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Abstract

The network approach to psychopathology conceptualizes mental disorders as networks of 

mutually reinforcing nodes (i.e., symptoms). Researchers adopting this approach have suggested 

that network topology can be used to identify influential nodes, with nodes central to the network 

having the greatest influence on the development and maintenance of the disorder. However, 

because commonly used centrality indices do not distinguish between positive and negative edges, 

they may not adequately assess the nature and strength of a node’s influence within the network. 

To address this limitation, we developed two indices of a node’s expected influence (EI) that 

account for the presence of negative edges. To evaluate centrality and EI indices, we simulated 

single-node interventions on randomly generated networks. In networks with exclusively positive 

edges, centrality and EI were both strongly associated with observed node influence. In networks 

with negative edges, EI was more strongly associated with observed influence than was centrality. 

We then used data from a longitudinal study of bereavement to examine the association between 

(a) a node’s centrality and EI in the complicated grief (CG) network and (b) the strength of 

association between change in that node and change in the remainder of the CG network from 6 to 

18-months post-loss. Centrality and EI were both correlated with the strength of the association 

between node change and network change. These findings suggest high-EI nodes, such as 

emotional pain and feeling of emptiness, may be especially important to the etiology and treatment 

of CG.

General Scientific Summary

Complicated grief can be conceptualized as a network of mutually reinforcing symptoms. 

Centrality and expected influence indices aim to use the structure of the complicated grief network 

to identify symptoms that should be especially important to its development and persistence. We 

found that change in symptoms with high expected influence was more strongly tied to change in 

the severity of complicated grief than was change in symptoms with low expected influence, 

suggesting that this index is able to identify symptoms that may play an important role in the 

etiology and treatment of complicated grief.

Correspondence concerning this article should be addressed to Donald J. Robinaugh, Department of Psychiatry, Massachusetts 
General Hospital, 1 Bowdoin, MA 02114. drobinaugh@partners.org. 

HHS Public Access
Author manuscript
J Abnorm Psychol. Author manuscript; available in PMC 2017 August 01.

Published in final edited form as:

J Abnorm Psychol. 2016 August ; 125(6): 747–757. doi:10.1037/abn0000181.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

network analysis; centrality; complicated grief; expected influence; persistent complex 

bereavement disorder

The network approach to mental disorders posits that the symptoms of a mental disorder 

cohere as a syndrome, not because they are caused by a common underlying disease entity, 

but because of causal relations among the symptoms themselves (Borsboom & Cramer, 

2013). In other words, symptoms are not passive and interchangeable indicators of an 

underlying disorder in the way that coughing and spitting up blood are indicators of a lung 

tumor. Rather, they are active psychological variables capable of affecting one another and, 

thereby contributing to the persistent activation of the overall network. From this 

perspective, the symptoms of a mental disorder and the relations among them form a causal 

system that is, itself, constitutive of the disorder.

Networks contain two fundamental components: nodes and edges. In mental disorder 

networks, nodes typically represent the elements of a syndrome (“symptoms”, in traditional 

psychiatric parlance), such as sleep difficulty in major depressive disorder. Greater severity 

of the symptom (e.g., more sleep difficulty) corresponds to greater activation of the node. 

The relationship between two nodes is represented by an edge (i.e., the line connecting the 

nodes). Edges can be undirected, indicating only that two nodes are connected (e.g., sleep 

difficulty and poor concentration are correlated with one another), or directed, indicating the 

direction of the connection between two nodes (e.g., sleep difficulty leads to poor 

concentration). They can also be unweighted, representing only the presence of a 

connection, or weighted, representing the strength of the connection. Within the framework 

of current clinical practice, an episode of a disorder corresponds to the above-threshold 

activation of a specified number of nodes of the network (e.g., five of nine elements of the 

depression network; American Psychiatric Association [APA], 2013). Greater disorder 

severity corresponds to greater overall network activation (i.e., greater sum node activation). 

Recovery corresponds to deactivation of nodes.

Centrality

Importantly, nodes differ in the role they play in the network. High centrality nodes have 

strong connections to many other nodes, and act as hubs that connect otherwise disparate 

nodes to one another. Low centrality nodes exist on the periphery of the network, with fewer 

and weaker connections to other nodes of the network. Centrality is commonly assessed with 

three indices: strength, closeness, and betweenness. A node’s strength is the sum of the 

absolute value of its connections with other nodes in the network. A node’s closeness is the 

average shortest path between a given node and the remaining nodes in the network. Nodes 

with higher closeness are more proximally connected to the rest of the network. A node’s 

betweenness is the number of times in which a given node lies on the shortest path between 

two other nodes. Together, these indices quantify the position of a node within the network.

Researchers taking the network perspective of psychopathology have argued that the strong 

interconnectedness of high centrality nodes may make them especially important to the 

Robinaugh et al. Page 2

J Abnorm Psychol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



etiology and treatment of mental disorders (Borsboom & Cramer, 2013; Cramer & 

Borsboom, 2015; Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016; McNally et al., 

2015; Robinaugh, LeBlanc, Vuletich, & McNally, 2014). In other words, because highly 

central nodes have more and stronger connections to other nodes than do low-centrality 

nodes, they should have greater influence on overall network activation, be more influenced 

by overall network activation, or both. As highly central nodes go, so should go the network.

