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Abstract
High-throughput genomic technologies are increasingly being used to identify therapeutic targets
and risk factors for specific diseases. Using 116 independent liver samples, we identified 793
probe sets that demonstrated a significant association in the frequency of absent calls as tissues
progressed from normal to pre-neoplastic to neoplastic, followed by a bioinformatic approach
which identified that 78.9% of the significant probe sets contained at least one CpG island in the
gene promoter region compared with 58.9% of the remaining genes examined. Our results indicate
that further high-throughput methylation studies to more fully characterize molecular events
involved in hepatocarcinogenesis are warranted.
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1 Introduction
High-throughput genomic technologies are increasingly being used in science and industry
to identify therapeutic targets and risk factors for specific diseases. As some notable
examples, gene expression microarrays have been successfully used in differentiating two
types of leukaemia (Golub et al., 1999), and as prognostic meta-signatures for breast cancer
(van de Vijver et al., 2002; van’t Veer et al., 2002, 2003), lung adenocarcinoma (Beer et al.,
2002) and diffuse large B-cell lymphoma (Rosenwald et al., 2002). As in other disease
areas, through the use of high-throughput technologies, a vast amount of information
regarding gene expression is being accumulated for the study of Hepatocellular Carcinoma
(HCC). For example, some researchers have conducted microarray gene expression studies
and have examined gene expression of resected or explanted livers with HCC and the
association with histologic grade (Nam et al., 2005) or impact on recurrence or survival
(Iizuka et al., 2003; Mas et al., 2006).

Most high-throughput genomic research in HCC has emphasised gene expression levels
(Nam et al., 2005; Iizuka et al., 2003; Mas et al., 2006). However, of increasing importance
in the field of cancer research is DNA methylation. DNA methylation occurs when a methyl
group attaches to a 5′ cytosine in a CpG dinucleotide. Dense methylation of CpG islands in
the gene promoter region affects gene transcription, and is often termed epigenetic silencing
(Jones and Laird, 1999; Eng et al., 2000). Hence, aberrant DNA methylation more likely
plays a direct role in altered protein expression levels. It is thought that epigenetic events
such as methylation of gene promoter regions, specifically, methylation of Tumour
Suppressor Genes (TSGs) as well as global hypomethylation of oncogenes, may be
implicated in carcinogenesis (Jones and Laird, 1999). It may therefore be of interest to
identify a unique combination of genes specific to a phenotype that are either expressed or
not expressed.

In most studies of DNA methylation in HCC, only one or a few specific promoter regions
were examined (Hirasawa et al., 2006; Jicai et al., 2006; Qiu et al., 2007; Uematsu et al.,
2006; Wong et al., 1999, 2000). Furthermore, DNA methylation studies among HCC
patients have largely been conducted among HBV-infected patients (Jicai et al., 2006; Wong
et al., 1999, 2000; Yang et al., 2005; Wang et al., 2006) or among patients with
heterogeneous etiologies (Tchou et al., 2000; Yang et al., 2003; Hsu et al., 2006; Zhang et
al., 2006; Shih et al., 2006). It has been established that patients with HBV + HCC likely
have different malignant transforming mechanisms compared with patients with HCV +
HCC (Poon et al., 2006; Moinzadeh et al., 2005; Iizuka et al., 2004). This point was
emphasised in a more recent methylation study in Western patients that examined the
promoter regions of 9 TSGs (SOCS-1, GSTP, APC, E-cadherin, pl5, pl6, RAR-J3, pl4 and
p73). However, the investigators enrolled a mixture of 51 HCC patients that included 9
HBV+, 18 HCV+ and 24 HBV−/HCV− patients (Yang et al., 2003). The largest methylation
study conducted in HCC patients to date examined 105 TSGs among 60 HCC tissues and
their surrounding non-tumourous tissues and in 10 normal liver tissues (Calvisi et al., 2007).
These researchers showed that patterns of promoter hypermethylation can be of prognostic
relevance for HCC. However, similar to other research in this area, the patients examined in
this study differed with respect to etiology (32 HBV, 14 HCV, 4 EtOH, 1 Cryptogenetic, 9
etiology not available) and only 25 of 60 had cirrhosis.

