameters (training) in the CRF can be done by optimizing

the convex function L(T ) on the training data T with L-BFGS:26

L(T ) = log P (~y|~x)) .

Our own implementation of the Named Entity Recognizer for variation terms is based on

MALLET,27 a widely used and successfully applied system for linear-chain CRF.

2.5 Normalization of variations

The process of normalization allows the assignment of a variation entity found in the text to

a dbSNP identifier, and in consequence the biological information about the variation can be

obtained (such as organism, associated gene, etc). Once a dbSNP identifier is assigned to a

variation entity set, it is unambigously associated to a genomic location. In most of the cases

the variation is mapped within the sequence of a gene (in its coding or non-coding regions) or in

its proximity, and thus is associated to a single gene. In other cases, the variation is mapped to

intergenic regions of the genome in the proximity of more than one gene. In such cases, database

curators annotate the variation as associated to more than one gene in the genome.
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A normalization function based on a local repository of the dbSNP database was used to auto-

matically map variation entities to dbSNP identifiers (rs numbers). It is based on the fact that for

the identification and mapping of a text passage representing a variation to a dbSNP identifier,

the position (entity location), one or both alleles (entity state) of the variant and the ENTREZ

GENE identifier are sufficient. The normalization function uses as input data the annotations for

the entities location and state (original, altered, or generic) performed by the Conditional Ran-

dom Fields, and the ProMiner annotations for genes/proteins extracted both from the text. This

information is used to obtain the terms corresponding to each entity (location and state) from

the text, which are used to retrieve the rs numbers assigned to the variation from the database.

If more than one gene is mentioned in the text, all the combinations of ENTREZ GENE identifier

and location/state are searched on the database. The ENTREZ GENE identifier is used to limit

the retrieval of results that are specific for a given gene, and allows to perform the association of

a variation with a gene based on sequence mapping. This step is required because of the large

number of variations in the database that can match a certain combination of position and alleles.

This strategy allows the assignment of dbSNP identifiers to the text passages tagged as location

and state, which altogether give rise to the entity set variation. Nevertheless, this information is

often not enough to distinguish among several dbSNP identifiers that can be assigned to a single

variation entity. In such cases, all the dbSNP identifiers are included in the annotation of the

variation, leading to an ambiguous annotation.

3 Results

We have developed a new workflow combining existing and new methods for the identification

and normalization of variation terms in biomedical texts.

The evaluation of the whole system is split into different parts. First of all, the performance

of finding mentions of variations in text using the CRF is evaluated. Second, the normalization

is evaluated stand-alone followed by an analysis of occurrences of direct rs number mentions.

As a fourth evaluation a comparison to the OSIRIS system of the whole process is performed

on an independent test set. It is important to point out that the evaluation of the normalization

is difficult because the effort to contrast each of the dbSNP identifiers assigned to a variation

identified in the text with the entries in the database is high.

3.1 Evaluation of the Entity Recognition

For training the CRF to find variation candidates, we used the corpora defined in section 2.2

annotated with the entities mentioned in section 2.1. A 50-fold bootstrapping28 was performed

on the set of 207 articles and the first set of 105 articles to select an optimal configuration and

analyze the performance of the CRF.

The impact of the additional articles can be seen in the evaluation of a CRF trained on the

first set of 105 articles tested on the additional 102 articles: The recall for location (83.5%) and

state (82.7%) is quite high but the precision is really low with 48.6% and 57.1%. More details

are given in section 3.4.

In contrast to the annotation guidelines of the University of Pennsylvania, we decided to

10



Table 2: Performance of Named Entity Recognition with Conditional Random Fields in a 50-

fold bootstrapping evaluation (in parentheses the standard deviation is given)

Entity precision (%) recall (%) F1-Measure (%)

Location 76.0 (0.0514) 64.4 (0.0647) 69.6 (0.0552)

Type 76.3 (0.0391) 63.6 (0.0588) 69.2 (0.0403)

State 87.1 (0.0312) 82.8 (0.0344) 84.9 (0.0260)

States separately

State-altered 78.1 (0.0625) 75.6 (0.0476) 76.7 (0.0398)

State-Generic 12.5 (0.1258) 4.3 (0.0408) 5.8 (0.0501)