For example, we recently proposed that the bereavement-specific syndrome, complicated 

grief (CG; also known as Persistent Complex Bereavement Disorder; APA, 2013), is best 

conceptualized as a network of mutually-reinforcing cognitions, emotions, and behaviors 

(Robinaugh et al., 2014). The elements of this syndrome include emotional pain, intense 

yearning or longing for the deceased, preoccupation with thoughts about the deceased or 

their death, grief-related avoidance behavior, and feelings that life is empty or without 

meaning. The death of a loved one activates specific elements of the syndrome and the 

mutually reinforcing relationships among them lead to the emergence and persistence of the 

network that constitutes CG. In our initial examination of the CG network, we found that 

emotional pain was highly central to the network and concluded that it may play an 

important role in the persistence and remission of the CG syndrome (Robinaugh et al., 

2014). Treating emotional pain, we reasoned, should diminish the activation of associated 

nodes, enabling therapeutic benefits to propagate throughout the network.

The hypothesis that high centrality nodes are especially important to the development, 

persistence, or remission of mental disorder networks remains largely untested and there is 

reason to believe it may not always hold true. The position of a node within a network is 

only one factor that determines its importance. One must also consider what is being 

transmitted through the network and how that that transmission occurs (Borgatti, 2005). In 

mental disorder networks, researchers have assumed that causal influence is being 

transmitted. Change in the severity of a node causally influences all nodes receiving an 

incoming edge from that node. Importantly, this influence can be positive (increase in Node 

A causes an increase in Node B) or negative (increase in Node A causes a decrease in Node 

C). The presence of negative edges in mental disorder networks is noteworthy because 

commonly used measures of node centrality, such as strength, closeness, and betweenness, 

are typically calculated only in networks with exclusively positive edges. To address the 

presence of negative edges in mental disorder networks, researchers have simply 

transformed negative edge weights into positive edge weights when calculating centrality 

indices. However, because these indices do not distinguish between positive and negative 

edges, two nodes with equivalent centrality may have opposing effects on the rest of the 

network. Moreover, a node with a comparable number of strong positive and negative edges 

may have little to no cumulative influence on overall network activation. Deactivating such a 

node would decrease activation of neighboring nodes connected by a positive edges but 

would increase the activation of neighboring nodes connected by a negative edges, thereby 

resulting in little or no cumulative change in overall network activation. In other words, a 

node may be highly central without being highly influential.
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Expected Influence

To better identify highly influential nodes in mental disorder networks, it may be necessary 

to distinguish between positive and negative edges. To address this possibility, we propose 

two new measures of node importance. In contrast to measures of centrality, which quantify 

the position of a node within a network, these indices aim to assess the nature and strength 

of a node’s cumulative influence within the network, and thus the role it may be expected to 

play in the activation, persistence, and remission of the network. To reflect that aim, we will 

refer to these indices as measures of expected influence. In this article, we focus on the use 

of these indices in undirected networks (i.e., networks in which the direction of influence is 

not specified). The implications of using these indices in directed networks are detailed in 

the Discussion section.

One-step expected influence (EI1) aims to assess a node’s influence with its immediate 

neighbors (i.e., the nodes with which it shares an edge). The formula for EI1 is identical to 

the formula for node strength except that it retains the positive or negative value of the edge 

weight. A given Node i’s EI1 is the summed weight of its edges shared with the remaining 

nodes in the network (j). In formula 1 below, aij is an adjacency matrix whose elements are 

binary values indicating the presence (1) or absence (0) of an edge between Node i and Node 

j and wij is an adjacency matrix whose elements range from −1 to 1 and indicate the weight 

of the edge between Node i and Node j. For a node with exclusively positive edges, EI1 is 

equal to node strength. However, for a node with negative edges, these measures diverge. A 

negative edge increases a node’s strength but decreases its EI1, resulting in either diminished 

positive EI1 (if its positive edges outweigh its negative edges) or strengthened negative EI1 

(if its negative edges outweigh the positive edges).

(1)

EI1 provides a conceptually straightforward assessment of a node’s expected influence. 

However, it does not incorporate information about the expected influence of a node’s 

neighbors, information highly relevant to the ultimate influence of the node within the 

network. For example, if Node A is connected only to Node B, and Node B has low 

expected influence, then changes in Node A will have little influence on the remainder of the 

network. However, if Node B is a highly influential node with many strong edges, the 

changes in Node A may have a large effect on the network by virtue of its influence on the 

highly influential Node B. Two-step expected influence (EI2; see formula 2) accounts for 

both the immediate influence of a node within the network and the secondary influence on 

the network through its neighbors. A node’s EI2 is its EI1 plus the sum of the EI1 values of 

the remaining nodes in the network ( , where ajkwjk is the weighted edge 

between node j and all other nodes in the network [k]) multiplied by the weighted edge 

between node i and node j (aijwij). The added expected influence of the neighboring node is 
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weighted because the secondary influence of Node A through Node B will vary depending 

on the strength of the edge between Node A and Node B.

(2)

The Current Study

The identification of highly influential nodes in mental disorder networks is of fundamental 

importance to our understanding of mental disorders and our ability to treat them. In the 

current study, we examined whether centrality and expected influence indices were able to 

identify highly influential nodes in a CG network calculated from empirical data and in 

simulated networks with characteristics comparable to those of the CG network.

Our first aim was to use simulated data to obtain an initial evaluation of how centrality and 

expected influence indices performed in the context of networks with negative edges. To that 

end, we simulated single-node interventions in randomly generated networks by “treating” 

or “deactivating” individual nodes (setting their value to 0) and evaluating the effect of this 

intervention on overall network activation (cf. "knock out" interventions in Bramson & 

Vandermarliere, 2016). We hypothesized that in networks with exclusively positive edges, 

both centrality and expected influence indices would be strongly positively associated with 

observed node influence (i.e., change in the overall activation of the rest of the network 

induced by deactivating that node). We further hypothesized that in networks with negative 

edges, expected influence indices would better predict observed node influence than would 

centrality indices.

