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Abstract In this paper we identify skier groups in data from RFID ski lift gates
entrances. The ski lift gates’ entrances are real-life data covering a 5-year period
from the largest Serbian skiing resort with a 32,000 skier per hour ski lift capacity.
We utilize three representative algorithms from three most widely used clustering
algorithm families (representative-based, hierarchical, and density based) and produce
40 algorithm settings for clustering skiing groups. Ski pass sales data was used to
validate the produced clustering models. It was assumed that persons who bought ski
tickets together are more likely to ski together. AMI and ARI clustering validation
measures are reported for each model. In addition, the applicability of the proposed
models was evaluated for ski injury prevention. Each clustering model was tested on
whether skiing in groups increases risk of injury. Hierarchical clustering algorithms
showed to be very efficient in terms of finding the high-number-cluster structure (skiing
groups) and for detecting models suitable for injury prevention. Most of the tested
clustering algorithms models supported the hypothesis that skiing in groups increases
risk of injury.
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1 Introduction

Clustering algorithms that are automatically looking for the right number of clusters
in data tend to detect fewer clusters, so a high number cluster structure is hard to reveal
[20]. These algorithms work soundly in finding k clusters in data when k (number of
clusters) is much smaller than n (number of objects). When this is not satisfied, clus-
tering algorithms have difficulties in identifying the hidden high-number-clustering
structure. These high-number-clustering structures canbeoften found in real-life appli-
cations (e.g. disease prediction with microarray data [20], clustering of human activity
patterns [9]).

Extracting knowledge from sensor data (sensor data mining) is a new and important
research field in the big data research field (e.g. [1]). Sensor data is available more
and more and due to the large amount of this data there is a huge area of analysis for
this kind of data. Sensor data comes from wireless sensor networks, sensor streams,
sensor networks, mobile objects, RFID tags and similar.

RFID data is playing a more and more important role in our lives. How to analyze
and discover knowledge from RFID data sets is an urgent and challenging research
field [7]. Althoughmost of the literature employs hierarchical clustering to find natural
groups in data [9], D’Urso and Massari [9] propose a fuzzy approach for clustering
path data, since sequences of human activities are typically characterized by switching
behaviors, which are likely to produce overlapping clusters. They use two modifica-
tions of the fuzzy c-medoids algorithms to cluster human path data. Lv et al. [15]
claim that trajectory clustering is usually performed with three approaches: partioning
(k-means) clustering, density-based clustering and time-based clustering. The same
authors modeled mobile users similarity based on a proposed hierarchical clustering
algorithm that uses the cosine distance for measuring similarity.

Based on the literature review on clustering RFID data, in this paper the most
frequently used clustering approaches and their representatives are used, i.e. K-means
[12], hierarchical clustering [12], andOPTICS [2] as representatives of three clustering
algorithm families (representative-based, hierarchical, and density based). The three
algorithmswere set up (with varying similaritymeasures, and stopping criteria) so they
produce 40 different algorithm settings for clustering high-number-cluster structures.

The 40 algorithm settings were applied on a large real-life ski lift gates entrance
dataset covering a five year period. A potential application of the produced models
was shown for the case of ski injury prevention. The question of whether skiing in
groups (i.e. |cluster| > 1) increases risk of injury was tested.

This paper makes a twofold contribution. On the one hand it proposes algorithm
settings that canbeused formininghigh-number-cluster structures (here skiinggroups)
for real-life applications. On the other hand it contributes to ski injury prevention, as
currently there is no research on the influence of skiing groups on ski injury, and
methods for identifying groups from RFID ski lift gate date are missing.

The rest of the paper is structured as follows: In Sect. 2 the big data for analysis
are presented. Section 3 explains the algorithms and their settings to analyze the data.
Section 4 presents a background on ski injury research, for which the results of the
clustering models could be valuable. Section 5 discusses the results. The conclusion
of the paper and directions for further research are given in Sect. 6.
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2 The Data

The data is from the largest Serbian ski resort, Mt. Kopaonik. The data spans five
consecutive seasons (2006–2010). Regulations on Mt. Kopaonik are that each person
must buy a ski pass in order to use ski lifts. The Radio-frequency identification (RFID,
i.e. wireless non-contact use of radio-frequency electromagnetic fields to transfer data,
for the purposes of automatically identifying and tracking tags attached to objects) ski
pass is used each time a personwants to enter a ski lift through a ski lift gate. Therefore,
for all skiers (in this papers skiers will be used as a generic term for all persons using
ski lift gates to enter ski lifts, i.e. skiers, snowboarders, etc.), motion data is collected
on ski lift gates and stored in the central database.

