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Abstract: Identifying genes significantly related to diseases is a focus in the study of disease mech-
anisms. In this paper, from the perspective of integrated analysis and dynamic control, a method
for identifying genes significantly related to diseases based on logic networks constructed by the
LAPP method, referred to as NCCM, is proposed and applied to the study of the mechanism of
acute myocardial infarction (AMI). It is found that 82.35% of 17 differential control capability genes
(DCCGs) identified by NCCM are significantly correlated with AMI/MI in the literature and DIS-
EASES database. The enrichment analysis of DCCGs shows that AMI is closely related to the positive
regulation of vascular-associated smooth muscle cell proliferation and regulation of cytokine pro-
duction involved in the immune response, in which HBEGF, THBS1, NR4A3, NLRP3, EDN1, and
MMP9 play a crucial role. In addition, although the expression levels of CNOT6L and ACYP1 are not
significantly different between the control group and the AMI group, NCCM shows that they are
significantly associated with AMI. Although this result still needs further verification, it shows that
the method can not only identify genes with large differences in expression but also identify genes
that are associated with diseases but with small changes in expression.

Keywords: acute myocardial infarction (AMI); control capability; differential control capability
genes (DCCGs)

1. Introduction

Acute myocardial infarction (AMI) is a multifactorial disease, which is myocardial
necrosis caused by acute and persistent ischemia and hypoxia of the coronary arteries. It
can be complicated by arrhythmia, shock, or heart failure, and is mostly on the basis of
atherosclerotic stenosis [1]. The occurrence of AMI is often the result of the interaction
between genetics and the environment. It is one of the main causes of death and disability in
the world [2]. Therefore, one of the focuses of current research is to identify the mechanism
of AMI and clarify how to diagnose, prevent, and treat the disease.

So far, it has been found that AMI leads to cardiomyocyte apoptosis through multiple
mechanisms, of which the inflammatory response is crucial in determining the myocardial
infarction (MI) size [3]. Individual differences in inflammatory responses [4] and regulation
of immune cells [2] can be used as new treatment strategies. Clinical studies have found
that monocyte-platelet aggregates, heart fatty-acid-binding protein, cardiac troponin (cTn),
and microRNAs (miRNAs) are valuable biomarkers [5–7], and cardiac troponin detection
can be used for the diagnosis of AMI. Using network reconstruction, bioinformatics, and
other methods, it was found from a static perspective that some genes induce AMI by
regulating the immune and inflammatory responses and metabolic processes [8,9]. The
identification of disease markers is the key to reducing the probability of future disease in
terms of risk prediction and potential intervention. Therefore, the identification of genes
significantly related to AMI is helpful to study the disease mechanism, prevention, and
treatment measures of AMI.
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Only the interaction among genes can have functions. So, the genes are regarded as
nodes, and the interactions between genes form edges. This leads to a network. Zhang
et al. [8] proposed a method to extract key modules related to AMI through a weighted gene
co-expression network, but its analysis needs to set multiple thresholds for computing hub
genes of modules. Kamran et al. [10] proposed a new measure of the topology properties
of the network; however, this measure ignores the relationship between the various nodes.
Ding et al. [11] proposed the NIPMI method to quantify the similarity between genes based
on the Interaction Part Mutual Information (IPMI) of network construction measurement,
which is used to detect characteristic genes from multi-cancer data. Although Ding et al.
conducted local and global studies on gene screening, these studies were based on the static
parameters of the network. However, biological systems evolve dynamically, and there
are few studies on key genes from the perspective of network dynamics. In this paper, we
propose a method to identify key nodes in the network from the perspective of network
dynamic structure parameters, and then use this method to identify genes significantly
related to AMI.

For a finite directed network, if the state of a node is changed when a signal is applied
to it, it will affect other nodes. The more nodes it affects, the stronger its control capability
in the network, which is called the node control capability [12]. When a node can control
all nodes in the network, the network is said to be controllable [13]. If the same node has a
different control capability between the disease network and the health network, it means
that the structure of the two networks has changed. The greater the difference in the control
capability of a node between two networks, the greater the contribution of the node to the
network structure difference between the two cases, and thus the node is related to the
disease. Based on this idea, a method is proposed to identify disease-related genes based
on network control capability, which is called NCCM.

