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Abstract

A set of vertices S is a determining set for a graph G if every automorphism of

G is uniquely determined by its action on S. The determining number of a graph

is the size of a smallest determining set. This paper describes ways of finding and

verifying determining sets, gives natural lower bounds on the determining number,

and shows how to use orbits to investigate determining sets. Further, determining

sets of Kneser graphs are extensively studied, sharp bounds for their determining

numbers are provided, and all Kneser graphs with determining number 2, 3, or 4

are given.

1 Introduction

You are a contestant on the newest mathematical game show “What’s my symmetry?”
The host gives you a graph and an anonymous automorphism σ. You are allowed to choose
vertices and ask for their images under σ. Your goal is to determine the automorphism
by correctly identifying the images of the remaining vertices. The amount of money you
can win is inversely proportional to the number of vertices whose images you ask to see.
In the bonus round, you are asked to correctly identify the automorphism group of the
graph.

The set of vertices you wish to choose is called a determining set and the smallest size
of such a set is called the determining number of the graph. As you study in preparation
for the game, some questions you ask are: How can we find a determining set? Given a
set of vertices, how can we decide whether it is determining? Can we use Aut(G) to find
a determining set for G? Can we use a determining set to find Aut(G)? How small can
a determining set be? How large might it be? What properties of the vertex orbits make
it easy to find a determining set or to bound the determining number? These questions
are addressed in this paper.

The paper is organized as follows. Formal definitions of determining sets and deter-
mining numbers, initial observations, and examples are given at the beginning of Section
2. Section 2.1 introduces some natural bounds on the determining number in terms of
the size of the automorphism group. Methods of finding, or verifying, a determining set
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are discussed in Section 2.2, while Section 2.3 shows how to use orbits to find a determin-
ing set or to bound a determining number. Determining sets for the Kneser graphs are
studied extensively in Section 3. In particular, sharp upper and lower bounds on their
determining numbers are found in Section 3.1. Further, formulas are developed that aid in
investigating determining sets for Kneser graphs, and all Kneser graphs with determining
number 2, 3, and 4 are listed in Section 3.2. Open questions are given in Section 4.

It has come to my attention that independently Erwin and Harary [3] defined an
equivalent set that they called the fixing set. Also, Collins and Laison [2], and Gibbons
and Laison [4], are reporting results on these sets.

2 Basics, Bounds, and Tools

We have already introduced the idea of determining sets. The following is a more formal
beginning to their study.

Definition 1. A subset S of the vertices of a graph G is called a determining set if
whenever g, h ∈ Aut(G) agree on the vertices of S, they agree on all vertices of G. That
is, S is a determining set if whenever g and h are automorphisms with the property that
g(s) = h(s) for all s ∈ S, then g = h.

Note that intuitively, a set S is a determining set if and only if every vertex in the
graph can be uniquely identified by its own graph properties and its relationship to the
vertices in S.

Every graph has a determining set. Trivially the set of vertices itself is a determining
set. It is also clear that any set containing all but one vertex is a determining set.

Example 1. Figure 1 illustrates the Petersen graph with vertices identified with the
2-subsets of a 5-set. Using either of the tools of Section 2.2 we can show that the set
S = {{1, 2}, {2, 4}, {2, 5}} is a determining set.
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Figure 1: The Petersen Graph
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Definition 2. The determining number of a graph G is the smallest integer r so that G
has a determining set of size r. Denote this by Det(G).

We consider a graph with a trivial automorphism group to have determining number
0. We will see in Example 8 that there are graphs with large automorphism groups but
with determining number 1. At the other end of the spectrum, it is easy to see that since
Det(Kn) = Det(K1,n) = n − 1, determining numbers can be arbitrarily large.

Example 2. Any pair of non-antipodal vertices is a determining set for a cycle. No single
vertex has this property. Thus Det(Cn) = 2.

We may associate each vertex of the n-cube with an n-bit binary string so that a pair
of vertices is connected by an edge precisely when their associated binary strings differ in
exactly one bit.