State-Original 82.5 (0.0677) 77.5 (0.0363) 79.8 (0.0426)

(a) On set with 105 articles

Entity precision (%) recall (%) F1-Measure (%)

Location 69.9 (0.0432) 67.2 (0.0417) 67.9 (0.0347)

Type 73.6 (0.0355) 51.2 (0.0395) 60.3 (0.0297)

State 78.0 (0.0275) 80.1 (0.0289) 79.2 (0.0205)

States separately

State-altered 71.2 (0.0449) 72.6 (0.0440) 71.7 (0.0299)

State-Generic 10.0 (0.0436) 6.0 (0.0530) 6.9 (0.0434)

State-Original 71.8 (0.0637) 73.9 (0.0357) 72.6 (0.0368)

(b) On set with 207 articles

Table 3: Results of VTag on our corpus with 207 articles (state-generic not available)

precision (%) recall (%) F1-measure (%)

Location 64.6 34.7 45.1

Type 46.5 5.2 9.4

State 89.3 48.9 63.2

States separately

State-altered 78.0 52.2 63.6

State-original 79.2 46.2 58.3

11



combine the different state- entities (-original, -altered and -generic) to a single entity class

state, as this is sufficient for normalization purposes. The results for combined states and all

states seperated are given in table 2. It can be seen, that the discrimination between state-

generic and the others is difficult due to the ambiguity of this class. The improvement of a

combination of state-generic with state-altered or state-original is marginal (data not presented

here). All given normalization results in the following sections are given for the combined state

entity class.

The results of the final CRF based Tagger are shown for 50-fold bootstrapping on the training

set of 105 articles in table 3a and in table 3b for the 207 articles. The performance for the three

entity classes was quite good and with an F1-measure of 67.9% for the entity type location and

79.2% for state sufficient for normalization purposes. The results on the 207 articles are worse

then on the 105 articles, because the task is more difficult due to the included false positives.

To compare the results with the state-of-the-art, we checked the VTag system on our corpora.

The results on the 207 abstracts are displayed in table 3. An output of state-generic was not

available in the VTag implementation, so no results are given for this entity class. Combining

the different kinds of states is also reasonable for the VTag system, but only leads to an F1-

measure of 63.2% (see table 3).

The entity recognition and normalization for gene names is not evaluated here, as the perfor-

mance of the used system has been evaluated recently in the independent BioCreAtIvE assess-

ment and has been summarized in section 2.3.10

3.2 Evaluation of Normalization

The application of the CRF based variation Tagger on a corpus of abstracts allowed the recog-

nition of the entities type, location and state that describe a variation, as described in the above

section. Once the variation terms and gene/protein names were identified, the next step consisted

in the assignment of dbSNP identifiers to the variation entities. This was performed with the nor-

malization function. Evaluation of the normalization on the manually annotated corpus of 105

abstracts indicated that the normalization function performs the annotation of dbSNP identifiers

to variation terms with a precision of 78%, recall of 67% and F1-measure of 73%. Examples of

terms that can be identified and normalized are the following:

• Ile232Thr

• -308 G>A

• 113c/g

• A/G single nucleotide polymorphism (SNP) at position 49

• -127 bp T–>A SNP

A factor that has an important effect in the performance of the normalization is when the state

of the variation is represented with one letter code, since in that case it cannot be discerned if

it refers to a nucleotidic or amino acidic residue. Other factors are the use of terms that do not

allow the exact identification of the position and/or the alleles of the variation. For instance, in

the example

IVS5 -23A/G
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Figure 5: Mentions of rs numbers in MEDLINE. Data for 2007 incomplete.

the position is represented by the compound term ”IVS5 -23”, and has to be distinguished from

another term that also represents a position of a putative variation ”-23”. Terms representing

direct mention of rs numbers were identified using regular expressions and did not require nor-

malization (an evaluation is given in section 3.3).

It should be noted that not all of the variation entities identified by the CRF based Tagger are

suitable to normalization. The reason for this is that not all variations mentioned in abstracts are

present in the dbSNP database. As an example, in the set of 105 abstracts used for evaluation,

only 61 abstracts referred to variations present in the database.