To verify the effectiveness of NCCM, AMI is taken as an example. Based on the
gene expression profiling data of AMI, Bowers’ LAPP method [14] was used to con-
struct a first-order logic network (also known as a directed network). Using NCCM,
17 differential control capability genes (DCCGs) related to AMI were identified, 14 of
which (NR4A3 [15], THBS1 [16,17], CXCL3 [18], ITLN1 [19,20], CLEC4D [21], LRG1 [22],
IRAK3 [23,24], HBEGF [25], MMP9 [26,27], NLRP3 [28–30], EDN1 [31], VNN3 [24], and
PDK4 [32]) were significantly related to the growth, proliferation, and repair of AMI/MI
cells, and BCL6 [33] was indirectly related. The enrichment analysis of DCCGs showed that
AMI was significantly related to the positive regulation of smooth muscle cell proliferation
and the regulation of cytokine production involved in the immune response. In addition,
the CNOT6L and ACYP1 genes were identified to be related to AMI, which provides a
basis for biomedical researchers to further study the pathogenic mechanism, detection, and
treatment of AMI.

2. Materials and Methods
2.1. Study Design

A method is established to identify disease-related genes based on the control capabil-
ity of logic networks in this paper. Firstly, based on the expression profiles in two states:
the control group (ConGroup) and the experiment group (ExpGroup), first-order logic
networks are built for the two groups using the LAPP method [14], respectively. Secondly,
the control capability of each node in the two networks is calculated and the average
control capability of the two networks is used to evaluate the separability of the control
capability of these two networks from a statistical point of view. Thirdly, if the curves
of the average control capability of the two networks have no intersection, which means
they are separated, differential control capability genes (DCCGs) are selected according
to the difference in the control ability of the nodes between the two groups. Finally, a
four-dimensional analysis of DCCGs is performed: KEGG pathway, GO, comparison with
other methods, and disease–gene associations analysis (Figure 1).
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2.2. Control Capabilities

The study of network controllability mainly focuses on how to select nodes that receive
external input, so that the system can reach any desired final state from any initial state in a
limited time. Nodes that accept external input are called the control (or input) nodes [34].
The more nodes it affects, the stronger its control capability [12]. When the input nodes
can control all the nodes of the network, the network system is said to be controllable [13].
The state change of these control nodes will cause the state change of the whole system, so
these control nodes play a vital role in the whole system. The node controllability of the
directed networks is briefly recalled below.

Let Γ be a directed network with N nodes. Let AN = (aij) be an adjacency matrix
of N × N, where aij represents the weight of the directed edge from node j to node i;
x = (x1, x2, . . . , xN)

T , where xi(i = 1, 2, . . . , N) represents the state of the node i. Let
u = (u1, u2, . . . , um)

T denote m control input signals, where uk denotes the k-th input signal
(k = 1, 2, . . . , m); B = (bik) is a 0–1 control matrix of N × m, where if the k-th signal uk
controls the i-th node, bik = 1; otherwise, bik = 0. Then, the ordinary differential equation
of the network system Γ is expressed as [12]:

.
x = Ax + Bu (1)

Let C = (B, AB, A2B, . . . , AN−1B); then, C is called the controllability matrix. Accord-
ing to the Kalman rank criterion [34], if rankC = N, then system (1) is controllable.
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In particular, if only the influence of a certain node i on the whole network is studied,
then only this node i in the network can receive the input signal. In this case, all signals
only act on node i. For convenience, it may be assumed that there is only one control input
signal, and this signal only acts on the node i. So:

B = [ei] =

[
0 0 . . . 1︸︷︷︸

i

. . . 0 0
]T

Furthermore, rankC represents the strength of the control capability of node i [12]. If
rankC = N, then node i can control the whole system. If rankC < N, then only the rankC-
dimensional subspace can be controlled. If rankC = 1, then node i can only control itself.

Definition 1 [12]. When there is only one control input signal in the directed network Γ and the
signal only acts on node i, rankC is called the control capability of node i.

The average value of the control capability of N nodes in network Γ is called the
control capability of network Γ.

2.3. Construction of Logic Networks

Based on the gene expression profile data, a first-order logic network is constructed
according to the LAPP method using MATLAB software (MATLAB v. 7.8, Cleve Moler,
USA). The specific process is as follows.