Example 3. Consider of the set of vertices of the n-cube associated with the n-bit binary
expressions for 0, 1, 2, 4, . . . , 2n−2. We can use the tools of Section 2.2 to show that this is
a distance determining set and therefore a determining set. Thus Det(Qn) ≤ n and it is
straightforward to show that equality holds when n = 2 or 3.

2.1 Bounds

Determining sets are useful in investigating graph automorphisms and are particularly
useful in proving that all automorphisms of a given graph have been found. If a proposed
set of automorphisms takes the determining set to all possible images of itself, then it is
indeed the full set of automorphisms. This links the size of a determining set to the size
of the automorphism group.

Proposition 1. Let G be a graph with n vertices and determining number r. Then
(n − r)! ≤ n!

|Aut(G)|
.

Proof. Since each automorphic image of the determining set must be unique and there
are precisely n!

(n−r)!
different ordered r-subsets of V (G), there are at most n!

(n−r)!
different

automorphisms of G.

Proposition 2. Let G be a graph with n vertices, maximum orbit size s, and determining
number r. Then r ≥ logs |Aut(G)| ≥ logn |Aut(G)|.

Proof. Each of the r vertices in the determining set has at most s vertices to which it can
be sent by an automorphism. Each automorphism is uniquely determined by where these
vertices are sent. Thus there are at most sr automorphisms. Thus |Aut(G)| ≤ sr =⇒ r ≥
logs |Aut(G)|.

Proposition 1 provides the better bound when the graph is transitive, while Proposition
2 gives the better bound when the maximum orbit size is small compared to the total
number of vertices. These are illustrated in the following examples.
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Example 4. K10 has determining number 9 and this matches the lower bound obtained
from Proposition 1. However, Proposition 2 yields a less accurate lower bound of 7.

Example 5. Let G be K10 with a path of length 19 attached to each vertex. The orbit size,
automorphism group, and determining number are the same as for K10 itself. However
the number of vertices in the graph is 200. The lower bound from Proposition 2 is still 7,
which is significantly better here than the lower bound of 3 obtained from Proposition 1.

Example 6. Either of Proposition 1 or Proposition 2 can be used to show that the
determining number of the Petersen graph is at least 3. Since we found a determining set
of size 3 in Example 1, the determining number of the Petersen graph is 3.

2.2 Finding and Verifying Determining Sets

We want to be able to build determining sets and to tell when a set is determining. Here
we introduce two tools for these purposes.

For any subset S ⊆ V (G), Stab(S) = {g ∈ Aut(G) | g(v) = v, ∀v ∈ S}. Note that
Stab(S) = ∩v∈SStab(v). This is the pointwise stabilizer of S, and will be referred to
simply as the stabilizer.

Proposition 3. Let S be a subset of the vertices of the graph G. Then S is a determining
set for G if and only if Stab(S) = {id}.

Proof. If S is a determining set then whenever g ∈ Aut(G) fixes each s ∈ S, g = id . Thus
Stab(S) = {id}. Further if Stab(S) = {id} and g, h ∈ Aut(G) so that g(s) = h(s) for all
s ∈ S then h−1g(s) = s for all s ∈ S =⇒ h−1g = id =⇒ g = h.

Frequently the easiest way to obtain a determining set is to find a set with a trivial
stabilizer. However, if we want to find a determining set for the purpose of identifying
the automorphism group, we need a method that does not rely on automorphisms or
stabilizers. One way to do this is to find a set of vertices S with the property that every
vertex in the graph can be uniquely identified by its distances from the vertices of S. Here
we call such a set a distance determining set. These have been studied previously and are
sometimes called resolving sets, reference sets, or locating sets. See for example [1, 7].

Definition 3. Let G be a connected graph. Let S = {s1, . . . , sr} be an ordered subset
of the vertices of G. The S-distance vector of a vertex v is (d(v, s1), . . . , d(v, sr)) ∈ Z

r

where each distance is the length of the shortest path between the two vertices. A set S
is called a distance determining set for G if the S-distance vectors of G are distinct.