Our second aim was to evaluate these indices in an empirical network of CG symptoms 

derived from a longitudinal study of conjugal bereavement in which CG was assessed at 6- 

and 18-months post-loss (Time 1 and Time 2, respectively). If a node is highly influential in 

the network, then change in the activation of that node over time should be associated with 

change in the activation of the remainder of the CG network. In contrast, if a node is not 

influential, change in that node should not be tied to changes in the overall network. 

Accordingly, we examined the relationship between (a) the centrality and expected influence 

of a node at Time 1 and (b) the correlation between change in that node (Time 2 − Time 1) 

and change in overall network activation (Time 2 − Time 1). We hypothesized that the 

higher a node’s centrality and expected influence at Time 1, the stronger the association 

between node change and overall network change.

Method

Aim 1

As an initial assessment of centrality and expected influence indices, we evaluated how well 

they measured the impact of individual nodes on the overall network in simulated single-

node interventions. In these simulated single-node interventions we “treated” or 

“deactivated” an individual node (the target node) by setting its activation to 0. We then 
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examined the effect of this intervention on the remainder of the network. A substantive 

example of this type of intervention would be treating insomnia and examining the 

subsequent effect on other symptoms of depression. We defined a node’s “observed 

influence” as the change in the sum activation of the remaining nodes in the network (i.e., 

change in overall network activation minus change in the target node) induced by 

deactivating that node. Next, we calculated the correlation between a node’s centrality and 

expected influence indices and its observed influence. To obtain a reliable estimate of the 

strength of this correlation, we repeated this procedure 500 times and examined the 

distribution of the correlation coefficients. Because we were especially interested in how the 

presence of negative edges would affect the strength of the associations among a node’s 

centrality, expected influence, and observed influence, we calculated this distribution of 500 

correlation coefficients in each of four conditions: networks with 0%, 5%, 10%, and 25% 

negative edges.

Each network simulation was carried out in three steps. A complete description of these 

steps appears in Supplementary Materials A. We present an abbreviated description of this 

process here. First, we generated a random network and assessed its properties. To do so, we 

used the erdos.renyi.game random graph generation tool from the R package igraph (Csardi 

& T., 2006) to create an unweighted and undirected adjacency matrix and then assigned edge 

weights by multiplying that unweighted adjacency matrix by a matrix of values randomly 

sampled from a gamma distribution (shape = .85, rate = 12) where the minimum value of the 

distribution was set to .05. We used the G (n, p) variant of the Erdős-Rényi graph model, 

with n (the number of nodes) set to 13 and p (the probability of an edge being present) set 

to .50. These parameters and the parameters of the gamma distribution were selected to 

produce networks with a size, unweighted network density, and distribution of edge weights 

comparable to that of the empirical CG network examined in our second aim.

We used the R package qgraph (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 

2012) to calculate three indices of node centrality: node strength, closeness, and 

betweenness. For each centrality index, higher values reflect greater centrality in the 

network. We then calculated EI1 and EI2 using the formulas described in the introduction. If 

the expected influence of a node is positive, changes in the node should produce changes in 

the overall network in the same direction (e.g., decreases in node activation should lead to 

decreases in overall network activation). If the expected influence of a node is negative, 

changes in the node should produce network changes in the opposite direction (e.g., 

decreases in node activation should lead to increases in overall network activation).

In step two, we simulated the dynamics of the network by iteratively calculating the value of 

each node at Time t (node it) as a function of the value of all remaining nodes in the network 

at the pervious iteration (node jt−1) weighted by the edges shared between node i and node j. 

For the purposes of these simulations, we assumed that nodes do not have negative activation 

and that nodes cannot increase in severity indefinitely. Accordingly, we defined nodes as 

ranging in activation from 0 (absent) to 1 (highest severity). We further assumed that 

increases in activation are not linear and that, as node activation approaches 1, more 

incoming influence from other nodes is needed to increase node activation than is needed at 

lower levels of node activation. No such assumption was made as node activation 
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approached 0. For these simulations, we defined the value of node i at Time 2 only as a 

function of the remaining nodes in the network and did not incorporate external influence or 

self-loops (i.e., the effect of the node on itself). The implications of omitting these 

parameters for the simulation are discussed in the limitations section of this manuscript. We 

assigned all nodes an initial starting value of .50 and then performed 30 iterations of this 

simulation to allow the network to reach of point of stable activation in which the amount of 

incoming influence for each node was insufficient to further increase or decrease activation 

of the node.

Finally, in step 3, we evaluated the effect of “deactivating” a single node by setting the 

activation of the target node to 0 and continuing to simulate all other nodes as a function of 

the remaining nodes in the network as described in Step 2. We then assessed the change in 

the remainder of the network over 30 iterations post-intervention (i.e., the observed 

influence of the node on the network). This process was repeated for each node in the 

network. We then calculated the correlation between (a) centrality and expected influence 

indices for each node and (b) the observed influence of each node.

Aim 2

Our second aim was to evaluate these indices in an empirical CG network based on data 

from the Changing Lives of Older Couples (CLOC) study, a large longitudinal study of 

conjugal bereavement (for previous studies using this dataset to investigate mental disorder 

networks, including CG, see Fried et al., 2015; Robinaugh et al., 2014). In the CLOC study, 

researchers used a two-stage area probability sample to collect baseline data from older 

married adults (men aged 65 or older and women married to a man 65 or older; n = 1,532). 