For genes A and B, we regard them as information sources or random variables, and
the corresponding data are represented by X and Y:

X = {x1, x2, . . . , xn} with expression probability p(X = xi)(i = 1, 2, . . . , n);
Y = {y1, y2, . . . , yn} with expression probability p(Y = yi)(i = 1, 2, . . . , n).
Step 1: Data segmentation.
Bowers [14] calculated the weight U of a logic relation between genes based on 0–1

discrete data. However, discretization of continuous data into 0–1 data will lose information,
so this paper performs fine segmentation. The gene expression profile data is normalized.
Gene A’s data X = {x1, x2, . . . , xn} is taken as an example. It is assumed that xi ∈ [0, 1]
for i = 1, 2, . . . , n. The [0, 1] is divided into 2k parts, k ∈ N. If xi < 0.5 and xi ∈ [ l

2k , l+1
2k ),

then xi is replaced by l
2k ; if xi ≥ 0.5 and xi ∈ ( l

2k , l+1
2k ], then xi is replaced by l+1

2k ,where
l ∈ {0, 1, 2, . . . , 2k− 1}.

Step 2: Calculate the information entropy.
H(X) = E[− logn p(xi)] = −∑ p(xi) log p(xi), where X = {x1, x2, . . . , xn}, p(xi) is the

expression probability corresponding to X, then H(X) represents the information entropy
of gene A.

Step 3: Calculate the joint entropy.
H(X, Y) = −∑ p(xi, yi) log p(xi, yi) is the joint entropy of genes A and B.
Step 4: Calculate mutual information.
I(X, Y) = H(X) + H(Y)−H(X, Y) represents the mutual information of genes A and B.
Step 5: Calculate the U value.
U(X|Y) = I(X, Y)/H(X) , where 0 ≤ U(X|Y) ≤ 1 represents the effect on the cer-

tainty of X when Y is determined. It represents the possibility of the existence of the
uncertain logical relationship “A→ B”. Moreover, the closeness of the nodes’ association
can be characterized by the U value. The greater the U value of the two nodes, the greater
the influence between the nodes.

Step 6: Filter the logical relationship.
It is assumed that the logic direction threshold is α. For genes A and B, x = U(B|A) ,

y = U(A|B) . If |x− y| ≤ α, it means that genes A and B are very close and affect each
other, so a logic relation between A and B does not exist. If |x− y| > α, it means that there
is a big difference between the influence of A on B and the influence of B on A, and then it
is considered that there is a logic relationship between A and B, and further, the larger one
of x and y is taken. In this paper, α = 0.
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2.4. Identify DCCGs

If the control capabilities of two networks with the same node are not equal, their
structures are different. Statistically, if the control capability curves of two control groups
do not intersect within the threshold (t1, t2) (t1 < t2 and t1, t2 ∈ {0.1, . . . , 0.9}), then their
control capability curves are said to be separable, which further indicates that there are
structural differences in the controllability between the networks of the two control groups.
The control capability of a network is determined by the control capability of its nodes. The
greater the difference in the controllability of the nodes representing the same object in the
two networks, the greater its contribution to the difference in the control capability of the
two networks. Therefore, the difference in the control capability of the nodes between the
two groups can be used as an indicator of the nodes with significant differences in their
network structure.

It is assumed that the curves of the controllability of the logic networks of the two
control groups with the threshold (t1, t2) (t1 < t2 and t1, t2 ∈ {0.1, . . . , 0.9}) are separable.
A method for identifying genes closely related to diseases is built in terms of the network
control capabilities in the following, named the network control capability method, simply
denoted by NCCM.

Step 1: R software (R v. 4.0.2, Ross Ihaka and Robert Gentleman, Auckland, New
Zealand) is used to calculate the control capability of each node v in the logic network with a
step size of 0.1 under the threshold (t1, t2) of two control groups, respectively. Denoted by
(vConGroup1, vConGroup2, . . . , vConGroupλ) and (vExpGroup1, vExpGroup2, . . . , vExpGroupλ), respec-
tively, where λ = t2−t1

0.1 + 1, vConGroupi and vExpGroupi represent the control capabilities of node
v in the networks of two control groups under threshold t1 +

i−1
10 , i = 1, 2, . . . , λ, respectively.

Step 2: The average value CCv of the control capability difference between the logical
networks with a step size of 0.1 within the threshold (t1, t2) of each node v in the two control
groups is calculated, that is:

CCv =

λ

∑
i=1

∣∣vConGroupi − vExpGroupi
∣∣

λ

Step 3: The threshold of significant difference in control capability β(β > 0) is set
and the nodes with the significant differences in control capability are filtered. If CCv > β,
the node v is called a node with a significant difference in the control capability between
two control groups, and its representative gene is called a gene with difference in control
capability, simply denoted by DCCGs.