Databases used in this research are the ski lift gates’ entrance database with spatio-
temporal data from skiers’ movements, ski patrol injury records, and ski pass sales
data. The following attributes were used for the analysis:

1. From the ski lift gates database:

• Ski pass id,
• Ski lift entered using a ski gate, and
• Date and time of entering the ski gate.

2. From the ski patrol injury records:

• Ski pass id from injured skier.

3. From the ski pass sales database:

• Sales transaction id,
• Date and time of sales transaction,
• Ski pass id(i) (i=1,…,m where m is the number of ski passes sold in one
transaction).

A total of 109,553 skiers with weekly ski passes (6 or 7 days valid), for a total of
504,749 skier-days and over six million ski lift transportations, were analyzed. There
were in total 735 all-type injuries reported.Weekly ski passes were analyzed, as injury
records for this subgroup were available. Injury occurrence measures are: injury per
thousand skier-days IPTSD = 1.46, and mean days between injury MDBI = 686.73,
which is similar to other ski resorts [17]. Ski injuries are rare events usually occurring
at small rates (less than 0.2 %).

Skiers’ movement data based on ski lift gates is rarely used in ski injury analysis,
although there are some papers that use this data [9]. In [13], authors try to pre-
dict the number of skier-days. RFID data have been analyzed for bicycle renting
habits in Barcelona [11] and London metro commuting patterns [14]. These papers
have performed clustering on the sensor data; however they did not try to reveal
high-number-clustering structures, i.e. they did not try to detect bicycle drivers or
metro users driving or commuting together. D’Urso and Massari [9] analyzed only
one day of ski lift gate data but looked for two clusters in data representing loyal
(tend to stick to one ski lift) and variety seeking skiers (tend to change ski lifts
often).
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3 Methods

Three clustering algorithms and 40 algorithm settings were used for clustering the ski
lift gates entrance dataset. These are k-means, hierarchical clustering, and OPTICS.

3.1 K-means Clustering

K-means is probably one of the most popular clustering algorithms. It was used often
for clustering high-number cluster data [20], and for RFID clustering [15].

The algorithm consists of the following steps:

1. Randomly initialize k representatives. i.e. centroids.
2. Calculate distance from all objects to centroids, and assign each object to it’s

closest centroid.
3. Recalculate centroids as mean value of all objects assigned to that centroid.
4. Repeat steps 2 and 3 until convergence or another stopping criterion is satisfied.

In order to overcome a wrongly chosen set of centroids in Step 1, we used online
updating of centroids, i.e. each object is assigned one after the other to a centroid
and each assignment influences a centroid’s recalculation. This process of assigning
objects to centroids is repeated several times until convergence is reached.

We produced 18 K-means cluster algorithm settings by combining

– nine stopping criteria k = n × {10, 20, 30, 40, 50, 60, 70, 80, 90 %}
– and two distance measures, i.e. cosine distance measure and Euclidean distance
measure.

K-means is abbreviated as KM (Table 1), distance measures with “Cos” and “Euc”
while numbers 10 through 90 signify the percentage by which the total number of
skiers was multiplied to produce k.

3.2 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering is a procedure that at each merges an object into
a cluster, until all objects are in one cluster. The following steps are used in hierarchical
clustering:

1. Calculate an n × n distance matrix.
2. Merge an object to a cluster or another object according a minimum linkage cri-

terion.
3. Repeat 2 until all objects have merged.

For the linkage criterion we used mean linkage clustering (Eq. 1)

1

|A| |B|
∑

a∈A

∑
b∈B d (a, b) (1)
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Table 1 AMI and ARI (mean, rank, and standard deviation), odds ratio, and 95 % confidence interval for
40 algorithm settings