They then inspected newspaper obituaries and public death records to identify baseline 

subjects who subsequently experienced the death of a spouse. Of those who had lost a 

spouse (n = 335), 250 participated in the first wave of follow-up interviews that occurred 6 

months after the loss (Time 1) and 210 subjects participated in another interview 18 months 

after the loss (Time 2). A subset of subjects (n = 106) also participated in a third interview 

48 months after the loss. In the current study, we analyzed data from subjects who 

completed both Time 1 and Time 2 assessments (n = 195). Most subjects were Caucasian 

(84.6%) and female (87.0%). For further information about the CLOC study, see Carr, 

Nesse, and Wortman (2006).

Assessment of complicated grief—The CLOC study was conducted long before 

diagnostic criteria for CG appeared in the 5th edition of the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5; APA, 2013) under the name Persistent Complex 

Bereavement Disorder. Nonetheless, the survey contained items that correspond closely to 

the symptoms enumerated in the DSM-5. We used those items to assess 13 of the 16 CG 

symptoms (see Robinaugh et al., 2014 for further details about the items corresponding to 

these 13 symptoms). For most CLOC variables, subjects either rated symptom frequency 

ranging from Never to Often or expressed their strength of agreement to statements ranging 

from Not True to Very True. In both cases, subjects used a 4-point scale. Items not rated on a 

4-point scale were rescaled so that the minimum score was 1 and the maximum score was 4, 

thereby maintaining consistency with the other items. We used mean replacement to address 
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the small proportion of missing data (proportion missing = 0.49%). Where multiple 

variables assessed a symptom, we calculated the mean of those variables. These data 

preparation procedures produced an assessment of node activation (i.e., symptom severity) 

for 13 of the 16 CG nodes, with higher scores indicating greater node activation (range = 1 – 

4).

Overall CG network activation—We calculated overall CG network activation for each 

individual as the summed level of activation of each node using the full four-point scale for 

each node (range of possible scores = 13–52). This “overall network activation” score is the 

equivalent of using sum symptom severity (e.g., a symptom inventory total score) as an 

index of disorder severity. Overall network activation scores ranged from 16.13 to 48.00 at 

Time 1 (M = 29.02, SD = 7.19) and 14.27 to 47.67 at Time 2 (M = 26.16, SD = 6.47). 

Change in overall network activation (Time 2 − Time 1) ranged from −20.68 to 10.37 (M = 

−2.86, SD =4.88). Additional information about change in the CG network appears in 

Supplementary Materials B.

Network analysis—We used the R package qgraph (Epskamp et al., 2012) to calculate 

two networks: an association network in which edges represented the zero-order correlation 

between nodes and a “LASSO” (Least Absolute Shrinkage and Selection Operator) network 

in which edges represented the regularized partial-correlation (Friedman, Hastie, & 

Tibshirani, 2008) between two nodes after accounting statistically for the effect of the 

remaining nodes in the network. Both networks were weighted and undirected, specifying 

the strength but not the direction of the relationship. The graph of the “lasso” network 

appears in Supplementary Materials C. The graph of the association network appears in 

Supplementary Materials D. We then calculated three indices of node centrality (node 

strength, closeness, and betweenness) and two measures of node expected influence (EI1 and 

EI2) for both networks.

Recently, researchers have found that association networks may fail to adequately detect 

network structure (Schmittmann, Jahfari, Borsboom, Savi, & Waldorp, 2015). Accordingly, 

we will focus the presentation and discussion of our results on the lasso network. The 

complete results for association networks can be found in Supplementary Materials D.

Results

Aim 1

The mean correlations between centrality and expected influence indices from the network 

simulations appear in Table 1. In the 500 randomly generated networks with exclusively 

positive edges, centrality and expected influence indices tended to be strongly correlated 

with one another, mean rs ≥ .78. The correlations among the three centrality indices 

remained highly consistent across conditions. However, the correlations between centrality 

indices and expected influence indices diminished as the proportion of negative edges 

increased. In networks with 25% negative edges, measures of centrality were only 

moderately associated with EI1, mean rs = .36 – .44, and EI2, mean rs = .42–.52. In other 

words, in networks with a relatively high proportion of negative edges, these indices were no 

longer in strong agreement about which nodes were most important.
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Figure 1 depicts the distributions of the correlation coefficients between (a) centrality and 

expected influences and (b) observed node influence in the simulated single-node 

interventions. When networks contained only positive edges, centrality indices and expected 

influence indices were all consistently highly correlated with observed node influence: 

closeness, M (SD) = .82 (.09); betweenness, M (SD) = .86 (.09); strength, M (SD) = .96 (.

03); EI1, M (SD) = .96 (.03); EI2, M (SD) = .93 (.04). However, as networks contained more 

negative edges, centrality indices were increasingly poor predictors of observed node 

influence. In networks with 25% negative edges, the mean correlation was only moderate, 

closeness: M (SD) =.45 (.30); betweenness, M (SD) = .44 (.33); strength M (SD) = .50 (.30). 

Moreover, centrality indices frequently failed to be even minimally correlated with observed 

node influence (r < .1 in 13%, 16%, and 10% of networks, for closeness, betweenness, and 

strength, respectively. In contrast, expected node influence indices continued to be strongly 

correlated with observed influence in networks with as much as 25% negative edges, EI1, M 

(SD) =.80 (.16); EI2, M (SD) = .83 (.15). Overall, these simulations suggest that expected 

influence indices better predict observed node influence than do centrality indices when 

networks contain both positive and negative edges.

Aim 2

Centrality and expected influence—The centrality and expected influence indices for 

the CG lasso network appear in Table 2. Before evaluating our hypotheses, we examined the 

reliability of centrality indices at Time 1 using Spearman correlation permutation tests (cf. 