Suppose we have a distance determining set S, an automorphism σ, and an arbitrary
vertex v. Since v is uniquely identified by its distances from the vertices of S and σ
preserves distance, σ(v) is uniquely determined by its distances from σ(S). Then S is a
determining set for G. Thus we have proved the following.

Proposition 4. Let S be a subset of the vertices of the connected graph G. If S is a
distance determining set for G then it is a determining set for G.
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Restricting ourselves to connected graphs does no harm here. If a graph is not con-
nected, we can find a distance determining set for each component. The union of these
is a determining set for the graph unless the graph contains multiple isolated vertices. In
this case we add all but one of the isolated vertices to the set to make it a determining
set.

Example 7. The Petersen graph has determining number 3 and also has distance de-
termining sets of size 3. However, not all determining sets are distance determining.
The determining set given in Example 1 is also a distance determining set, while the set
T = {{1, 2}, {2, 3}, {3, 4}} is determining but not distance determining. (The vertices
{1, 3} and {2, 4} are both at distance 2 from each of the elements of T .)

So even without knowledge of the automorphism group, we can find a determining set
for a connected graph simply by finding a distance determining set. Further it is easy
to verify that a given set is distance determining. However, a minimum size distance
determining set may be strictly larger than a minimum size determining set.

Example 8. In a GRR (graphical regular representation) every vertex has a trivial sta-
bilizer [6]. Thus a GRR has determining number 1. But unless it is K2 there must be
(at least) two vertices at distance 1 from the determining vertex and thus the distance
vectors are not all distinct. Thus the determining number may be strictly smaller than
the size of a smallest distance determining set.

2.3 Using Orbits

We can learn about determining sets for a graph by looking at the vertex orbits and their
induced subgraphs.

Proposition 5. Let O1, . . . ,Ok be the vertex orbits of G. Let H1, . . . , Hk be the as-
sociated induced subgraphs. Let S1, . . . , Sk be determining sets for H1, . . . , Hk. Then
S = S1 ∪ · · · ∪ Sk is a determining set for G.

Proof. Since each Oi is invariant under the action of Aut(G), Stab(Oi) / Aut(G) and
Aut(G)/Stab(Oi) acts faithfully on Hi. Thus we may consider Aut(G)/Stab(Oi) as a
subgroup of Aut(Hi). Since Si determines Hi under the action of Aut(Hi), it also deter-
mines Hi under the action of Aut(G)/Stab(Oi). The fact that Stab(Si) = {id} under the
action of Aut(Hi) implies that Stab(Si) = Stab(Oi) under the action of Aut(G).

Since the action of Aut(G) is faithful, the pointwise stabilizer of G is trivial. Then
Stab(S) = Stab(S1 ∪ · · · ∪Sk) = Stab(S1)∩ · · · ∩Stab(Sk) = Stab(O1)∩ · · · ∩Stab(Ok) =
Stab(V (G)) = {id}. Thus S is a determining set for G.

Proposition 6. Let T ⊆ V (G) be an invariant set of vertices under Aut(G) such that
Stab(T ) = {id}. Let H be the subgraph induced by T . Then a determining set for H is
a determining set for G.

Since Stab(T ) = {id}, T is itself a determining set. However, the point of the propo-
sition is that a determining set for H is a smaller determining set contained within T .
The proof of Proposition 6 echos that of Proposition 5.
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3 Determining Sets for Kneser Graphs

3.1 Basics and Bounds

The Kneser graph Kn:k has vertices associated with the k-subsets of the n-set [n] =
{1, . . . , n} with edges between pairs of vertices whose associated subsets are disjoint. The
literature is almost evenly split between those requiring n > 2k and those only requiring
n ≥ 2k. Here we will define Kn:k only for n > 2k. (The case n = 2k would yield a set of
disconnected edges whose determining number is 1

2

(

2k

k

)

, half the number of vertices.)

Throughout this section vertices will simultaneously be considered as k-subsets and
as vertices. Note that elements of the symmetric group Sn take k-subsets to k-subsets,
and maintain disjointness and nondisjointness; thus they induce graph automorphisms of
Kn:k. The Erdős-Ko-Rado Theorem shows that all automorphisms of Kneser graphs arise
in this way [5]. Thus the automorphism group of Kn:k is (isomorphic to) Sn.