Since methylation of CpG islands in gene promoter regions has been associated with gene
silencing (Jones and Laird, 1999) and additionally, since DNA methylation has been
demonstrated to lead to chromosomal instability hence genomic aberrations (Baylin et al.,
2000, 2001) including genetic damage in colorectal tumours (Jones and Laird, 1999), we
postulated that methylation may play an important role in the pathogenesis of HCC due to
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HCV infection. Further, since methylation is most relevant when it results in gene silencing
(Esteller, 2002), in this study we explored the differences in the frequencies of genes present
vs. absent in liver tissues representing the progression to HCC by examining a homogeneous
population with underlying etiology of HCV-infection.

2 Materials and methods
2.1 Patients and samples

Tumour tissue samples were collected from patients at the Hume-Lee Transplant Center,
Medical College of Virginia Hospitals from 40 HCV + HCC patients, representing the
neoplastic condition. Tumour samples with more than 85% of Tumour cell content were
used for the microarray studies. In addition, 19 normal donor liver samples were obtained
from explanted liver donors chosen for isolated hepatocyte preparation for transplantation.
Liver function and histopathology for these liver donors were shown to be normal. All 19
normal patients were seronegative for HCV Ab. The cirrhotic liver has been described as
being pre-malignant or a pre-neoplastic condition (McCaughan et al., 2002), therefore, we
included 57 independent HCV + cirrhosis non-HCC samples representing the pre-neoplastic
condition. Each normal, pre-neoplastic and neoplastic liver sample was hybridised to an
Affymetrix HG-U133A 2.0 Array. The Institutional Review Board approved the study
protocol at Virginia Commonwealth University.

2.2 Laboratory methods
The sample preparation protocol followed the Affymetrix GeneChip® Expression Analysis
Manual (Santa Clara, CA). Total RNA was extracted from tissue samples using TRIzol (Life
Technologies, Rockville, MD). Integrity of RNA was checked using Agilent 2100
Bioanalyser. Briefly, total RNA was reverse-transcribed using T7-polydT primer and
converted into double-stranded cDNA (One-Cycle Target Labelling and Control Reagents,
Affymetrix, Santa Clara, CA), with templates being used for an in vitro transcription
reaction to yield biotin-labelled antisense cRNA. The labelled cRNA was chemically
fragmented and made into the hybridisation cocktail according to the Affymetrix GeneChip
protocol, which was then hybridised to U133A 2.0 GeneChips. The array image was
generated by the high-resolution GeneChip® Scanner 3000 by Affymetrix® (Affymetrix,
Santa Clara, CA).

2.3 Statistical methods
Quality assessment was performed by assessing the average background, scaling factor,
percent present calls and 3′ : 5′ ratios of GAPDH and β-actin. Prior to conducting statistical
analyses, all control probe sets were removed. Unlike previous research that sought to
identify aberrantly methylated genes in pancreatic carcinoma using gene expression
microarrays and focusing on genes with >5-fold change (Sato et al., 2003), we focused our
analysis on whether the gene was present or absent, since differential expression may not
indicate methylation but simply identify genes expressed at different levels. Therefore,
probe-level intensities were used to compute the probe set level present, marginally present,
and absent calls using the Affymetrix Detection Call algorithm (Liu et al., 2002). The
Detection Call algorithm uses the Perfect Match (PM) and mismatch (MM) intensities for
probe pairs within a probe set and applies a Wilcoxon signed rank test for assessing whether
the probe set is Present (P), Marginally Present (M), or Absent (A). For probes i in probe set
j, the p-value obtained from testing H0j: median (Rij) = τ vs. HAj: median(Rij) > τ, where

(1)
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is compared with the following thresholds: If pj < α1, then probe set j is declared Present; if
α1 < pj < α2, then probe set j is declared Marginally Present; if Pj > α2, then probe set j is
declared Absent. The current defaults in the Affymetrix GeneChip Operating Software are
α1 = 0.05 and α2 = 0.065. All data processing and statistical analysis procedures were
conducted in the R programming environment (R Development Core Team, 2008) using
appropriate Bioconductor packages (Gentleman et al., 2004; Gautier et al., 2004).

Procedure for filtering genes
First, all control probe sets were excluded leaving 22,215 probe sets. Prior to hypothesis
testing, the resulting matrix containing the detection call results per probe set was filtered by
excluding those probe sets declared absent among all 116 samples (N = 4129) and excluding
those probe sets declared either marginally present or present among all 116 samples (N =
4834), leaving 13,252 probe sets for analysis.