Courrieu, Brand-D'Abrescia, Peereman, Spieler, & Rey, 2011; Telesford et al., 2010). For 

this analysis, we divided the Time 1 dataset into two equally sized samples composed of 

independent subjects, calculated network centrality indices separately for each sample, and 

conducted a Spearman correlation between these indices to test whether network nodes 

displayed similar centrality position in the two samples. We use a Spearman correlation 

because the distribution of edges in our lasso network had a considerable positive skew. We 

then permuted this process 10,000 times to establish a distribution of Spearman values for 

the Time 1 network centrality indices and examined the mean Spearman. Both EI1, M (SD) 

= 0.58 (0.18) and EI2, M (SD) = 0.54 (0.17), exhibited moderate agreement. Node strength, 

M (SD) = 0.48 (0.20) and closeness, M (SD) = 0.42 (0.20) exhibited lower but still moderate 

agreement. However, betweenness, M (SD) = 0.36 (0.23), exhibited relatively weak 

agreement and there was considerable variation in Spearman values over the permuted 

distribution. Because the permutation analysis uses a split-half methodology, the reliability 

of the centrality indices in our full sample is likely higher than indicated by these results (we 

did not apply a Spearman-Brown correction). Nonetheless, these results suggest some 

concern with the reliability of these indices in our lasso network, especially for the 

betweenness index. The reliability for each index was notably higher in the CG association 

network, with strength, closeness, and both expected influence indices exhibiting strong 

agreement (M ≥ 0.71), and betweenness exhibiting moderate agreement, M (SD) = .46 (.22). 

Additional information about the reliability assessment in our association network appears in 

Supplementary Materials D.

In our lasso network, the centrality and expected influence indices were in broad agreement 

with one another about which nodes were most important to the network. Centrality indices 
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were strongly correlated with one another, rs > .87, ps <.001. There was an almost perfect 

correlation between expected influence indices, r > .99, ps <.001. Both EI1 and EI2 were 

strongly correlated with measures of centrality, rs > .81, ps <.001. Similarly strong 

correlations among indices were observed in our association network, rs > .64, ps <.018 (see 

Supplementary Materials D).

Node change and network change—We calculated the correlation between change in 

the node activation and change in activation of the remainder of the network from Time 1 to 

Time 2. We used change in the remainder of the network (i.e., overall network activation 

minus activation of the node of interest) as our outcome variable in order to eliminate any 

confounding effects of including the target node in the calculation of overall network 

activation. The complete results for these analyses appear in Supplementary Materials B. 

Changes in grief-related avoidance, r(193) = .05 [−.09, .19], p = .489, and thoughts about the 

deceased, r(193) = .13 [−.01, .27], p = .062, were not associated with change in activation of 

the remainder of the network. For all other nodes, change in node activation was 

significantly correlated with change in activation of the remainder of the network, with 

correlations ranging from r(193) =.15 [.01, .28], p = .042, for thoughts about the future, to 

r(193) = .45 [.32, .55], p < .001 for a belief that life is empty or meaningless. Individuals 

who reported a high level of change in these nodes (e.g., a substantial reduction in emotional 

pain) tended to report change in the remainder of the CG network in the same direction (e.g., 

a reduction in overall CG).

Centrality, expected influence, and the node-network association—We next 

examined the relationship between (a) the centrality and expected influence of the node and 

(b) the correlation between change in the activation of that node (Time 2 − Time 1) and 

change in overall network activation (Time 2 − Time 1). In our lasso network, both EI1, 

r(11) = .74 [.33, .92], p = .003, and EI2, r(11) = .71 [.26, .91], p = .007, were strongly 

correlated with the strength of the relationship between node change and network change. 

The findings for EI1 appear in Figure 2. Each centrality index was also strongly correlated 

with the strength of the node change-network change association: strength, r(11) = .66 [.18, .

89], p = .013; closeness, r(11) = .61 [.09, .87], p = .027; betweenness, r(11) = .62 [.10, .87], 

p = .024. In our association network, node strength, closeness, EI1, and EI2 were all 

correlated with the relationship between node change and network change, r(11) = .67 [.19, .

89], p = .013. Betweenness was not, r(11) = .35 [−.25, .75], p = .247 (see Supplementary 

Materials D for complete results).

Discussion

Researchers adopting the network approach to mental disorders have suggested that high 

centrality nodes may be especially important to the development, persistence, and remission 

of mental disorder networks. Our findings provide support for this hypothesis. In simulated 

single-node interventions in networks with exclusively positive edges, a node’s centrality 

strongly predicted its observed influence (i.e., the change in the remainder of the network 

induced by “deactivating” that node). In an empirical network of CG symptoms that 

contained almost all positive edges, all three centrality indices were strongly correlated with 
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the strength of association between change in node activation and change in the activation of 

the remainder of the CG network from 6-months to 18-months post-loss.

Our findings suggest that centrality indices perform reasonably well in identifying the most 

influential nodes in a mental disorder network such as CG. However, we also found evidence 

that centrality indices may be limited by their failure to account for the presence of negative 

edges in the network. Most notably, in simulated single-node interventions, centrality indices 

became less predictive of observed node influence as the proportion of negative edges 

increased. In contrast, expected influence indices remained strongly correlated with 

observed node influence in randomly generated networks with negative edges. Although the 

strength of this correlation did diminish with an increasing proportion of negative edges, 

both EI1 and EI2 remained strongly correlated with observed influence in networks that had 

a relatively high proportion of negative edges (25%). In addition, in our empirical network 

of CG symptoms, both EI1 and EI2 were strongly and significantly correlated with the 

strength of association between node change and network change.

