
Identifying Hot and Cold Data
in Main-Memory Databases

Justin J. Levandoski 1, Per-Åke Larson 2, Radu Stoica 3

1,2Microsoft Research
3École Polytechnique Fédérale de Lausanne

1
justin.levandoski@microsoft.com,

2
palarson@microsoft.com,

3
radu.stoica@epfl.ch

Abstract— Main memories are becoming sufficiently large that
most OLTP databases can be stored entirely in main memory,
but this may not be the best solution. OLTP workloads typically
exhibit skewed access patterns where some records are hot
(frequently accessed) but many records are cold (infrequently
or never accessed). It is more economical to store the coldest
records on secondary storage such as flash. As a first step
towards managing cold data in databases optimized for main-
memory we investigate how to efficiently identify hot and cold
data. We propose to log record accesses – possibly only a sample
to reduce overhead – and perform offline analysis to estimate
record access frequencies. We present four estimation algorithms
based on exponential smoothing and experimentally evaluate
their efficiency and accuracy. We find that exponential smoothing
produces very accurate estimates, leading to higher hit rates
than the best caching techniques. Our most efficient algorithm
is able to analyze a log of 1B accesses in sub-second time on a
workstation-class machine.

I. INTRODUCTION

Database systems have traditionally been designed under

the assumption that data is disk resident and paged in and out

of memory as needed. However, the drop in memory prices

over the past 30 years is invalidating this assumption. Several

database engines have emerged that optimize for the case

when most data fits in memory [1], [2], [3], [4], [5], [6]. This

architectural change necessitates a rethink of all layers of the

system, from concurrency control [7] and access methods [8],

[9] to query processing [10].

In OLTP workloads record accesses tend to be skewed.

Some records are “hot” and accessed frequently (the work-

ing set), others are “cold” and accessed infrequently, while

“lukewarm” records lie somewhere in between. Clearly, good

performance depends on the hot records residing in memory.

Cold records can be moved to cheaper external storage such

as flash with little effect on overall system performance.

The work reported here arose from the need to manage

cold data in an OLTP engine optimized for main-memory. The

problem is to efficiently and accurately identify cold records

that can be migrated to secondary storage. We propose to

perform classification offline using logged record accesses,

possibly using only a sample. Our best classification algorithm

is very fast: it can accurately identify the hot records among

1M records in sub-second time from a log of 1B record

accesses on a workstation-class machine. Because it is so fast,

the algorithm can be run frequently, say, once per hour or more

if the workload so warrants.

0

50

100

150

200

16 64 128 256 512 1024 2048P
ri

ce
 (

1
0

0
0

s
o

f
$

)

System Memory (GB)

RAM

2TB Flash (high)

2TB Flash (low)

Fig. 1. Cost of DRAM for various memory sizes of Dell PowerEdge Blade
vs. low-end Flash SSD (Intel DC S3700) and high-end SSD (Intel 910).

A. Motivation

Our work is motivated by the need to manage cold data in a

main-memory optimized OLTP database engine, code named

Hekaton, being developed at Microsoft (details in Section II-

A). Three main considerations drive our research:

(1) Skew in OLTP workloads. Real-life transactional work-

loads typically exhibit considerable access skew. For example,

package tracking workloads for companies such as UPS or

FedEx exhibit time-correlated skew. Records for a new

package are frequently updated until delivery, then used for

analysis for some time, and after that accessed again only on

rare occasions. Another example is the natural skew found on

large e-commerce sites such as Amazon, where some items are

much more popular than others. Such preferences may change

over time but typically not very rapidly.

(2) Economics. It is significantly cheaper to store cold

data on secondary storage rather than in DRAM. Figure 1

plots the current price of DRAM for various server memory

configurations along with the price for a high and low-end

2TB flash SSD (plotted as constant). High-density server class

DRAM comes at a large premium, making flash an attractive

medium for cold data. In fact, using current prices Gray’s n-

minute rule [11] says that a 200 byte record should remain in

memory if it is accessed at least every 60 minutes (Appendix E

contains our derivation). “Cold” by any definition is longer

than 60 minutes.

(3) Overhead of caching. Caching is a tried-and-true tech-

nique for identifying hot data [12], [13], [14], [15]. So why

not simply use caching? The main reason is the high overhead

of caching in a database system optimized for main memory.