3.3 Evaluation of direct rs number extraction

One kind of variation mentions frequently found in biomedical text is the direct reference to

the dbSNP identifier e.g. rs1234567. In such cases, the variation can be unambiguously iden-

tified and mapped to dbSNP. As can be seen in figure 5, the number of mentions increases

steadily since the inception of dbSNP. In a first naive step, we checked on the complete set of

MEDLINE abstracts (version as of April 26, 2007) if a regular expression finding mentions of

[rR][sS][ ]*[0-9][0-9]* in articles published after the year 2000 would be sufficient

for the task. With this approach, we could guarantee a recall of 100% and checked the pre-

cision by subsampling of 300 mentions from the number of all mentions matching the regular

expression (3030). The ambiguity of rs number mentions was surprisingly high, which resulted
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in a precision of only 74%. Amongst the false positive matches we found mentions of cell-lines

(RS1), computer names (rs6000), computer interfaces (RS485), currencies like indian rupees

(Rs1000) and many chemical compounds like the immune suppressor RS61433. We improved

the regular expression and accepted capital RS mentions only if keywords like “mutation” or

“SNP” matched and exclusion words like “strain” did not occur in the abstract. Additionally we

built a complementary list with high frequent false positives like RS61443. The resulting tagger

reached in a subsampling of 300 mentions from the matching 2340 a precision of 97% at an ap-

proximate recall of 98% (estimated from a subsample of 100 examples from the discarded list).

These figures show the effectiveness of the improved tagger for direct rs number detection. The

relevance of the approach is highlighted by the high number of found mentions of rs numbers in

MEDLINE abstracts.

3.4 Evaluation on independent test set

The evaluation of the whole process of entity recognition and normalization was performed on

two independent test sets. The first set consisted of a corpus of 100 abstracts selected randomly

from our database of citations about genes related to the disease intracranial aneurysms. The

database of citations contains 2476 abstracts automatically annotated using OSIRISv1.2 all con-

taining normalized variation mentions (unpublished results). The abstracts refer to the allelic

variants of genes related to the disease intracranial aneurysms, and each of the abstracts contains

at least one occurrence of a normalized variation.

For the evaluation, we have been inspired by the evaluation of the gene normalization task

of the BioCreAtIvE assessment.7 Thus, only the disjunct occurrences of variation as well as

false positives are counted. An alternative way of assessment would have been to count all

found annotations, which would be biased by articles redundantly (from the point of view of

normalization) mentioning the same variation more than once, as in the following example: “...

showed a heterozygous single base-pair transition from G to A (codon 53), resulting in a glycine

for glutamic acid substitution (G53E).” (PMID 11445644). In this way, it is not necessary for the

CRF to find all mentions of a variation, it is sufficient to have the information for a normalization

once. Actually, it often finds all mentions of a variation.

The sample of 100 abstracts used for the evaluation was manually reviewed by counting the

following quantities:

(a) Number of disjunct mentions of variationsf

(b) Number of disjunct normalized variations obtained with OSIRISv1.2

(c) Number of disjunct mentions tagged by the CRF

(d) Number of disjunct normalized variations by the presented system

The results are displayed in table 4. Although the corpus was defined by mentions of the

OSIRISv1.2 system, the new developed method can normalize more variations in the abstracts

(142 to 136). Another advantage is that much more variations are found, even if they are not

normalizable (216 to 136).

f Variation entities with sufficient information for normalization: location and state together with gene.
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Table 4: Results on independent test set (all counts are disjunct per article)

absolute number %

(a) # mentions 264 100.00

(b) # normalized variations OSIRIS 136 51.52

(c) # mentions tagged CRF 216 81.82

(d) # normalized variations 142 53.79

From all of the 142 variations, 127 were found with the CRF and 15 were rs numbers directly

mentioned in the text which could also be found by OSIRISv1.2.

Additionally to that detailed evaluation we started a run on a second independent set. The test set

contains 30800 articles related to intracranial aneurysms and subarachnoid hemorrhage retrieved

from MEDLINE. Only a small subset of these deal with mutations or polymorphisms (121); thus,

not surprisingly, only 11 of these articles contained variation mentions that could be normalized.