Implications for Network Analysis

We found that change in high centrality and high expected influence CG nodes was more 

strongly associated with change in the overall CG network than was change in low centrality 

or low expected influence CG nodes. Consistent with this finding, Boschloo and colleagues 

recently reported that high centrality symptoms of depression were more strongly predictive 

of subsequent onset of MDD than were low centrality symptoms (Boschloo, van Borkulo, 

Borsboom, & Schoevers, 2016). Together, these findings suggest that network topology can 

be used to identify the nodes most important to the onset and remission of a mental disorder. 

However, our simulation findings also suggest that it may be important to account for not 

only the position of a node in the network, but also the nature of its relationships with the 

rest of the network. The EI1 and EI2 indices proposed here incorporate both of these pieces 

of information and, in doing so, may be better able to identify influential nodes in the 

context of networks that contain negative edges. There are several important areas for future 

research on centrality and expected influence.

Directed networks—In the current study, we examined centrality and expected influence 

indices in the context of undirected networks (i.e., networks in which the direction of 

influence is not specified). However, the full potential of these indices is likely to be realized 

in the context of directed networks where they can make distinct predictions about the 

influence of the node on the rest of the network (outgoing expected influence) and the rest of 

the network’s influence on the node (incoming expected influence). Although methods exist 

for examining directed networks using cross-sectional data, these methods often assume that 

the causal structure of the network is invariant across individuals and that the network is 

acyclic (i.e., contains no feedback loops), assumptions unlikely to hold for mental disorder 

networks (Cramer, Waldorp, van der Maas, & Borsboom, 2010, p. 185). In future studies, 

researchers should consider evaluating these indices in directed networks derived from 

intensive time-series data.
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Intra-individual networks and the proportion of negative edges—We observed a 

low proportion of negative edges in our CG network, raising questions about the practical 

value added by accounting for negative edges in these networks. Indeed, the proportion of 

negative edges is typically low in mental disorder networks calculated from cross-sectional 

data as symptoms tend to be positively correlated with one another, especially in syndromes 

that do not incorporate opposing symptoms, such as hypersomnia versus insomnia in major 

depressive disorder. Our findings suggest that centrality indices will perform well in the 

context of such networks. We suspect that negative edges will be more prevalent in intra-

individual networks, especially in non-clinical populations. For example, one bereaved 

individual may consistently respond to thoughts about the deceased with increases in 

emotional pain (i.e., a positive edge) whereas another may consistently respond to such 

thoughts with decreases in emotional pain (i.e., a negative edge). Centrality indices would 

treat these edges equivalently, accounting only for the presence and absolute strength of the 

relationship. In contrast, expected influence indices would make very different predictions 

about the influence of thoughts about the deceased on the remainder of the network, its 

importance to the development or persistence of CG, and its suitability as a target of 

intervention in these two individuals. Accordingly, in future studies, it may be especially 

informative for researchers to examine the performance of these indices in intra-individual 

networks in clinical and non-clinical populations.

Single-node interventions—In this study, we simulated single-node interventions in 

order to examine observed node influence. To more rigorously test our predictions regarding 

the association between expected influence and observed influence, researchers should 

administer single-node interventions on both high- and low-expected influence nodes, 

treating the individual node and examining the impact on the remainder of the network. In 

doing so, researchers would more rigorously test the hypothesis that change in nodes with 

high expected influence is causally related to change in the broader network while also 

clarifying the role played by these nodes in the network.

Implications for CG and CG Treatment

Our findings in the CG network suggest that reduced activation of nodes with high expected 

influence bodes well for reduction in overall CG. Accordingly, intervening on these nodes 

may produce greater reductions in overall network activation than intervening on nodes with 

lower expected influence. Emotional pain and a feeling that life is empty or without meaning 

were the nodes with the highest expected influence and were among the most strongly tied 

to change in overall network activation. In regard to the former, reduction in emotional pain 

through imaginal and in vivo exposure exercises is an important component of cognitive-

behavioral treatments for CG (e.g., Bryant et al., 2014; Shear et al., 2005). In regard to the 

latter, this strong association is consistent with the emphasis placed on restoration of 

meaning in theories of natural grief resolution (Stroebe & Schut, 1999) and in prominent 

psychotherapies for CG (e.g., Neimeyer, 2000; Shear, Frank, Houck, & Reynolds, 2005). 

Accordingly, our findings suggest clinical researchers have appropriately targeted nodes that 

are especially important to the CG network.

Robinaugh et al. Page 12

J Abnorm Psychol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although our findings are consistent with the possibility that high expected influence nodes 

may be important targets of psychotherapy, it should be noted that these analyses were 

correlational and do not indicate a causal direction in the node-network relationship. 

Similarly, because our centrality and expected influence indices were undirected, it is 

unclear whether nodes were high on these indices because they exert greater influence on 

other nodes of the network or if they were especially susceptible to the influence of other 

nodes in the network. If a node’s importance is mainly attributable to its being the recipient, 

rather than the source, of activation, then targeting this node may have little impact on the 

activation level of the network. If a node is high in both in- and out-expected influence, 

modifying it may be both beneficial (due its effect on other nodes) and difficult (due the 

influence of other active nodes in the network). In this case, treatments may benefit by 

reducing activation of low-expected influence nodes before targeting high-expected 

influence nodes.

There are additional caveats to the conclusion that high expected influence nodes should be 

the primary targets for psychotherapy. First, nodes may vary in the extent to which they are 

amenable to change in psychotherapy for CG. For example, a patient may be better able to 

change a behavior (e.g., grief-related avoidance) than an emotion (e.g., emotional pain). 