Class comparisons
To assess whether a probe set is increasingly silenced as one moves from normal, to pre-
neoplastic, to neoplastic liver tissue, it was of interest to determine whether there is a
significant monotonic decreasing trend among the proportion of present calls in these
diagnostic groups. For each probe set, a linear-by-linear association test was used to
determine if there is a monotonic trend among patients cross-classified by diagnosis and
detection call (Table 1). Specifically, for scores (um and vn) assigned to variables X (rows)
and Y (columns) indicating the ordered nature of disease (normal, pre-neoplastic, neoplastic)
and detection calls (absent, marginally present, present), for each probe set the Poisson log-
linear model

(2)

was fit where emn represents the expected cell count for the mth row and nth column and

remaining parameters represent the overall (λ), row  and column effects  (Simonoff,
2003). Of specific interest is the parameter estimate for θ. That is, if θ > 0, the two factors
are directly associated, if θ < 0 the two factors are inversely associated, and if θ = 0 the two
factors are independent. The p-value associated with the parameter estimate for θ was
obtained for each probe set specific model. Thereafter, to control for multiple hypothesis
testing using the FDR, we restricted attention to probe sets with a significantly negative
estimate using a q-value < 0.05, such that among the list of candidate genes we identify, 5%
are expected to be false positives (Storey and Tibshirani, 2003).

Bioinformatic verification
Since gene silencing due to methylation has only been conclusively demonstrated when the
promoter region of the gene is methylated (Jones and Laird, 1999), we used a bioinformatic
approach to identify whether any of the significant genes have CpG islands in their promoter
region, to further refine our list of candidate methylated genes. Annotation data for
significant probe sets were obtained for identifying whether the gene represented by the
probe set had a CpG island in its promoter region. Specifically, the Bioconductor
AnnotationDbi (version 1.6.0) and hgul33a2.db (version 2.2.11) packages were used to look
up the gene symbol and Entrez ID associated with each probe set ID. Probe sets without
corresponding Entrez IDs were removed from the bioinformatic analysis. Sequences and
annotations of these candidate genes were retrieved from the NCBI (http://
www.ncbi.nlm.nih.gov/). The definition of the promoter region in a gene is an unsolved
issue, but in most cases it resides in a short region (e.g., 500 bp) immediately upstream of
the transcription start site (Waterston et al., 2002; Yamashite et al., 2006). We identified
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CpG islands in the promoter regions based on two popular algorithms, Takai and Jones
(2002) and Gardiner-Garden and Prommer (1987), using the data-processing procedure
described in Jiang et al. (2007).

Clustering
Prior to clustering, we reduced the dimensionality of the data set by excluding probe sets
consistently declared present or absent among the 116 samples. Specifically, probe sets
called absent in at least 80% of the samples as well as probe sets called present in at least
80% of the samples were excluded, leaving 4650 probe sets for clustering. Agglomerative
hierarchical clustering using Ward’s method (Kaufman and Rousseeuw, 1990) was
performed using the Euclidean distance of the detection calls (Present and Marginally
Present = 1, Absent = 0) as the distance measure.

3 Results
3.1 Quality control

Prior to statistical analysis, all hybridised GeneChips were examined with respect to quality.
Average background, scaling factor, percent present calls and the 3′ : 5′ ratios for GAPDH
and β-actin were similar among all GeneChips. No chip was eliminated due to quality
concerns.

3.2 Differences in detection call profiles
From the probe-set-level Poisson log-linear models, 793 probe sets demonstrated a
significant association in the frequency of absent calls as tissues progressed from normal to
pre-neoplastic to HCC, using an FDR of 5% (Supplemental Table 1). Interestingly,
ADRA1A, CRHBP, CXCL14, ECM1, EPO, FCN2, FCN3 and GREM2 were also identified
in another high-throughput gene expression study as being an important discriminator
between dysplastic liver tissue and HCC (Wurmbach et al., 2007). This conservative FDR
suggests that among the 793 probe sets, approximately 40 are expected to be false positives.
When controlling for the FDR at 1%, 339 probe sets were significant. Thus, many genes
exhibited a trend of being more frequently absent as tissue moved from normal to
preneoplastic to neoplastic.