Lemma 1. The set {V1, . . . , Vr} is a determining set for Kn:k if and only if there exists
no pair of distinct elements a, b ∈ [n] so that for each i either {a, b} ⊆ Vi or {a, b} ⊆ V

c

i .

Proof. It is easy to see that the stabilizer of a vertex (k-subset) V is the direct product
of the symmetric group on V and the symmetric group on the set complement, V

c

. Thus
{V1, . . . , Vr} is a determining set if and only if Stab(V1) ∩ · · · ∩ Stab(Vr) = (SV1

× SV
c

1

) ∩

· · · ∩
(

SVr
× SV

c
r

)

= {id}, which is true if and only if there exists no pair of distinct
elements a, b ∈ [n] so that for each i either {a, b} ⊆ Vi or {a, b} ⊆ V

c

i .

We can use Lemma 1 to find sharp upper and lower bounds for Det(Kn:k).

Proposition 7. Det(Kn:k) ≤ n − k and this bound is sharp.

Proof. Let U1 = {1, . . . , k}, U2 = {2, . . . , k + 1}, . . . , Un−k = {n − k, . . . , n − 1}. The reader
may readily check that for every pair of integers a, b ∈ [n] there is an integer i so that one
of a, b is in Ui and the other is in U

c

i . By Lemma 1 this proves that {U1, . . . , Un−k} is a
determining set for Kn:k.

Clearly Det(Kn:1) = n − 1. Further, we saw in Example 6 that Det(K5:2) = 3 and we
will see in Proposition 14 that Det(K6:2) = 4. Thus the bound is sharp.

The following proofs of Propositions 8 and 9 for the lower bound were much improved
by the referee’s suggestion to put them in the context of the vector space F

n
2 (where F2 is

the field of order 2). We will first need a little notation. For each V ⊆ [n] let ~V ∈ F
n
2 be

the binary n-tuple with ones in the coordinate positions corresponding to the elements
in V and zeros in the coordinate positions corresponding to the elements not in V . We
call ~V the characteristic vector of the subset V . Given S = {V1, . . . , Vr} ⊆ V (Kn:k), let

M be the r × n matrix whose rows are the characteristic vectors ~V1, . . . , ~Vr. We call M
the characteristic matrix of S. The weight of a vector in F

n
2 is its number of nonzero

coordinates.
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Consider a pair of elements a, b in [n]. Let ~x be the characteristic vector for {a, b} as
a subset of [n]. If one of a, b is in Vi but the other is not, then the ith coordinate of M~x is
1. However, since our arithmetic is modulo 2, if both (or neither) of a and b is in Vi then
the ith coordinate of M~x is 0. The converse of these statements also hold. Thus there is a
weight 2 vector ~x ∈ F

n
2 so that M~x = ~0 if and only if there is a pair of elements a, b ∈ [n]

so that for each i either {a, b} ⊆ Vi or {a, b} ⊆ V
c

i . This immediately translates to the
following.

Lemma 2. Let S = {V1, . . . , Vr} ⊆ V (Kn:k). Let M be the characteristic matrix of S.
The following are equivalent.

(a) S is a determining set for Kn:k.

(b) The kernel of M (as a linear transformation from F
n
2 to F

r
2) contains no vector of

weight 2.

(c) No two columns of M are equal.

Proposition 8. Det(Kn:k) ≥ log2(n + 1) and this bound is sharp.

Proof. Suppose that Kn:k has a determining set S = {V1, . . . , Vr}. Let M be the charac-
teristic matrix of S. Let W be the kernel of M . By Lemma 2, since S is a determining
set, W contains no vector of weight 2.