(a) CPU overhead. Main memory databases are designed

for speed with very short critical paths and the overhead of

maintaining the data structure needed for caching on every

record access is high. We implemented a simple LRU queue

(doubly-linked list) in our prototype system and encountered

a 25% overhead for updating the LRU queue on every record

access (lookup in a hash index). The queue was not even

thread-safe, so this is the minimal overhead possible. Better

caching polices such as LRU-2 or ARC would impose an even

higher overhead, possibly costing as much as the record access

itself. (b) Space overhead. Hekaton, like several other main-

memory systems [1], [5], does not use page-based storage

structures for efficiency reasons; there are only records. Our

goal is to identify cold data on a record basis, not a page basis.

On a system storing many millions of records, reserving an

extra 16 bytes per record for an LRU queue adds up to a

significant memory overhead.

B. Our Contributions

We propose a technique for identifying hot and cold data,

where hot records remain in memory while cold records are

candidates for migration to secondary storage. We propose

to sample record accesses during normal system runtime, and

record the accesses on a consolidated log. A transaction copies

its record access information into large (shared) buffers that

are flushed asynchronously only when full; the transaction

does not wait for log flushes. Sampling and logging accesses

reduces overhead on the system’s critical path. It also allows

us to move classification to a separate machine (or CPU core)

if necessary. Estimated record access frequencies are then

computed from the logged accesses, and the records with the

highest estimated frequency form the hot set.

The core of our technique is a set of novel algorithms for

estimating access frequencies using exponential smoothing.

We first explore a naive forward algorithm that scans the log

from beginning to end (i.e., past to present) and calculates

record access frequencies along the way. We then propose a

backward algorithm that scans the log in reverse (i.e., present

to past) and calculates upper and lower bounds for each

record’s access frequency estimate. Experiments show that the

backward algorithm is both faster and more space efficient

than the forward algorithm. We also show how to parallelize

the forward and backward algorithms to speed up estimation

dramatically. A recent paper described management of cold

data in the HyPer main-memory database [16]; we provide a

detailed comparison with this work in Section VI.

An experimental evaluation finds that our approach results

in a higher hit rate than both LRU-k [14] and ARC [15] (two

well-known caching techniques). The experiments also reveal

that our algorithms are efficient, with the backward parallel al-

gorithm reaching sub-second times to perform classification on

a log of 1B record accesses. We also provide a mathematical

analysis showing that exponential smoothing estimates access

frequencies much more accurately than LRU-k.

The rest of this paper is organized as follows. Section II

provides preliminary information and the overall architecture

of our framework. Our classification algorithms are presented

in Section III, while Section IV discusses how to parallelize

them. Section V provides an experimental evaluation. Sec-

tion VI provides a survey of related work. Finally, Section VII

concludes this paper.

II. PRELIMINARIES

Our problem is to efficiently identify the K hottest records,

i.e., most frequently accessed, among a large set of records.

The access frequency (heat) of each record is estimated from

a sequence of record access observations. The K records with

the highest estimated access frequency are classified as hot

and stored in main memory, while the remaining records are

kept on secondary “cold” storage. The value of K can be

determined by a variety of metrics, e.g., working set size or

available memory. Data moved to cold storage is still available

to the database engine, albeit at a higher access cost. The more

accurately access frequencies can be estimated, the higher the

hit rate in main memory or, conversely, the fewer expensive

trips to the cold store.

The rest of this section covers preliminary details. We begin

by providing context for this work by discussing Hekaton,

a memory-optimized OLTP engine being developed at Mi-

crosoft. We then outline Siberia, the cold data management

framework we are prototyping for Hekaton. We then discuss

logging as a technique for storing record access observations.

Next we describe exponential smoothing, our technique for es-

timating record access frequencies. Finally, we cover sampling

as a method to reduce system overhead for logging accesses.

A. The Hekaton Memory-Optimized OLTP Engine

Microsoft is developing a memory-optimized database en-

gine, code named Hekaton, targeted for OLTP workloads.

Hekaton will be described in more detail elsewhere so we

provide only a brief summary of its characteristics here.

The Hekaton engine is integrated into SQL Server; it is not

a separate database system. A user can declare a table to be

memory-optimized which means that it will be stored in main

memory and managed by Hekaton. Hekaton has a “record-

centric” data organization, it does not organize records by page

(and is oblivious to OS memory pages). A Hekaton table can

have several indexes and two index types are available: hash

indexes and ordered indexes. Records are always accessed

via an index lookup or range scan. Hekaton tables are fully

durable and transactional, though non-durable tables are also

supported.

Hekaton tables can be queried and updated in the same way

as regular tables. A query can reference both Hekaton tables

and regular tables and a single transaction can update both

types of tables. Furthermore, a T-SQL stored procedure that

references only Hekaton tables can be compiled into native

machine code. Using compiled stored procedures is by far the

fastest way to query and modify data in Hekaton tables.