3.3 Bioinformatic analysis of CpG sequences in the promoter regions of genes
Among the 793 significant probe sets, 55 had poor gene annotation information, largely due
to recent updates of gene databases. Thus, the bioinformatic analysis was restricted to 738
probe sets. These 738 probe sets matched 644 possible genes, including 70 genes, each of
which had two significant probe sets, and 12 genes, each of which had three significant
probe sets. Of these 644 genes, 577 were found in a full set of human genes processed from
all the human genes deposited in NCBI using the previously described pipeline (Jiang et al.,
2007). According to the Takai and Jones (T&J) algorithm (Takai and Jones, 2002), 455 of
these 577 genes (78.9%) contained at least one CpG island in their promoter region
(Supplemental Table 1), which is significantly greater in comparison with 58.9% of the
remaining distinct genes on the Affymetrix HG-U133A 2.0 Array included in the analysis
that contained a CpG island via the same algorithm (p = 1.9 × 10−21). As expected, the
Gardiner-Garden and Frommer algorithm (Gardiner-Garden and Frommer, 1987), which
used the less restrictive criteria in searching CpG islands, identified a higher percent of
genes containing a CpG island (483 genes, 83.7%). Of the 125 probe sets significant at the
Q-value < 0.001 level, 94 had complete annotation information, and of these 94, the 69
having a CpG island in the gene promoter region according to the T&J algorithm are listed
in Table 2.
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The Entrez IDs for the 793 significant probe sets and their corresponding q-values were then
uploaded into the Ingenuity Pathway Analysis software. The top three Diseases and
Disorders associated with the significant probe sets were cancer (221 molecules, P-value
range 9.03 × 10−7 – 5.64 × 10−3), gastrointestinal disease (71 molecules, P-value range 9.03
× 10–7 – 4.25 × 10−3) and inflammatory response (6 molecules, P-value range 5.98 × 10−5 –
4.59× 10−3). There were many significant molecular and cellular functions, including
cellular growth and proliferation (182 molecules), gene expression (141 molecules), cell
death (162 molecules), cellular development (122 molecules) and cell cycle (70 molecules)
(Figure 1). The top two canonical pathways were RAR Activation (P = 0.0005) and IGF-l
Signalling (P = 0.0006). Significant genes previously associated with hepatotoxicity,
including liver dysplasia, liver necrosis or cell death, liver cirrhosis, liver hepatitis, liver
proliferation and liver enlargement, are listed in Table 3.

3.4 Clustering
Agglomerative hierarchical clustering using the 4650 probe sets, which remained after
applying an unsupervised filter, revealed that samples belonging to the same tissue type
clustered together using present/absent calls alone (Figure 2).

4 Discussion
In this study, we identified genes that are progressively absent in pre-neoplastic and
neoplastic liver tissue compared with normal liver tissue, as a proxy representing
hypermethylation of gene promoter regions. The Affymetrix HG-U133A 2.0 Array and the
detection call algorithm, which results in a gene being labelled as Present, Marginally
Present, or Absent, were used in our assessment, thereby permitting us to examine the status
(presence or absence) of thousands of genes simultaneously. To our knowledge, this is the
first exploratory attempt at examining genome-wide methylation in a homogeneous etiology
of HCV + HCC patients that did not restrict attention to known Tumour suppressor and
oncogenic genes.

For lung cancer, the percent of genes with CpG islands in their promoter regions thought to
be silenced by DNA methylation has been estimated to be between 0.5% and 3% (Rauch et
al., 2006). Our results using a very conservative FDR of 5% identified 793 (5.98%) of
13,252 probe sets examined to have a significant monotonic increasing frequency of absent
calls in pre-neoplastic and neoplastic liver tissues. Considering that the absence of such
genes may be linked to promoter methylation, our estimate for the percent of genes
significant and with CpG islands in their promoter regions thought to be silenced by DNA
methylation in HCC is quite similar.

Methylation events are of particular interest in cancer research, since methylation has been
shown to be reversed by demethylating agents. In fact, one approach in the study of
methylation has been to analyse mRNA samples from cell lines treated and untreated with 5-
Aza-2′-deoxycytidine (5-aza-dC – a demethylating agent) and Trichostatin A (TSA – a
potent inhibitor of histone deacetylase) and identify differentially expressed genes. For
example, expression of genes in HepG2 cell line was examined using the Affymetrix HG-
U133 Plus 2.0 GeneChip before and after treatment with 5-aza-dC, TSA, and the
combination of 5-aza-dC and TSA (Dannenberg and Edenberg, 2006). A larger effect on re-
expression was observed for 5-aza-dC in comparison with TSA, implying that methylation
plays a stronger role in gene silencing than histone deacetylation. Though the HCC cell line
experiments indicate that methylation may play an important role in hepatocellular
carcinogenesis, cell lines have been found to yield inconsistent results in comparison with
results obtained from primary tumours. This may be due to progression of methylation in
cultured cells (Jones and Laird, 1999). Further, only a small number of independent cell
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lines are available for study and often these cell lines differ widely from one another with
respect to stage of disease and etiology. Therefore, primary tissue sample studies are
preferred.