Let ~e1, . . . , ~en be the standard basis vectors of F
n
2 . For the moment, view F

n
2 as a

finite additive group, W as a subgroup, and consider the cosets of the form W + ~ei.
First we wish to prove that all the W + ~ei are disjoint (and thus distinct). If some pair
is not disjoint, there exists ~wi, ~wj ∈ W so that ~wi + ~ei = ~wj + ~ej. This means that
~ei +~ej = ~wi + ~wj, a weight 2 vector in W . Since this is not possible, we can conclude that
| ∪n

i=1 W + ei| = n|W |. Thus | ∪n
i=1 W + ei| = n|W | ≤ |Fn

2 | = 2n =⇒ |W | ≤ 2n

n
.

The Rank-Nullity Theorem tells us that 2rank(M)|W | = 2n. Since M has r rows,
rank(M) ≤ r =⇒ 2r|W | ≥ 2n. Combining this with |W | ≤ 2n

n
yields 2r ≥ n.

Suppose that n = 2r. Then M is the r × 2r characteristic matrix of a determining
set. By Lemma 2 no two columns of M are the same. Thus the columns of M are the 2r

distinct binary r-tuples, the characteristic vectors for the subsets of [r]. In this context,
row i of M records which subsets of [r] the element i is in. Since each element of [r] is
in precisely 2r−1 subsets, the weight of each row is 2r−1. Thus k = 2r−1. But we are
not considering the case when k = n

2
(and even if we did, it wouldn’t have determining

number r). Thus n 6= 2r =⇒ 2r ≥ n + 1 and the result follows.

We see in Proposition 9 below that K2r−1:2r−1−1 has a determining set of size r. Thus
the bound is sharp, as claimed.

Proposition 9. Det(K2r−1:2r−1−1) = r.

Proof. Beginning with a construction similar to the above, let M be the r×(2r−1) matrix
whose columns are the characteristic vectors for the nonempty subsets of [r]. Since each
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element of [r] shows up in exactly 2r−1 subsets of [r], each row of M has weight 2r−1.
Thus each row has 2r − 1 − 2r−1 = 2r−1 − 1 zeros. Switch all zeros to ones and ones
to zeros in M to yield M ′. Then M ′ can be considered a characteristic matrix in which
each row has weight 2r−1 − 1. The kernel of M ′ has a vector of weight 2 if and only if
two columns of M ′ are equal. But by construction all columns of M , and therefore of
M ′, are distinct. Thus M ′ is a characteristic matrix for a determining set for K2r−1:2r−1−1

whose characteristic vectors are the rows of M ′. Thus K2r−1:2r−1−1 has a determining set
of size r. Combining this result with that of Proposition 8 yields the result.

3.2 Kneser Graphs with Given Determining Number

Lemma 1 can help us find all Kneser graphs with determining number 2, 3 or 4. For
any V ⊂ [n] let V 1 = V and V −1 = V

c

. With this notation, the statement ‘There
exists no pair of distinct elements a, b ∈ [n] so that for each i either {a, b} ⊆ Vi or
{a, b} ⊆ V

c

i .’ is equivalent to the statement ‘There is no assignment of ±1 to the ei so
that |V e1

1 ∩ · · · ∩ V er
r | ≥ 2.’ Thus Lemma 1 is equivalent to the following.

Lemma 1′. The set {V1, . . . , Vr} is a determining set for Kn:k if and only if for all possible
assignments of ±1 to e1, . . . , er, |V

e1

1 ∩ · · · ∩ V er
r | ≤ 1.

Using Lemma 1′ requires that we be able to compute |V e1

1 ∩ · · · ∩ V er
r |. To accomplish

this we use a natural generalization of the fact that |A ∩ B
c

| = |A| − |A ∩ B|.

Let V1, . . . , Vr be vertices of Kn:k. For each nonempty U ⊆ [r], let AU = ∩i∈UVi.
Further let A∅ = [n]. Then |A∅| = n, and for each i, |A{i}| = |Vi| = k. For each T ⊆ [r],
let ET = |V e1

1 ∩ · · · ∩ V er
r | where ei = 1 when i ∈ T and ei = −1 otherwise. Proposition

10 below gives a formula for ET in terms of the |AU |. For example, if r = 3, we can easily
see that

E{1} = |V1 ∩ V
c

2 ∩ V
c

3 |
= |V1| − |V1 ∩ V2| − |V1 ∩ V3| + |V1 ∩ V2 ∩ V3|
= |A{1}| − |A{1,2}| − |A{1,3}| + |A{1,2,3}|.