3. Case and Results
3.1. Data

GSE66360 in the NCBI database is taken as an example. GSE66360 was obtained from
50 healthy subjects and 49 clinical subjects with AMI [35]. RNA samples were isolated
from subjects’ CD146+ cells and processed by Affymetrix human U133 Plus 2.0 array
(Affymetrix, Santa Clara, CA, USA), from which two groups of Discovery and Validation
were formed [36]: The Discovery group consisted of a dataset of 22 healthy subjects (control
group) and 21 acute myocardial infarction patients (AMI group), and the Validation group
consisted of a dataset of 28 healthy subjects and 28 AMI patients. In [36], Discovery was
taken as the research object and 126 differential expression genes (DEGs) were screened
out according to the hypothesis test of gene expression profiles [37] (p < 0.0001). This paper
still uses these 126 DEGs as the research object and does not carry out any processing of
excluded data.
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3.2. Assessment of DEGs’ Networks

Based on the gene expression profile data of DEGs in AMI, first-order logic networks
(take α = 0) of the control group and the AMI group are constructed using the LAPP
method, and then the control capability of the DEGs and the network control capability of
the two groups in the logic networks within a threshold of 0.1–0.9 are calculated. It is found
that the control capability curves of the logic networks among the threshold of 0.1–0.7 of the
control group and the AMI group are separable (Figure 2a). The network of the AMI group
under threshold 0.6 is significantly more complex than that of the control group (Figure 2b);
that is, there are more associations. This shows that there is a big difference in the network
structure between the control group and the AMI group, and this difference is related to
the disease, so it is reasonable to use the network difference to study the mechanism of
the disease.
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3.3. DCCGs Identification

In the logic networks with a separability threshold of 0.1~0.7, there are 59 genes with
an average difference in the control capability of nodes of 5 or more. Among them, the
expression of 55 genes in the AMI group is higher than that in the control group (Figure 3a),
and the control capabilities of 52 genes in the AMI group are higher than that in the control
group (Figure 3b). According to the literature analysis of the Web of Science database in the
last 10 years, the greater the difference threshold β of the node control capability between
the two groups, the higher the proportion of confirmed disease-related genes (Figure 3c).
β = 10. In total, 17 DCCGs were screened (Table 1). In total, 13 out of 17 DCCGs: NR4A3,
THBS1, CXCL3, ITLN1, CLEC4D, LRG1, IRAK3, HBEGF, MMP9, NLRP3, EDN1, VNN3,
and PDK4, were confirmed to be significantly related with AMI/MI. According to the
disease–gene associations Z-score in DISEASES (https://diseases.jensenlab.org/, accessed
on 20 December 2021), 76.5% of DCCGs are associated with AMI/MI: NR4A3, THBS1,
CXCL3, BCL6, ITLN1, LRG1, IRAK3, HBEGF, MMP9, NLRP3, EDN1, VNN3, and PDK4. To
sum up, the literature and DISEASES show that 82.35% of DCCGs are related to AMI/MI:
NR4A3, THBS1, CXCL3, BCL6, ITLN1, CLEC4D, LRG1, IRAK3, HBEGF, MMP9, NLRP3,
EDN1, VNN3, and PDK4.
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Figure 3. (a) Gene expression; (b) gene control capability; (c) proportion of genes with a control
capability above β that have been confirmed to be directly related to AMI/MI.

https://diseases.jensenlab.org/


Genes 2022, 13, 1238 8 of 17

Table 1. Category of DCCGs.

Genes Gene Names
Control

Capability
Fold-Change

Gene
Expression

Fold-Change
Functions in AMI/MI AMI

Z-Score
MI

Z-Score

CAhighGeExphigh

HBEGF Heparin-binding
EGF-like growth factor 11.5 0.215

Upregulated HBEGF plays a
pathophysiological role in

injured hearts after MI [25].
2.1 3.4

THBS1 thrombospondin 1 8.714 0.395

The development of heart
failure after acute STEMI [17];

MI fibroblast secretome
repressed angiogenesis

through THBS1 signaling [16].

3.1 4.4

NR4A3
nuclear receptor

subfamily 4 group A
member 3

6.684 0.422

Inhibiting post-AMI
inflammation responses via
JAK2-STAT3/NF-kappa B

signaling may well be a
therapeutic target for cardiac
remodeling after AMI [15].