Hekaton is designed for high levels of concurrency but it

does not rely on partitioning to achieve this; any thread can

access any row in a table without acquiring latches or locks.

The engine uses latch-free (lock-free) data structures to avoid

physical interference among threads and a new optimistic,

multi-version concurrency control technique to avoid interfer-

ence among transactions [7].

2

B. Siberia: A Cold Data Management Framework

The initial release of Hekaton will require its tables to

fit entirely in memory, but this will not be sufficient going

forward. The goal of our project, called Project Siberia, is

to enable Hekaton to automatically migrate cold records to

cheaper secondary storage while still providing access to such

records completely transparently. Siberia consists of four main

components, each of which address a unique challenge for

managing cold data in a main-memory system:

• Cold data classification: efficiently and non-intrusively

identify hot and cold data in a main-memory optimized

database environment (the topic of this paper).

• Cold data storage: evaluation of cold storage device op-

tions and techniques for organizing data on cold storage.

• Cold data access and migration mechanisms: mecha-

nisms for efficiently migrating, reading, and updating data

on cold storage that dovetail with Hekaton’s optimistic

multi-version concurrency control scheme [7]

• Cold storage access reduction: reducing unnecessary

accesses to cold storage for both point and range lookups

by maintaining compact and accurate in-memory access

filters.

This paper focuses solely on classifying cold and hot data.

Solutions to the other challenges are outside the scope of this

paper and will be presented in future work.

C. Logging and Offline Analysis

Access frequencies can be estimated inline or offline. By

inline we mean that an estimate of each record’s access

frequency or rank order is maintained in memory and updated

on every record access. Caching policies such as LRU-k,

MRU, or ARC are forced to follow this approach because

eviction decisions must be made online. In the offline approach

record access data is written to a log (separate from the

transactional log) for later offline analysis. We chose the offline

approach for several reasons. First, as mentioned earlier, the

overhead of even the simplest caching scheme is very high.

Second, the offline approach is generic and requires minimum

changes to the database engine. Third, logging imposes very

little overhead during normal operation. Finally, it allows

flexibility in when, where, and how to analyze the log and

estimate access frequencies. For instance, the analysis can be

done on a separate machine, thus reducing overhead on the

system running the transactional workloads.

In our logging scheme, we associate each record access with

a discrete time slice, denoted [tn, tn+1] (the subsequent time

slice begins at tn+1 and ends at tn+2, and so on). Time is

measured by record accesses, that is, the clock “ticks” on every

record access. In the rest of this paper, we identify a time

slice using its beginning timestamp (e.g., tn represents slice

[tn, tn+1]). A time slice represents a discrete period when

a record access was observed, so conceptually our log stores

(RecordID, TimeSlice) pairs. Physically, the log stores a list

of record ids in access order delineated by time markers that

represent time slice boundaries.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.1 0.2 0.3 0.4

S
td

 e
rr

o
r

o
f

e
st

im
a

te

Access frequency

LRU-2

Exp Smo

Fig. 2. Standard error of estimated access frequency for LRU-2 and
exponential smoothing with α = 0.05.

D. Exponential Smoothing

We use exponential smoothing to estimate record access

frequencies. Exponential smoothing calculates an access fre-

quency estimate for a record r as

estr(tn) = α ∗ xtn + (1 − α) ∗ estr(tn−1) (1)

where, tn represents the current time slice, xtn represents

the observation value at time tn. In our framework xtn is

1 if an access for r was observed during tn and 0 otherwise.

estr(tn−1) is the estimate from the previous time slice tn−1.

The variable α is a decay factor that determines the weight

given to new observations and how quickly to decay old

estimates. α is typically set in the range 0.01 to 0.05 – higher

values give more weight to newer observations.

We chose exponential smoothing because of its simplicity

and high accuracy. The accuracy of an estimator is often mea-

sured by its standard error, that is, the standard deviation of the

probability distribution of the estimated quantity. For a record

with true access frequency p, it can be shown that the standard

error for exponential smoothing is
√

αp(1 − p)/(2− α) [17].

Appendix D derives the complete distribution of estimates

computed by LRU-k from which the standard error can be

computed. Figure 2 plots the standard error for LRU-2 and

exponentially smoothing with α = 0.05. Exponential smooth-

ing is significantly more accurate than LRU-2.

Poor accuracy causes records to be misclassified which

reduces the in-memory hit rate and system performance. In

Section V, we experimentally compare the hit rates obtained

by exponential smoothing as well as the LRU-2 [14] and

ARC [15] caching techniques. Our experiments show that

exponential smoothing is clearly more accurate that LRU-2

and ARC and achieves a hit rate close to a fictional perfect

classifier (a classifier that knows the true frequencies).