Algorithm AMI [m (r), s] ARI [m (r), s] OR 95 % CI

HAnd10 0.2264 (19) 0.0328 0.0796 (31) 0.0466 2.393 1.8498 3.0956

HAnd20 0.2862 (1) 0.0396 0.1196 (18) 0.052 1.4422 1.2232 1.7005

HAnd30 0.2841 (2) 0.0462 0.1397 (4) 0.0515 1.2393 1.1013 1.3945

HAnd40 0.27 (5) 0.0501 0.1477 (1) 0.0585 1.2121 1.1057 1.3289

HAnd50 0.2464 (12) 0.0472 0.144 (2) 0.0634 1.244 1.151 1.3445

HAnd60 0.2115 (23) 0.0425 0.128 (11) 0.0613 1.2041 1.1209 1.2934

HAnd70 0.1661 (29) 0.0321 0.1011 (24) 0.0525 1.1972 1.1159 1.2843

HAnd80 0.111 (33) 0.0222 0.0672 (33) 0.036 1.2185 1.1296 1.3144

HAnd90 0.0535 (40) 0.0113 0.0319 (40) 0.0179 1.1927 1.0832 1.3132

HAndSC 0.2487 (10) 0.0485 0.1439 (3) 0.0619 1.1780 1.0868 1.2769

HCos10 0.2196 (22) 0.0307 0.0796 (32) 0.0454 1.249 0.8756 1.7816

HCos20 0.2726 (3) 0.0358 0.1118 (21) 0.0409 1.2576 1.0626 1.4883

HCos30 0.2711 (4) 0.0439 0.1309 (9) 0.0492 1.1084 0.9839 1.2488

HCos40 0.2568 (7) 0.0478 0.1379 (5) 0.0544 1.1381 1.0379 1.2479

HCos50 0.2345 (16) 0.0442 0.1349 (7) 0.0582 1.1877 1.0986 1.2839

HCos60 0.2034 (26) 0.041 0.1218 (16) 0.0589 1.1618 1.0814 1.2483

HCos70 0.162 (30) 0.0324 0.0985 (26) 0.0513 1.1704 1.091 1.2556

HCos80 0.1108 (34) 0.0218 0.0672 (34) 0.0359 1.1912 1.1046 1.2846

HCos90 0.0549 (39) 0.0108 0.0333 (38) 0.018 1.1985 1.0877 1.3205

HCosSC 0.2359 (13) 0.0481 0.1359 (6) 0.06 1.1574 1.0687 1.2534

KMCos10 0.2352 (14) 0.0277 0.0984 (27) 0.026 NA NA NA

KMCos20 0.2593 (6) 0.0351 0.124 (14) 0.0395 1.0171 0.4554 2.2719

KMCos30 0.252 (9) 0.0414 0.1312 (8) 0.0495 1.1644 0.9391 1.4439

KMCos40 0.2346 (15) 0.0423 0.1278 (12) 0.0544 1.188 1.0602 1.3313

KMCos50 0.2096 (24) 0.0401 0.1177 (19) 0.0542 1.1003 1.0096 1.1992

KMCos60 0.1809 (27) 0.037 0.1038 (23) 0.0538 1.1316 1.0514 1.2179

KMCos70 0.1475 (31) 0.0283 0.0858 (28) 0.0432 1.1232 1.0472 1.2048

KMCos80 0.1087 (35) 0.0208 0.0648 (35) 0.0346 1.2478 1.157 1.3457

KMCos90 0.0623 (37) 0.012 0.0366 (37) 0.0197 1.1984 1.0946 1.3119

KMEuc10 0.2198 (21) 0.031 0.0827 (30) 0.0242 0.7341 0.3491 1.5439

KMEuc20 0.254 (8) 0.0325 0.1112 (22) 0.0328 0.8996 0.6816 1.1874

KMEuc30 0.2472 (11) 0.0382 0.1219 (15) 0.0414 0.8277 0.7003 0.9782

KMEuc40 0.2293 (18) 0.0399 0.1214 (17) 0.0491 0.7759 0.6889 0.8739

KMEuc50 0.2053 (25) 0.037 0.1134 (20) 0.0515 0.8604 0.7869 0.9407

KMEuc60 0.1768 (28) 0.034 0.1007 (25) 0.0497 0.9213 0.8544 0.9935

KMEuc70 0.145 (32) 0.028 0.0844 (29) 0.0429 0.9768 0.9105 1.0478

KMEuc80 0.1075 (36) 0.02 0.064 (36) 0.0335 1.1775 1.0925 1.2692

KMEuc90 0.0551 (38) 0.0111 0.0325 (39) 0.0184 1.249 1.1334 1.3764

OPTAnd 0.2327 (17) 0.0437 0.1303 (10) 0.059 1.1523 1.0583 1.2546

OPTCos 0.2249 (20) 0.0408 0.1251 (13) 0.0561 1.2277 1.1296 1.3344
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where A and B are objects or clusters, and d(a, b) are distances between each object
a in A and b in B.

Hierarchical agglomerative clustering was used to produced 20 algorithm settings
by combining

– nine stopping criteria k = n×{10, 20, 30, 40, 50, 60, 70, 80, 90 %}, and
– two distance measures, i.e. cosine distance measure and absolute normalized dif-
ference “And” [14] which produces 18 algorithm settings.