Another group has used Affymetrix HG-U133A 2.0 Array GeneChips to study methylation
in pancreatic cancer (Sato et al., 2003). They declared a gene to be methylated if cell lines
treated with 5-Aza-dC or TSA (or the combination) experienced a >5-fold increase in gene
expression. Others have investigated methylation in glioma by treating glioma cell lines with
5-Aza-dC and TSA and then profiling the samples using Affymetrix GeneChip (Kim et al.,
2006). In this same paper, the authors hybridised both normal brain and glioma tumour
samples to Affymetrix GeneChips and identified genes differentially expressed comparing
normal with tumour. While these authors confirmed that some genes were indeed
methylated by performing follow-up studies using Methylation-Specific PCR (MSP) and
bisulphite sequencing, we believe that genes identified as differentially expressed are not
necessarily aberrantly methylated. Since promoter methylation is clinically relevant when it
results in gene silencing (Eng et al., 2000), the statistical method used herein sought to
identify genes frequently expressed (Present) in normal tissues and more frequently silenced
(Absent) as tissues moved to pre-neoplastic and neoplastic states. However, in all such
studies that have used the Affymetrix GeneChip technology to assess methylation, a
limitation is that the hybridised material (cRNA) does not directly assess promoter
methylation. Technologies for assessing methylation are relatively new, with MSP only
being described approximately 10 years ago (Herman et al., 1996). Restriction Landmark
Genomic Scanning (RLGS) was an early high-throughput technique for studying
methylation (Eng et al., 2000) with many others having been more recently described
(Rauch et al., 2006, 2007; Lippman et al., 2005; Nouzova et al., 2004; Adrien et al., 2006;
Gebhard et al., 2006). Nevertheless, our results using the Affymetrix technology as an
exploratory assessment yielded important findings and demonstrate that high-throughput
methylation studies in HCC are warranted. Such studies may identify methylated regions
that will lead to novel therapeutic interventions and prognostic indicators.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Molecular and cellular functions corresponding to the 793 significant probe sets and sorted
by p-value according to ingenuity pathway analysis software (see online version for colours)
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Figure 2.
Agglomerative hierarchical clustering using Ward’s method on the 4650 probe sets retained
after filtering. Labels indicate underlying tissue of origin as N = normal, c = pre-neoplastic
tissue (HCV + cirrhosis) and H = neoplastic tissue (HCV + HCC)
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Table 1

Probe set level Poisson log-linear models were fit to the cross-tabulation where scores (um and vn) were
assigned to rows and columns indicating the ordered nature of tissue type and detection calls

Normal (v1) Pre-neoplastic (v2) Neoplastic (v3)

Absent (u1) n 11 n 12 n 13

Marginally present (u2) n 21 n 22 n 23

Present (u3) n 31 n 32 n 33
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Table 2

Gene symbol, percent of present probe sets in each group, and q-value from the Poisson log-linear models for
probe sets significant at the Q-value < 0.001 level and having a CpG island in the gene promoter region