1.2 2

BCL6 BCL6 transcription
repressor 4.808 0.239 —— 1.2 1.9

NLRP3 NLR family pyrin
domain-containing 3 3.216 0.411

RBP4 as a novel modulator
promoting cardiomyocyte

pyroptosis via interaction with
NLRP3 in AMI [30]; NLRP3
deletion reduces infarct size

during AMI [28]; NLRP3
inflammasome is upregulated

in myocardial fibroblasts
post-MI [29].

3.7 4.7

ITLN1 intelectin 1 2.735 0.694

The suppression of
inflammation in the 6-month
post-AMI period might have

mediated the significant
upregulation of omentin-1,

implicating a novel target of
treatment [19].

2.4 3.1

PDK4 pyruvate
dehydrogenase kinase 4 2.375 0.348

Following myocardial
infarction, inducible deletion

of PDK4 improved left
ventricular function and

decreased remodeling [38].

1.9 3.4

CAhighGeExplow

ACYP1 acylphosphatase 1 4.778 −0.071 ——

CNOT6L
CCR4-NOT

transcription complex
subunit 6 like

3.905 0.095 ——

CAlowGeExphigh

VNN3 vanin 3, pseudogene 1.833 0.332 Diagnostic biomarkers for
STEMI [24]. —— 1.3

CXCL3 C-X-C motif chemokine
ligand 3 1.781 0.412 Associated with reparative

phases (post MI) [18]. 1.1 2.6

CLEC4D C-type lectin domain
family 4 member D 1.691 0.545

Playing an important role in
the occurrence and

progression AMI [21].

LRG1 Leucine-rich
α-2-glycoprotein 1 1.630 0.344

LRG1/HIF-1 α promoted
H9c2 cell apoptosis and
autophagy in hypoxia,

potentially providing new
ideas for the determination
and treatment of AMI [22].

1.3 2.2
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Table 1. Cont.

Genes Gene Names
Control

Capability
Fold-Change

Gene
Expression

Fold-Change
Functions in AMI/MI AMI

Z-Score
MI

Z-Score

IRAK3
interleukin 1

receptor-associated
kinase 3

1.607 0.456

Silencing of IRAK3 inactivates
the NF-B signaling pathway

and prevents AMI
progression [23].

2.2 2.8

MMP9 matrix
metallopeptidase 9 1.575 0.377

Inhibiting the chemokine
signaling pathway and

leukocyte transendothelial
migration play a protective

effect on AMI [26]. MMP9 is
upregulated in the diabetic

heart, and ablation of MMP9
decreases the infarct size in
the non-diabetic myocardial

infarction heart [27].

5 5.9

EDN1 endothelin 1 1.474 0.296

EDN1 induces CDH2 and
VEGF expression in

hUCB-MSCs, leading to
improved therapeutic efficacy

in rat MI [31].

5.1 6.0

AC079305.10 unnamed 1.389 0.417 ——

DCCGs differential control capability genes; CA control capability; GeExp gene expression; here, the con-
trol capability fold-change means AMI/Control. Gene expression fold-change means (AMI-Control)/Control.
High expression changes (fold-change > 0.2) with high control capability changes (fold-change > 2), defined as
CAhighGeExphigh genes. —— means there is no direct literature to support it. The disease–gene associations
Z-score were derived from automatic text mining of the biomedical literature (https://diseases.jensenlab.org/,
accessed on 20 December 2021). The higher the Z-score, the better the correlation with it and the higher the trust.

3.4. DCCGs Analysis
3.4.1. Enrichment Analysis

Gene set enrichment was performed by the Metascape server (https://metascape.org/,
accessed on 20 January 2022) [39]. In addition to AC079305.10, 16 DCCGs were recognized
by the Metascape server. Pathway and process enrichment analysis showed that DCCGs are
mainly involved in positive regulation of smooth muscle cell proliferation, and regulation
of cytokine production involved in the immune response (Table 2).

Table 2. Top seven gene enrichment outputs of DCCGs.