In addition, for the remaining two algorithm settings, we also propose a stopping
criterion for hierarchical clustering that can identify high-number-cluster structures.
The following criterion is proposed in this paper:Maximize the number of non-single
skiing clustersmax

( ∑ |cluster > 1|). This criterionmakes a balance between cutting
the hierarchical tree too high or too low in the hierarchy. By cutting the tree too high
there would be too few clusters, clusters of larger size, and very few single-person
clusters. By cutting the tree too low there would be too many single-skier clusters.
The proposed stopping criterionmakes a compromise because it is intended to produce
fewer single-person clusters while keeping the clusters at small sizes.

In total 20 hierarchical algorithm settingswere produced. They are shown in Table 1
and begin with an H. Similarity measure abbreviations are “Cos” and “And”, while
numbers 10 through 90 signify the percentage of n that is used to determine k. The
proposed stopping criterion is marked as SC.

3.3 OPTICS

Ordering points to identify a clustering structure (OPTICS) [2] is a density based
algorithm that improves the famous DBSCAN [10] clustering algorithm as it can
handle neighborhoods with varying densities, which was one of the drawbacks of
DBSCAN.

The ε distance is the largest distance considered for clusters. Clusters can be
extracted for all εi values smaller or equal than ε, which was not possible in DBSCAN.
DBSCAN had the ability to find clusters for a specific value of ε, however all
sub-clusters (hierarchically nested) within an ε neighborhood cluster would not be
identified.

Key notions in OPTICS are the following:

• An object p is in the ε-neighborhood of q if the distance from p to q is less than ε.
• A core object has at least minPts in its ε-neighborhood.
• An object p is directly density reachable from object q if q is a core object and p
is in the ε-neighborhood of q.

• The reachability-distance of p is the smallest distance such that p is density reach-
able from a core object o, however it can’t be smaller than the core distance of o.

• The core-distance is the smallest distance ε’ between p and an object in its ε-
neighborhood such that p would be a core object.

• A steep downward point is a point that is lower than its successor by a certain
percentage. A steep upward point is similarly defined.
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• A steep downward area is a region [a, b] such that a and b are both steep downward
points, each successive point is at least as low as its predecessors, and the region
does not contain more than minPts successive points that are not steep downward.

The definition of a cluster in OPTICS is:

• Starts with a steep downward area,
• Ends with a steep upward area,
• Contains at least minPts,
• The reachability values in the cluster are at least by a certain percentage lower
than the first point in the cluster.

In general, OPTICS does not produce a clustering model, but rather an ordering of
points with reachability values who determine the closeness of a point to its predeces-
sors. Ankerst et al. (1999) propose a procedure that can be used for automatic cluster
extractions from the ordering of points.

1 ExtractClusters (orderedObjects);
2 for each object;
3 if start of downward area D;
4 add object to downward areas;
5 elseif start of upward area U;
6 add object to upward areas;
7 for each downward area D;
8 if D and U form a cluster;
9 add [start(D), end(U)] to set of clusters.

OPTICS was used to produce two algorithm settings:

– with “And” and “Cos” distance measures.

OPTICS is a density based algorithm that can identify varying density areas. The
original algorithmhad to bemodified toworkwith this dataset, as the original algorithm
was unable to find clusters with size 2 (The definition of a cluster OPTICS allows for
a minimum of three objects in a cluster, otherwise the clusters are treated as outliers).
We relaxed the conditions of OPTICS to allow identification of clusters sized 2. We
fixed the epsilon parameter of OPTICS to a “small” value [2] so all clusters, even the
less significant, could be detected. “High” epsilon values would detect only the most
significant clusters. A fine tuning of this parameter was left for further research.

Clusters were produced for each day. The following procedure was used to deter-
mine clusters:

1. Each skiers’ movement data was recorded in a 168-attribute row. Each row repre-
sented a count of how many times a skier during a single day (skier-day) entered
a ski lift in a given time frame. As there were in total 21 ski lifts and 8 time bands
(one-hour Sakoe-Chiba band [18] from 9 AM to 5 PM), a total of 168 attributes
were used for representing each skier’s movement.

2. Clustering models were produced for each skiing day (in total 376 days) using 40
algorithm settings. In total, there were 15,040 clustering models produced.
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3. All cluster models were tested with AMI and ARI cluster validation measures, and
the results were aggregated for each algorithm setting. The results are shown in
Table 1.