% Present % Present % Present CpG Island

Probe set Gene symbol Normal Pre-neoplastic Neoplastic q-value Takai & Jones

218434_s_at AACS 79 19 18 0.0002 Yes

213245_at ADCY1 79 18 23 0.00084 Yes

207589_at ADRA1B 53 2 0 <0.00001 Yes

210678_s_at AGPAT2 95 49 30 0.0001 Yes

218444_at ALG12 79 14 8 0.00001 Yes

216563_at ANKRD12 89 86 10 <0.00001 Yes

39249_at AQP3 68 51 13 0.00047 Yes

210727_at CALCA 53 0 3 0.00003 Yes

212886_at CCDC69 100 65 35 0.00004 Yes

201913_s_at COASY 89 65 35 0.00032 Yes

205471_s_at DACH1 89 82 38 0.00018 Yes

212649_at DHX29 95 98 48 0.00001 Yes

204840_s_at EEA1 89 77 40 0.00038 Yes

201026_at EIF5B 100 82 45 0.00003 Yes

214153_at ELOVL5 95 75 35 0.00002 Yes

58696_at EXOSC4 74 40 20 0.00086 Yes

210627_s_at GCS1 68 9 5 0.00002 Yes

20272 l_s_at GFPT1 79 16 10 0.00001 Yes

210964_s_at GYG2 74 9 15 0.00047 Yes

210331_at HECW1 37 2 3 0.00069 Yes

210045_at IDH2 74 0 3 <0.00001 Yes

204786_s_at IFNAR2 89 86 30 0.00001 Yes

212439_at IHPK1 47 2 3 0.00054 Yes

202809_s_at INTS3 84 54 33 0.00089 Yes

203682_s_at IVD 100 75 48 0.00019 Yes

212496_s_at JMJD2B 68 11 8 0.00006 Yes

220116_at KCNN2 100 18 23 0.00005 Yes

212101_at KPN A 6 84 93 55 0.00093 Yes

212103_at KPN A 6 68 18 8 0.00015 Yes

203713_s_at LLGL2 100 74 48 0.00051 Yes

203514_at MAP3K3 89 44 23 0.00004 Yes

214056_at MCL1 53 75 10 0.00083 Yes

203644_s_at MON1B 63 4 8 0.00008 Yes

209450_at OSGEP 84 37 20 0.00023 Yes

219737_s_at PCDH9 79 96 45 0.00072 Yes
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Table 3

Gene symbol, percent of present probe sets in each group, and q-value from the Poisson log-linear models for
significant probe sets corresponding to genes associated with hepatotoxicity, and whether the gene has a CpG
island according to the Takai & Jones (T&J) and Gardiner-Garden and Frommer (G-G&F) algorithm

Gene
symbol

% Present % Present % Present CpG Island CpG Island

Probe set Normal Pre-neoplastic Neoplastic q-value T&J G-G&F

ADRA1A 211492_s_at 26.3 5.3 0.0 0.0060 Y Y

ADRA1B 207589_at 52.6 1.8 0.0 <0.0001 Y Y

AVPR1A 206251_s_at 89.5 17.5 40.0 0.0218 N Y

E2F1 2028_s_at 26.3 7.0 0.0 0.0041 Y Y

EPO 207257_at 47.4 22.8 7.5 0.0055 Y Y

EPOR 37986_at 94.7 78.9 55.0 0.0079 Y Y

FGF2 204422_s_at 78.9 50.9 40 0.0280 Y Y

GGT1 211417_x_at 100.0 100.0 80.0 0.0039 N N

GGT1 208284_x_at 100.0 100.0 87.5 0.0188 N N

GGT1 209919_x_at 100.0 100.0 85.0 0.0162 N N

GSK3B 209945_s_at 100.0 98.2 82.5 0.0177 N N

HMOX1 203665_at 100.0 93.0 67.5 0.0016 Y Y

HNF1A 210515_at 94.7 5.3 35.0 0.0066 NA NA

HNF1A 216930_at 36.8 0.0 5.0 0.0060 NA NA

IFNAR2 204786_s_at 89.5 86.0 30.0 <0.0001 Y Y

IGF1 211577_s_at 94.7 96.5 65.0 0.0012 N N

IGF1 209542_x_at 100.0 94.7 57.5 <0.0001 N N

IL4 207538_at 78.9 0.0 0.0 <0.0001 N N

IL6R 217489_s_at 15.8 1.8 0.0 0.0167 Y Y

JUN 213281_at 94.7 100.0 80.0 0.0464 Y Y

MMP14 160020_at 100 94.7 75.0 0.0014 Y Y

NR1I2 207203_s_at 21.1 3.5 2.5 0.0189 N N

PML 211014_s_at 26.3 17.5 2.5 0.0318 N Y

PPARA 206870_at 63.2 5.3 10.0 0.0009 Y Y

RARA 203749_s_at 89.5 70.2 52.5 0.0049 N N

SLC4A2 202111_at 68.4 28.1 25.0 0.0156 Y Y

SLCO1A2 211481_at 31.6 1.8 0.0 0.0008 Y Y

SLCO1A2 211480_s_at 15.8 0.0 0.0 0.0156 Y Y

SLCO1A2 207308_at 42.1 7.0 10.0 0.0088 Y Y

SMPD1 209420_s_at 100.0 100.0 75.0 0.0014 Y Y

SOD2 215078_at 52.6 82.5 25.0 0.0057 Y Y

SREBF1 202308_at 100.0 91.2 62.5 0.0006 Y Y

TNFSF14 207907_at 52.6 10.5 10.0 0.0055 N Y

XIAP 206536_s_at 94.7 31.6 27.5 0.0012 NA NA
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