Term Description LogP Genes

GO:0048661 positive regulation of smooth muscle cell proliferation −8.93 HBEGF, EDN1, MMP9, THBS1, NR4A3,
BCL6, ITLN1, IRAK3, CXCL3

GO:0002718 regulation of cytokine production involved in immune response −6.74 BCL6, NR4A3, IRAK3, NLRP3, THBS1,
CLEC4D, CXCL3, EDN1

WP2865 IL1 and megakaryocytes in obesity −6.56 HBEGF, MMP9, NLRP3, BCL6, THBS1,
IRAK3, NR4A3, CLEC4D, LRG1

GO:0009617 response to bacterium −5.91 EDN1, CXCL3, IRAK3, NLRP3, LRG1,
CLEC4D, THBS1, PDK4

GO:1904707 positive regulation of vascular associated smooth muscle cell proliferation −5.74 EDN1, CXCL3, IRAK3, NLRP3, LRG1,
CLEC4D, THBS1, PDK4

hsa04668 TNF signaling pathway −4.57 EDN1, CXCL3, MMP9, NLRP3, LRG1

M5885 NABA MATRISOME ASSOCIATED −4.49 HBEGF, CXCL3, MMP9, ITLN1, CLEC4D

The relationships between the enriched terms were further captured using Metascape.
A subset of enriched terms was selected and rendered as a network plot, where terms with
a similarity > 0.3 are connected by edges (Figure 4a).

https://diseases.jensenlab.org/
https://metascape.org/
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Figure 4. Enrichment of DCCGs. (a) Network of enriched terms: colored by cluster ID, where
nodes that share the same cluster ID are typically close to each other. (b) Enrichment map of genes,
where red indicates functional enrichment of genes and blue represents without enrichment. (c) The
top-level GO biological processes of DCCGs.

The top three genes in the difference of controllability: HBEGF, THBS1, and NR4A3,
are shared by the terms GO:0048661, WP2865, and GO:1904707. These functions are mainly
positive regulation of vascular-associated smooth muscle cell proliferation and IL1 and
megakaryocyte in obesity. MMP9 and EDN1, which have very high MI-related scores in
the Diseases database of 5.9 and 6.0, respectively (Table 1), are also involved in the positive
regulation of vascular-associated smooth muscle cell proliferation. Figure 4b shows the
correlation of other DCCGs with enriched terms.

As is shown in Figure 4c, in the top-level GO biological processes, DCCGs are mainly
enriched in GO:0048518, GO:0050789, and GO:0002376, which correspond to positive
regulation of biological process, regulation of biological process, and immune system
process, respectively.

3.4.2. KEGG Pathway

The DAVID online tool (https://david.ncifcrf.gov/DAVID 6.8, accessed on 13 De-
cember 2021) and the KOBAS (http://kobas.cbi.pku.edu.cn/anno_iden.php) were used to
analyze DCCGs’ KEGG pathway with p-value < 0.05 and adjusted p < 0.05 (Figure 5).

https://david.ncifcrf.gov/DAVID
http://kobas.cbi.pku.edu.cn/anno_iden.php
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Figure 5. The Kyoto Encyclopedia of Genes and Genomes pathway of differentially control capability
genes. Red diamonds represent the DCCGs in AMI. (a) Bladder cancer. (b) Transcriptional misreg-
ulation in cancer. (c) TNF signaling pathway involved in MMP9, EDN1, and CXCL3. (d) Relaxin
signaling pathway. (e) Fluid shear stress and atherosclerosis.

THBS1, HBEGF, and MMP9 are jointly involved in bladder cancer. HBEGF acts
on MMP9 through the transactivation of epidermal growth factor receptor (EGFR) and
ErbB signaling pathway, induces endothelial cell migration through degradation of the
extracellular matrix, and finally causes angiogenesis (Figure 5a). NR4A3 and MMP9
are involved in transcriptional misregulation in cancer (Figure 5b). Studies have shown
that aberrant angiogenic processes are involved in the pathogenesis of diseases such as
cancer. Moreover, angiogenesis-related mechanisms can improve tissue regeneration after
conditions such as arteriosclerosis and myocardial infarction [40]. An lnc RNA named
urothelial carcinoma-associated 1 (UCA1) is found in tumors such as bladder cancer and
lung cancer. Furthermore, it is found that UCA1 could be used as a promising novel
biomarker for the diagnosis and/or prognosis of AMI [41]. EDN1 and MMP9 participate in
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the TNF signaling pathway while CXCL3 participates in this signaling pathway together
(Figure 5c). In addition, EDN1 and MMP9 also jointly participate in the Relaxin signaling
pathway (Figure 5d), fluid shear stress, and atherosclerosis (Figure 5e). EDN1 controls
MMP9 through the PI3K-Akt signaling pathway (Figure 5d) and is upstream of MMP9
through the MAPK signaling pathway.

3.4.3. Comparison with Other Methods

At present, most methods for screening key nodes in the network are from the perspec-
tive of network static structure parameters, and the most widely used methods are based
on the centrality of nodes such as the degree centrality, eigenvector centrality, etc. [8,9]. The
following is a method for screening differential nodes between two groups based on the
degree. This method is abbreviated as DDM here.