The number of articles with tags resulting from the CRF is much higher with 1061 in which only

72 include information of at least one entity set variation consisting of gene, state and location.

Another interesting point is that the addition of the negative examples to the first training set of

105 articles to form the set of 207 had a very high impact: The CRF trained on the 105 training

examples tagged entities in 5344 articles in comparison to 1061 tagged by the system trained on

207 examples. A manual random examination showed that the number of false positives could

be decreased by the larger training corpus.

To prove the possibility to tag a huge amount of data, we ran the CRF on all 16,848,632 MED-

LINE article entries (version as of July 13, 2007). In these entries we have 8,975,073 abstracts.

We tagged title and abstracts, altogether 2.2 ·109 tokens. Every article took 0.165 seconds in av-

erage. The full MEDLINE could be tagged on a computer cluster using 312 CPUs with 2.6 GHz

in 3.98 hours. The operating system was SUSE LINUX Enterprise Server 9 (x86 64) with the

Sun N1 Grid Engine 6. In 1,166,237 MEDLINE database entries an entity (location, state, type)

was found using the CRF. The results for the entities are shown in table 5. These numbers in-

dicate that the precision on general articles is lower than on our test set. Typical false positive

errors are for the different classes

state single capital letters ‘A’, ‘T’, ‘C’, ‘G’ in wrong context,

type dates and other numbers, spans like ‘period 1945–1986’,

location Words with all letters in capital at the beginning of a title. This could be because in

that case the context information of a preceding token is missing.

4 Conclusion and Outlook

We have developed a novel NER and normalization system for variation mentions in biomed-

ical text. The system is aimed at identifying different types of variations, from SNPs to small

insertions and deletions, both at the nucleotide and the protein levels. The association of a vari-

ation with a gene and its products (mRNA, proteins) is automatically obtained once a variation
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Table 5: Results on full MEDLINE abstracts

Entity # database entries # entities

Location 561,733 891,115

Type 168,724 263,289

State 630,419 1,978,768

Gene 2,472,465 11,902,073

is normalized, by the association at the sequence level of each dbSNP entry with a gene feature

in the genome. The system Mutation GraB13 also uses a sequence-based approach, comparing

the wild-type amino acid of a point mutation with the sequence of the possible associated pro-

teins. However, this strategy is limited to point mutations that are located on protein sequences.

As mentioned before, our approach is not limited to protein point mutations, but covers a wide

range of changes within the coding region of a gene as well as in introns and adjacent regions

of the gene (promoter regions, 5’ and 3’ UTR). In addition, through its linkage to dbSNP, bio-

logical contextual information can be obtained as well, for instance if the variation alters protein

function, or the frequency of the variation in certain population.

Although the system is aimed at the identification of allelic variant of human genes, the ap-

proach is easily applicable to other organisms with variation data available (e.g. mouse). More-

over, the CRF based Tagger could be applied to site-directed mutagenesis data as well, if the

proper training data is provided (in this case, the entity type specific for allelic variations should

not be used).

Among the applications of this kind of systems we can mention the tagging of variation terms

for the automatic annotation of biomedical texts, support for information retrieval tasks and for

the functional annotation of the dbSNP database and other kinds of variation databases. The

system is able to identify two types of variants: those that can be mapped to a dbSNP identifier

and those that are not present in the database, and therefore are not linkable to dbSNP entries.

Both resulting sets are of value for database curators.

Similarly to other methods previously published12, 14, 16, 13 our method identifies simple rep-

resentations of the variation entities such as A12T, A-T 12, A(12)T, but contrasting to previous

reports, it also identifies and normalizes more complex representations like “A/G single nu-

cleotide polymorphism (SNP) at position 49”. In comparison to VTag15 the system is applicable

not primarily on a special subset like cancer literature but on general biomedical literature due to

a more general training set and the performance is enhanced due to optimization of the feature

set.

Although many formulations are found by our system, future work is to enhance the men-

tion finding, especially for having the possibility to tag the whole MEDLINE with appropriate

precision and recall. The final tagging system will be included in the forthcoming information

system of the European IP project @neurIST which will support the search for candidate genes

and associated variations for the disease intracranial aneurysms.
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