Indeed, prominent psychotherapies for CG (e.g., Bryant et al., 2014; Shear et al., 2005) do 

not attempt to reduce distressing emotions directly, but rather do so indirectly, by modifying 

cognitions (e.g., self-blame) and behaviors (e.g., grief-related avoidance). The focus of these 

interventions suggests that cognitive and behavioral nodes of the CG network may be more 

amenable to direct intervention in psychotherapy than are emotional nodes. Finally, it may 

be that the most effective interventions do not target nodes at all, but rather target edges. For 

example, the aim of a network-informed CG intervention may not be to decrease thoughts 

about the deceased, but rather to modify the edge between thoughts about the deceased and 

intense yearning. In other words, to “decouple” these nodes (Levin, Luoma, & Haeger, 

2015). These findings suggest the need to identify not only influential nodes, but also 

influential edges whose modification might facilitate reductions in the overall network.

Taken together, these considerations imply that the treatment implications of our findings are 

more complex than merely prescribing intervention on high-centrality or high-expected 

influence nodes, such as emotional pain or the feeling that life is empty or without meaning. 

Researchers adopting a network perspective should consider not only the potential impact of 

changing a node, but also the node’s amenability to direct intervention, the possibility that 

initial interventions on low centrality nodes may facilitate subsequent interventions on high 

centrality nodes, and the possibility that edges may be more appropriate targets of 

intervention than nodes. Nonetheless, our findings suggest that a node’s centrality and 

expected influence are important pieces of information to consider when evaluating the most 

effective way of intervening on the CG network and that reduction in such nodes augurs well 

for the prognosis of CG.

Limitations

The network simulations performed in our Aim 1 analyses did not account for external 

influences on nodes or self-loops (i.e., the node’s influence on itself). Consequently, our 
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simulations almost certainly inflated the strength of the correlation between (a) centrality 

and expected influence indices and (b) observed node influence. Although this should not 

have affected our comparison of expected influence and centrality indices, it nonetheless 

illustrates the rudimentary nature of the simulation data presented here and the need to 

further improve our ability to simulate mental disorder networks in order to better evaluate 

hypotheses such as those examined here. To do so, it will be critical to advance our 

understanding of how CG and other mental disorder networks unfold over time within 

individuals so that network simulations can be informed by and effectively model the 

processes operating within these networks.

In our Aim 2 analyses, we used items from the CLOC study to assess nodes of CG network 

guided by the DSM-5 diagnostic criteria for this syndrome. However, the correspondence 

between the CLOC survey item and the DSM-5 diagnostic criterion was not always precise 

and we were unable to find a CLOC survey item for three of the DSM-5 diagnostic criteria. 

Moreover, because these criteria were not developed with the aim of providing a 

comprehensive list of CG network nodes, our use of the DSM-5 diagnostic criteria to define 

our set of network nodes may have led us to omit nodes that play a critical role in the CG 

network. This possibility is especially noteworthy here as the omission of such nodes would 

affect our assessment of node centrality. For example, we were unable to include grief-

related approach behavior (i.e., proximity seeking) in our analyses. Given the plausible 

causal association between yearning for the deceased and grief-related approach behavior, 

this omission may have caused us to underestimate the centrality of yearning, a node that 

many grief researchers believe to be the core node of the CG syndrome (e.g., Prigerson et 

al., 2009). In future research on CG it will be critical for researchers to move beyond the 

DSM-5 and other proposed diagnostic criteria sets to include other nodes potentially 

operative within the CG network.

In addition, we examined the CG network in a sample of bereaved adults, most of whom 

would not have met criteria for the diagnosis of CG. Accordingly, our analyses may have 

failed to adequately assess the network structure as it exists in those who experience 

persistent elevated activation of the CG network. For example, in our analyses grief-related 

avoidance exhibited very low centrality and change in avoidance was not correlated with 

change in the rest of the CG network. This finding stands in stark contrast to prominent 

theories regarding the etiology of CG that emphasize the role of grief-related avoidance in 

maintaining the syndrome (Boelen, van den Hout, & van den Bout, 2006; Shear et al., 2007). 

It may be that the effect of avoidance is context dependent (e.g., maladaptive only in the 

context of elevated emotional pain) and that avoidance plays a more prominent role in CG 

network for those who develop the disorder than it does among the general population of 

bereaved adults. Accordingly, researchers should examine the CG network in those with 

persistently elevated activation of the network. The need for research on the CG network in 

other samples is especially noteworthy given that, to date, the CG network has been studied 

exclusively with the CLOC dataset.

In our lasso network, centrality indices exhibited poor to moderate reliability. Accordingly, 

some caution is warranted when interpreting these results. This limitation is mitigated by our 

finding that the correlation between centrality indices and the strength of the relationship 
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between node change and network change was also observed in an association network 

where these indices exhibited greater reliability (see Supplementary Materials D). Reliability 

was especially low for our betweenness index and remained relatively low even when we 

examined betweenness in the association network. We consider this to be a limitation of the 

betweenness index in small highly inter-connected networks, such as those typically 

observed when examining mental disorder networks, and not a limitation specific to the 

current CG network. In future studies on mental disorder networks, researchers should 

consider the reliability of these indices when choosing a measure of node importance. 

Notably, the relevance of a centrality metric can vary as a function of the substantive 

phenomenon represented by the network (Freeman, 1978/1979). For example, closeness 

centrality may be especially relevant for modeling information transmission in a social 

network, whereas strength centrality may be most relevant for psychopathology networks. 

Accordingly, researchers should also consider conceptual appropriateness of these indices 

when choosing a measure of node importance.