Suppose that the curves of the average degree of the networks of two control groups
among the threshold (t1, t2) (t1 < t2 and t1, t2 ∈ {0.1, . . . , 0.9}) are disjointed. The specific
steps of DDM are as follows.

Step 1: The degree of each node u in the logic network with a step size of 0.1
in the threshold (t1, t2) of two control groups is calculated, respectively, denoted by
(uConGroup1, uConGroup2, . . . , uConGroupλ) and (uExpGroup1, uExpGroup2, . . . , uExpGroupλ), respec-
tively, where λ = t2−t1

0.1 + 1, uConGroupi, and uExpGroupi represent the degrees of node u in
the networks of two control groups under threshold t1 +

i−1
10 , i = 1, 2, . . . , λ, respectively.

Step 2: The average value Du of the degree difference between the logic networks with
a step size of 0.1 within the threshold (t1, t2) of each node u in the two control groups is
calculated; that is:

Du =

λ

∑
i=1

∣∣uConGroupi − uExpGroupi
∣∣

λ

Step 3: The threshold of significant difference in degree γ(γ > 0) is set and the nodes
with a significant difference in the degree are filtered. If Du > γ, the node u is called
a node with a significant difference in the degree between two control groups, and its
representative gene is called a gene with difference in degree, simply denoted as DDGs.

The degree curves of the logic networks of DEGs in the AMI and control groups are
separable within thresholds (0.1, 0.9) (Figure 6). Then,γ = 30, and 17 DDGs are screened out
(Table 3). About 58.8% of DDGs are found to be associated with AMI/MI in the DISEASES
database while 76.5% of DCCGs screened by NCCM are associated with AMI/MI. This
indicates that NCCM is more effective than DDM in identifying AMI-related genes.
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Table 3. Category of DDGs.

Genes Gene Names AMI
Z-Score

MI
Z-Score

IRAK3 interleukin 1 receptor-associated kinase 3 2.2 2.8
ITLN1 intelectin 1 2.4 3.1
BCL6 BCL6 transcription repressor 1.2 1.9

CXCL3 C-X-C motif chemokine ligand 3 1.1 2.6
NR4A3 nuclear receptor subfamily 4 group A member 3 1.2 2

CLEC4D C-type lectin domain family 4 member D —— ——
CDC25B cell division cycle 25B —— ——

AC079305.10 unnamed —— ——
MMP9 matrix metallopeptidase 9 5 5.9
GLUL glutamate-ammonia ligase —— 1.9
FITM2 fat storage-inducing transmembrane protein 2 —— ——
ITPRIP inositol 1,4,5-trisphosphate receptor-interacting protein —— ——

METRNL meteorin-like, glial cell differentiation regulator —— ——
GABARAPL1 GABA type A receptor-associated protein-like 1 1.5 2.9
RNF144B ring finger protein 144B —— ——
NLRP3 NLR family pyrin domain-containing 3 3.7 3.7
ANXA3 annexin A3 2.1 2.9

—— Indicates not scored in DISEASES. Bold indicates the same genes as those screened in NCCM.

4. Discussion

Based on the difference in the control capability of the logic networks between two
control groups, a method identifying key nodes in the network was established, named
NCCM. AMI was taken as an example. The logic networks of 126 DEGs of the control group
and the AMI group were established, and the separability of the curves of the network
control capability of the control group and the AMI group was studied. It was found that
the curves of the control capability of the logic networks of the two groups under thresholds
of 0.1–0.7 do not intersect (Figure 2a). This shows that there are differences in the network
structure between the control group and the AMI group, which is caused by AMI disease.
Further, according to NCCM, nodes with a control capability difference of more than 10
were selected as the significantly different nodes, and their corresponding genes were
DCCGs. In the literature and DISEASES, 82.35% of DCCGs (Table 1) were associated with
AMI/MI. Compared with DDGS screened by DDM, NCCM is more effective. Through the
enrichment analysis of DCCGs, it was found that AMI disease is significantly related to the
positive regulation of vascular-related smooth muscle cell proliferation, and HBEGF, THBS1,
NR4A3, NLRP3, EDN1, and MMP9, which are involved in this function, are significantly
related to AMI/MI in DISEASES and the literature.