On the other hand, Proposition 11 gives a formula for |AU | in terms of the ET . For
example, starting with the formula from Proposition 10 it is easy to see that when r = 3,

|A{1,2,3}| = E{1,2,3},
|A{1,2}| = E{1,2} + E{1,2,3},
|A{1}| = E{1} + E{1,2} + E{1,3} + E{1,2,3}.

The formula from Proposition 10 is useful in checking whether a set is a determining
set. However, the formula from Proposition 11 enables us to start with an assignment of
allowable values (each 0 or 1) for the ET and see which |AU | arise. This formula can be
used with the fact that all A{i} have the same cardinality to rule out certain combinations
of values for the ET . For those that we don’t rule out, we can then use the formula to find
n and k for a potential Kneser graph with the desired size determining set (Propositions
12, 13, and 14). These results are worked out carefully after the statements and proofs of
Propositions 10 and 11.
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However, we could also use Proposition 11 to compute or bound certain determining
numbers and to verify certain determining sets. In particular, we could use this formula
to find a maximum n for a given size determining set and use this to find a sharp lower
bound for the determining number of a Kneser graph (providing an alternate proof of
Proposition 8). We could also use Proposition 11 to find a closed expression for the |AU |
given a particularly nice set of values for the ET , and use this to verify that a given set is
a determining set (providing an alternate proof Proposition 9).

Proposition 10. For any T ⊆ [r],

ET = |AT | + · · · + (−1)j
∑

Uj

|AUj
| + · · ·+ (−1)r−|T ||A[r]|,

where the Uj range over all subsets of [r] that contain T and have cardinality |T | + j.

Proof. Proof by induction on r. Let T ⊆ [r].

Case 1: Suppose that r ∈ T . Then ET = |V e1

1 ∩· · ·∩V
er−1

r−1 ∩Vr|. Let D = V e1

1 ∩· · ·∩V
er−1

r−1 .
Then ET = |D ∩ Vr|.

Let T ′ = T − {r}. Then T ′ is a subset of [r − 1] and by the inductive hypothesis
|D| = |AT ′| + · · · + (−1)j

∑

Uj
|AUj

| + · · · + (−1)r−1−|T ′||A[r−1]| where the Uj range over

all subsets of [r − 1] that contain T ′ and have cardinality |T ′| + j.

Let ` = |AT ′∩Vr|+· · ·+(−1)j
∑

Uj
|AUj

∩Vr|+· · ·+(−1)r−1−|T ′||A[r−1]∩Vr|. By studying

the possible contribution of an arbitrary element x ∈ [n] we will see that ` = |D∩Vr| = ET .

If x ∈ D and x ∈ Vr then x ∈ AUi
∩Vr ⇐⇒ x ∈ AUi

. Thus x contributes the same to
` as it does to |D| = |AT ′| + · · ·+ (−1)j

∑

Uj
|AUj

|+ · · ·+ (−1)r−1−|T ′||A[r−1]|, which is 1.

If x ∈ D but x 6∈ Vr then x contributes nothing to any |AUi
∩ Vr| and thus does not

contribute to `.

If x 6∈ D and x ∈ Vr then x ∈ AUi
∩ Vr ⇐⇒ x ∈ AUi

. Thus x contributes the same
to ` as it does to |D|, which is 0.

If x 6∈ D and x 6∈ Vr then x contributes nothing to any |AUi
∩ Vr| and thus does not

not contribute to `.