Some might question whether the relationship between a node’s centrality or expected 

influence and its correlation with the strength of association between node change and 

network change is tautological. We believe this is not the case. First, the departure from 

perfect predictability (i.e., a correlation less than 1.0) confirms that these are not merely two 

different ways of saying the same thing. Second, our Aim 2 analyses concerned change in 

node and network activation over time and nothing in our calculation of centrality precluded 

the possibility of it being completely unrelated to change in network activation over time. 

Together, these points indicate that our findings are not a tautological consequence of our 

definitions of centrality and expected influence.

It is important to note that although our predictions were derived from the network approach 

to mental disorders, these results should not be considered evidence in support of the 

network approach. There are alternative explanations for these findings. For example, our 

calculation of node strength and expected influence is similar to the calculation of an item-

rest correlation (i.e., the correlation between an item and a scale score of the remaining 

items from that scale; also called the “corrected item-total” correlation). Given that more 

reliable items may have greater predictive validity, the current findings could be seen as 

resulting from differences in the reliability of the items rather than their centrality. Similarly, 

operating from a latent construct approach, nodes that we have identified as being “highly 

central” may alternatively be considered to be especially good indicators of the underlying 

construct. From this perspective, it would not be surprising that change in these “good 

indicator” items is more strongly associated with change in the latent construct. We believe 

that the network approach provides a plausible explanation for the tendency of these nodes 

to hang together as a syndrome that does not suffer from limitations inherent in latent 

construct approach (Borsboom & Cramer, 2013) and we consider the analyses performed in 

this paper to be a more natural extension of the network approach than it is of alternative 

conceptual frameworks. Nonetheless, it remains for future research to further adjudicate 

between these alternative interpretations of these findings.

Finally, our study was limited by our reliance on cross-sectional analyses to calculate our 

centrality and expected influence indices. Findings based on inter-individual variation only 
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correspond to findings based on intra-individual variation under very specific conditions that 

are rarely met in psychological research (i.e., the assumption of ergodicity rarely holds; 

Molenaar & Campbell, 2009). Consequently, our findings cannot be assumed to provide 

information about the processes operative within any specific bereaved individual. To draw 

conclusions about the CG network as it occurs at the level of the individual, researchers must 

use intra-individual network analyses to assess the CG network as it unfolds over time.

Conclusion

The network approach conceptualizes CG not as underlying latent disease entity, but rather 

as a causal system of mutually reinforcing nodes. In a previous study, we suggested that 

highly central nodes may figure prominently in the etiology and treatment of CG. Consistent 

with this prediction, we found that change in high centrality nodes of the CG network (e.g., 

feelings of emptiness and emotional pain) was more strongly associated with change in the 

remainder of the CG network than was change in low-centrality nodes (e.g., grief-related 

regret or avoidance). However, in simulated network data, we found that centrality indices 

may be limited by their failure to distinguish between positive and negative edges. In 

contrast, indices of a node’s expected influence remained strongly correlated with observed 

node influence in our simulated networks, even when those networks contained a relatively 

high proportion of negative edges. In addition, expected influence indices were strongly and 

significantly correlated with the strength of the relationship between node change and 

network change in our analysis of the CG network. Together, these findings suggest that 

expected influence indices can be used to identify highly influential nodes in the CG 

network that may play a prominent role in the etiology and treatment of CG.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of correlations between (a) centrality and expected influence indices and (b) 

observed node influence. We randomly generated 500 networks in each of four conditions: 

0%, 5%, 10%, and 25% negative edges. Each row depicts the findings from one condition. 

Each column depicts the findings for a centrality or expected influence index. Each panel 

depicts a histogram of the correlation coefficient between (a) the centrality and expected 

influence indices and (b) the observed influence of “treating” the node on the remainder of 

the network in the randomly generated networks. The strength of the correlation is 

represented on the x-axis. The frequency with which that correlation was observed is 

represented on the y-axis.
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Figure 2. 
Expected influence and the correlation between node change and network change. A scatter-

plot depicting the correlation between a node’s one-step expected influence at Time 1 (on 

the x-axis) and the strength of the association between change in that node and change in the 

remainder of the network from Time 1 to Time 2 (on the y-axis). Change in high-expected 

influence nodes was more strongly associated with change in overall network activation than 

was change in low-expected influence nodes.
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Table 1

Mean correlations among centrality and expected influence indices in randomly generated Erdős-Rényi 

networks

Closeness Betweenness Strength EI1

Positive Edges

Betweenness .80 (.09)

Strength .89 (.06) .81 (.09)

EI1 .89 (.06) .81 (.09) 1.00 (.00)

EI2 .91 (.06) .78 (.10) .99 (.01) .99 (.01)

5% Negative Edges

Betweenness .81 (.08)

Strength .89 (.06) .81 (.09)

EI1 .75 (.18) .68 (.20) .84 (.17)

EI2 .79 (.16) .68 (.18) .86 (.14) .99 (.01)

10% Negative Edges

Betweenness .80 (.08)

Strength .89 (.06) .80 (.10)

EI1 .65 (.20) .59 (.21) .74 (.19)

EI2 .70 (.18) .61 (.19) .77 (.16) .98 (.01)

25% Negative Edges

Betweenness .80 (.07)

Strength .89 (.06) .81 (.09)

EI1 .39 (.30) .36 (.31) .44 (.30)

EI2 .47 (.29) .42 (.28) .52 (.27) .97 (.02)

Note. In each of our four conditions (i.e., 0%, 5%, 10%, and 25% negative edges) we randomly generated 500 Erdős-Rényi networks and 

calculated the correlations among centrality and expected influence indices within those networks. The values reported here are the mean and 

standard deviation from the distribution of 500 correlation coefficients calculated in each condition.

EI1 = one-step expected influence. EI2 = two-step expected influence.
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