HBEGF is necessary for maintaining normal function of the adult heart [42]. HBEGF
is known to induce cell growth in various cell types via transactivation of epidermal
growth factor receptor (EGFR). Tanaka et al. suggested the interaction between HBEGF
and EGFR transactivation is closely related to the proliferation of cardiac fibroblasts and
cardiac remodeling after MI in an autocrine, paracrine, and juxtacrine manner [43]. Mouton
et al. studied in vitro day 7 MI fibroblast secretome-repressed angiogenesis through THBS1
signaling [16]. NR4A3 clusters are novel functional modules in the CD146+ cell-mediated
immune-inflammatory balance, triggering increased susceptibility to vascular deterioration
and accelerating myocardial injury [16]. NR4A3 could inhibit post-AMI inflammation
responses via JAK2-STAT3/NF-kappa B signaling and may well be a therapeutic target for
cardiac remodeling after AMI [15]. NLRP3 (cryopyrin) is central in AMI: it reduces apopto-
sis, infarct size, and cardiac dysfunction during AMI [28]. Ablation of MMP9 decreases
infarct size in the non-diabetic myocardial infarction heart [27]. The rs3918242 polymor-
phism of the MMP9 gene plays a primary role in the risk of developing MI [44]. EDN1
induces CDH2 and VEGF expression in hUCB-MSCs, leading to improved therapeutic effi-
cacy in rat MI, suggesting that EDN1 is a potential priming agent for MSCs in regenerative
medicine [31]. In Table 2, HBEGF, THBS1, NR4A3, NLRP3, EDN1, and MMP9 are shared
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in terms of positive regulation of vascular-associated smooth muscle cell proliferation.
Zhang et al. proposed that high-glucose-induced proliferation of vascular smooth muscle
cells (VSMCs) plays an important role in the development of diabetic vascular diseases.
Interferon regulatory factor-1 (Irf-1) is a positive regulator of the high-glucose-induced
proliferation of VSMCs. However, the mechanisms remain to be determined [45].

In String (https://cn.string-db.org/, accessed on 13 February 2022) [46], when the
threshold of a correlation coefficient is 0.4, HBEGF, THBS1, NR4A3, NLRP3, EDN1, and
MMP9 are related (Figure 7a). In addition, when the threshold of a correlation coefficient is
0.15, ACYP1 interacts with THBS1 and NR4A3, but there is no association between CNOT6L
and other genes (Figure 7b).
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Both the CT and CTsv products of the ACYP1 gene were able to induce a proapop-
totic effect when expressed in the HeLa cell line [47]. CNOT6L is a validated target of
miR-146a [48]. Exosomes derived from miR-146a-modified adipose-derived stem cells
can downregulate early growth response factor 1 to attenuate AMI-induced myocardial
damage [49]. Therefore, we predict that ACYP1 and CNOT6L are related to AMI. In the
control group and AMI group, the difference in the gene expression between ACYP1 and
CNOT6L is low, but the difference in the control capability is high. In this way, from the
perspective of gene expression difference, the expression difference of these two genes in
the two groups is not significant, they are generally not considered to be related to AMI.
However, there are significant differences in the control capability of ACYP1 and CNOT6L
between the two groups, so they are significantly correlated with AMI according to NCCM.
This shows that the NCCM method can not only identify genes with significant changes
in expression but also be effective for genes with weak changes in expression. At present,
the mechanism of ACYP1 and CNOT6L in AMI is not clear, which provides a new idea for
studying the occurrence and molecular mechanism of AMI.

5. Conclusions

From the perspective of the network node control capability, a method identifying key
nodes between two networks with the same set of nodes was established, called NCCM.
Taking AMI as an example, 82.35% of DCCGs screened by NCCM were related to AMI,
which shows that this method is effective in mining disease-related genes. The analysis of
DCCGs indicates that AMI is closely related to the positive regulation of vascular smooth
muscle cell proliferation and the function of the regulation of cytokine production involved

https://cn.string-db.org/
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in the immune response. HBEGF, THBS1, NR4A3, NLRP3, EDN1, and MMP9 are involved
in these functions, and they play an important role in the mechanism of AMI. In addition, it
was predicted that CNOT6L and ACYP1, which have little difference in expression between
the control group and the AMI group, are significantly correlated with AMI. This shows
that this method can not only identify genes with large differences in expression but also
identify genes closely related to AMI but with small changes in expression. This method
has certain universality and can also be applied to other data.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13071238/s1, Table S1: Sequence number list of corresponding
differential expression genes.
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