Thus ` counts precisely those elements in D ∩ Vr and this count is ET . That is,

ET = |AT ′ ∩ Vr| + · · ·+ (−1)j
∑

Uj

|AUj
∩ Vr| + · · ·+ (−1)r−1−|T ′||A[r−1] ∩ Vr|

where the Uj range over all subsets of [r−1] that contain T ′ and have cardinality |T ′|+ j.
Note that AT ′ ∩ Vr = AT ′∪{r} = AT and for each Uj containing T ′ of cardinality |T ′| + j,
AUj

∩ Vr = AUj∪{r} where Uj ∪ {r} contains T and has cardinality |T | + j. Thus we can
rewrite our sum as

ET = |AT | + · · ·+ (−1)j
∑

Uj

|AUj
| + · · ·+ (−1)r−|T ||A[r]|
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where the Uj range over all subsets of [r] that contain T and have cardinality |T | + j.
Thus we have our result when r ∈ T .

Case 2: Suppose that r 6∈ T . Then ET = |V e1

1 ∩ · · · ∩ V
er−1

r−1 ∩ V
c

r |. Let T ′ = T −{r} = T
and, as in Case 1, let D = V e1

1 ∩ · · · ∩ V
er−1

r−1 . Recall that by the inductive hypothesis
|D| = |AT ′| + · · · + (−1)j

∑

Uj
|AUj

| + · · · + (−1)r−1−|T ′||A[r−1]| where the Uj range over

subsets of [r − 1] that contain T ′ and have cardinality |T ′| + j. Since T ′ = T we can
rewrite this as

|D| = |AT | + · · ·+ (−1)j
∑

Uj

|AUj
| + · · · + (−1)r−1−|T ||A[r−1]|.

Again as in Case 1,

|D ∩ Vr| = |AT ′ ∩ Vr| + · · ·+ (−1)j
∑

Uj

|AUj
∩ Vr| + · · ·+ (−1)r−1−|T ′||A[r−1] ∩ Vr|.

But this can also be rewritten as

|D ∩ Vr| = |AT∪{r}| + · · ·+ (−1)j
∑

Uj

|AUj∪{r}| + · · ·+ (−1)r−1−|T ||A[r]|.

Bringing these together yields

ET = |D ∩ V
c

r |
= |D| − |D ∩ Vr|

=
(

|AT | + · · ·+ (−1)j
∑

Uj
|AUj

| + · · ·+ (−1)r−1−|T ||A[r−1]|
)

−
(

|AT∪{r}| + · · ·+ (−1)j
∑

Uj
|AUj∪{r}| + · · ·+ (−1)r−1−|T ||A[r]|

)

=
(

|AT | + · · ·+ (−1)j
∑

Uj
|AUj

| + · · ·+ (−1)r−1−|T ||A[r−1]|
)

+
(

−|AT∪{r}| + · · · + (−1)j+1
∑

Uj
|AUj∪{r}| + · · ·+ (−1)r−|T ||A[r]|

)

,

where the Uj range over subsets of [r − 1] that contain T and have cardinality |T | + j.

Thus we can consider the first half of this sum to be taken over all subsets of [r] that
contain T but not r, and the second half to be taken over all subsets of [r] that contain
both T and r. In both cases the sign is positive if the subset length minus |T | is even,
and negative otherwise. Thus this is an alternating sum over all subsets of [r] containing
T with appropriate signs. Thus we have our result when r 6∈ T .

Proposition 11. |AU | =
∑

T ET where the T range over all subsets of [r] containing U .

Proof. For an arbitrary r, the proof is by induction on r − |U |. It is clearly true when
U = ∅.

Let U be fixed. By our previous proposition

EU = |AU | + · · ·+ (−1)j
∑

Uj

|AUj
| + · · ·+ (−1)r−|U ||A[r]|
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where the Uj range over all subsets of [r] with cardinality |U | + j. Thus

|AU | = EU + · · ·+ (−1)j+1
∑

Uj

|AUj
| + · · · + (−1)r−|U |+1|A[r]|. (1)

For each j > 0, r− |Uj| < r− |U |. Thus by the inductive hypothesis each |AUj
| =

∑

T ET

where the T range over all subsets of [r] containing Uj.

Fix an arbitrary Uj ⊆ [r] so that U ⊆ Uj. Our question is: What is the net number
of copies of EUj

that show up on the right hand side of Equation (1)?