Cluster quality was measured with external validation measures i.e. Adjusted Mutual
Information (AMI) [19] and Adjusted Rand Index (ARI) [16]. Both indexes compare
two clustering models [one from algorithm settings (in total there are 15,040 models)
and the other ground truth model based on the sales transactions database, where each
transaction (skiers that bought ski passes together) is a cluster]. AMI and ARI value of
1 represent perfect clustering, where 0 would mean that there is no matching between
the ground truth cluster model and the clustering model at testing. All values above
0 show evidence about the strength of correlation between the clustering and ground
truth.

ARI is a well-knownmeasure of cluster validity, where AMI was recently proposed
as a “general purpose” measure for clustering validation which identifies the true
number of clusters better than other measures, including ARI.

Please note that sales transaction data cannot be looked at as a “golden” standard
for evidence of skiing in groups, but rather as a “silver” standard, because sales trans-
actions data can be only an indicator of skiing together, but not as firm evidence.

4 Background in Ski Injury Research

There is evidence from literature that injured skiers usually (in 87 % of cases) ski in
groups [6]. Still, methods for identifying skiing groups, based on similar trajectories,
are rarely found in ski injury literature. It is also not clear whether and how skiing
groups influence ski injury. To our knowledge, there are currently no papers that test
the relationship between groups (size, structure, etc.) and risk of injury. This paper
makes a simple test on the relationship between ski groups and injury occurrence, i.e.
does skiing in groups influence ski injury. Identification of risk factors andmechanisms
that cause injury are necessary in order to reduce injury rates [4].

There are already numerous studies of skier’s individual injury risk factor identifica-
tion. Various risk factors have been reported, such as: gender [17], age [17], personality
types [3], skier collision [8], skiing errors [5], speed of skiing [5,8], fatigue [5], per-
ception of low difficulty [5], skillfulness and experience [8], quality of equipment [8],
quality of ski slopes and quality of preparation, collision against objects, and jumps
[8].

However, all of these risk factors are looking skiers as if theywere skiing single. The
research on skiing groups and their relation to injury is, to the best of our knowledge,
still missing in literature. This paper proposes first steps towards filling in this gap.

5 Results

The results are shown in Table 1. For each algorithmARI, AMImeasures are reported,
as well as the odd ratios for each model testing the hypothesis that skiing in groups
influences ski injury. The best algorithm according to AMI is HAnd20, while ARI
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recommends HAnd40. Both of these best algorithms are hierarchical and use the
“And” similarity measure. It can also be noticed that other algorithms recommending
the number of clusters k to be 20–30 % of n have pretty sound results according
to AMI. ARI recommends k to be 40–50 % and also ranks algorithms that use the
proposed stopping criteria in this paper (SC) highly.

The K-means algorithm shows worse results than hierarchical clustering, and using
a Euclideanmetric (which is the standardmetric in theK-means algorithm) is shown to
be quite inefficient. For the KMCos10 algorithm setting it was not possible to calculate
the odds ratio because the clustering model didn’t discriminate between injured and
non-injured skiers.

The density based algorithm OPTICS showed medium quality results, but with
better adjustment of the epsilon parameter in these two algorithms it is expected that
these algorithms could perform better.

When looking at odds ratios, all algorithmmodels, except KMEuc10 to KMEuc70,
recommend that skiing in groups increases the risk of injury. The largest odds ratios
are noticed in HAnd10 and HAnd20. HAnd20 reports that odds (risk) of injury are
44, 22 % times greater if skiing in groups. The odds ratio with HAnd10 (2.393) is the
highest, which indicates that the clustering model detected with this algorithm would
be also applicable for injury prevention.

6 Conclusion

This paper makes a twofold contribution. It proposes methods for identifying high-
number-cluster structures and tests models’ applicability on ski injury prevention.
The clustering results suggest that clustering hidden structures in ski lift data could
be useful for finding hidden patterns that can be used for ski injury prevention. It is
worth mentioning that most ski resorts in Europe have RFID ski lift gates installed,
and could exploit this data for injury prevention. This paper offers several further
research possibilities. On the one hand, researchers should analyze cluster models
in skier movement data, which would allow for identification of models with high
odds ratios (risk factors). This could then be used in detecting and warning skiers that
are at greater risk of injury. On the other hand, more clustering algorithms could be
used and better adjustment of parameters could be done so the high-number-cluster
structures in data could be better revealed. Still, the results of this paper are quite sound,
having in mind that the results were tested on “silver truth” standard data. Testing the
algorithms on “golden truth” data and on more ski resorts is needed so to provide
higher-confidence conclusions. This paper makes first steps towards filling gaps in the
literature in revealing high-number-cluster structures in RFID human activity data and
in using this revealed structure for ski injury prevention.
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