This Uj shows up once in every |AUi
| =

∑

T ET where U ⊆ Ui ⊆ Uj. EUj
is being

added if i = |Ui| − |U | is odd, and it is being subtracted if i is even. For each i = 1, . . . , j
there are

(

j

i

)

sets of cardinality |U | + i fitting these conditions. Thus the net number of

copies of EUj
on the right hand side is

(

j

1

)

−
(

j

2

)

+ · · · + (−1)j+1
(

j

j

)

. But this is 1 plus

an alternating sum of the jth row of Pascal’s triangle. Thus, for every Uj containing U ,
there is a net of one copy of EUj

on the right hand side of Equation (1).

Proposition 12. The only Kneser graph with determining number 2 is K3:1.

The proof for the above is an even simpler version of the proof of the following.

Proposition 13. The only Kneser graphs with determining number 3 are K4:1, K5:2 and
K7:3.

Proof. If Kn:k has a determining set of size 3, then there exist vertices V1, V2, V3 yielding
ET ∈ {0, 1} for each T ⊆ {1, 2, 3}. Using Proposition 11 we can check all 223

possible
assignments of values to the ET to determine those for which A{1} = A{2} = A{3}. For
each such assignment we can compute the associated n and k values. Some of these we
reject because k ≥ n

2
or because k = 0; some of these we reject because they are known

to have determining number 1 or 2. Those that are left are then candidates for Kneser
graphs with determining number 3.

In this case, the only possibilities that resulted were K4:1, K5:2 and K7:3.

There is a determining set of size 3 for K4:1 that consists of all but one of the vertices.
There is a determining set of size 3 for K5:2 given in Example 1, and one for K7:3 can be
constructed as in Proposition 9. Thus each of these does indeed have a determining set
of size 3 and therefore determining number 3.

Proposition 14. The only Kneser graphs with determining number 4 are K5:1, K6:2,
K7:2, K8:3, K9:3, K9:4, K10:4, K11:4, K11:5, K12:5, K13:6, K15:7.

Proof. As in the proof above, we can try all 224

values for E∅, . . . , E[4] to find a complete
list of candidates for Kn:k with determining number 4. The only viable candidates are
those listed in the proposition. The following are determining sets of size 4 for each of
them. The interested reader can verify that these are determining sets by computing the
ET . The exceptionally careful reader can write a computer program to verify that these
are indeed all the possibilities.
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• There is a determining set of size 4 for K5:1 that consists of all but one of the vertices.

• {{1, 2}, {1, 3}, {4, 5}, {4, 6}} is a determining set for each of K6:2 and K7:2.

• {{1, 2, 3}, {1, 4, 5}, {2, 6, 7}, {4, 6, 8}} is a determining set for K8:3 and K9:3.

• {{1, 2, 3, 4}, {1, 5, 6, 7}, {1, 2, 5, 8}, {3, 6, 8, 9}} is a determining set for K9:4 and K10:4.

• {{1, 2, 3, 4}, {1, 5, 6, 7}, {2, 5, 8, 9}, {3, 6, 8, 10}} is a determining set for K11:4.

• {{1, 2, 3, 4, 5}, {1, 2, 6, 7, 8}, {1, 3, 6, 9, 10}, {2, 4, 7, 9, 11}} is a determining set for
K11:5 and K12:5.

• {{1, 2, 3, 4, 5, 6}, {1, 2, 3, 7, 8, 9}, {1, 4, 5, 7, 10, 11}, {2, 4, 6, 8, 10, 12}} is a determin-
ing set for K13:6.

• A determining set of size 4 for K15:7 can be constructed as in Proposition 9.

4 Open Questions

Question 1. Can the difference between the determining number of a graph and the size
of a smallest distance determining set for a graph be arbitrarily large?

Question 2. We know that Det(Kn:k) = n− k for Kn:1 for any n, and for K5:2, and K6:2.
However, Det(K7:2) = 4 6= 7 − 2. Is there an infinite family of Kneser graphs with k ≥ 2
for which Det(Kn:k) = n − k?

Acknowledgment: I would like to thank the referee for the suggestions that added
elegance to the proofs of Propositions 8 and 9.
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