E. Sampling

Logging every record access produces the most accurate

estimates but the overhead may degrade system performance.

Therefore, we consider logging only a sample to reduce system

overhead. To implement sampling, we have each worker thread

flip a biased coin before starting a new query (where bias

correlates with sample rate). The thread records its accesses

in log buffers (or not) based on the outcome of the coin flip.

In Section V, we report experimental results showing that

sampling 10% of the accesses reduces the accuracy by only

3

2.5%, which we consider a tolerable trade-off for reducing log

buffer writes by 90%.

III. CLASSIFICATION ALGORITHMS

We now describe algorithms for classifying records as hot

and cold. The input and output of the algorithms is exactly the

same but they differ in how the result is computed. They all

take as input (1) a log L that stores record access observation

(as discussed in Section II-C), (2) a parameter K signifying

the number of records to classify as “hot”. They all employ

exponential smoothing (Section II-D) to estimate record access

frequency. The algorithms report the “hot” record set as the K
record with the highest estimated access frequency. The rest

of the records are “cold”.

We first briefly present a naive forward algorithm that scans

the log from a beginning time period tb to an end time

period te (where tb < te). We then present a novel backward

algorithm that reads the log in reverse, starting from te, and

attempts to preemptively stop its scan before reaching tb while

still ensuring correct classification.

A. Forward Algorithm

The forward algorithm simply scans the log forward from a

beginning time slice tb (we assume tb = 0). Upon encounter-

ing an access to record r at time slice tn, it updates r’s cur-

rent access frequency estimate estr(tn) using the exponential

smoothing equation

estr(tn) = α+ estr(tprev) ∗ (1− α)(tn−tprev) (2)

where tprev represents the time slice when r was last observed,

while estr(tprev) represents the previous estimate for r at

that time. To avoid updating the estimate for every record

at every time slice (as implied by Equation 1), Equation 2

decays the previous estimate using the value (1−α)(tn−tprev).
The exponent (tn − tprev) allows the estimate to “catch up”

by decaying the previous estimate across time slices when r
was not observed in the log (i.e., when value xtn = 0 in

Equation 1). Once the forward algorithm finishes its scan, it

ranks each record by its estimated frequency and returns the

K records with highest estimates as the hot set.

This forward algorithm has two primary drawbacks: it

requires a scan of the entire log and it requires storage

proportional to the number of unique record ids in the access

log. In the next section, we propose an algorithm that addresses

these two drawbacks.

B. Backward Algorithm

We would like to avoid scanning the entire log from be-

ginning to end in order to improve classification performance.

In this vein, we propose a backward algorithm that attempts

to preempt the computation early. The core idea is to scan

the log in reverse and derive successively tighter upper and

lower bounds on the estimates for the records encountered.

Occasionally, the algorithm performs classification using these

bounds to hopefully terminate the scan early. The algorithm

only stores estimates for records still in contention for the hot

tn

R2

R3

R4

R5
R6

log

K
th

lower

R1

(a) At time slice tn

tn-4

R2
R3 R4

R5
R6

log

K
th

lower

(b) At time slice tn−4

Fig. 3. Backward classification example

set, resulting in a memory footprint proportional to the number

of hot records instead of the total number of records.

1) Bounding Access Frequency Estimates: While reading

the log in reverse and encountering an access to a record r at

time slice tn, the backward algorithm incrementally updates a

running backwards estimate estb as

estbr(tn) = α(1 − α)(te−tn) + estbr(tlast) (3)

where estbr(tlast) represents the backward estimate calculated

when record r was last encountered in the log at time slice

tlast (where tlast > tn since we are scanning in reverse). This

recursive equation can be derived easily from the non-recursive

(unrolled) version of the formula for exponential smoothing.

Using the backward estimate, we can compute an upper bound

for a record r’s actual estimate value at time slice tn as

upEstr(tn) = estbr(tn) + (1− α)te−tn+1 (4)

In this equation, te represents the end time slice in the log.

The value produced by this equation represents the largest

access frequency estimate value r can have, assuming that we

encounter it at every time slice moving backward in the log.

Likewise, the lower bound on r’s estimated value is

loEstr(tn) = estbr(tn) + (1− α)te−tb+1 (5)

This lower bound is the lowest estimate value r can have,

assuming we will not encounter it again while scanning

backward. As the backward classification approach continues

processing more record accesses, the upper and lower bounds

converge toward an exact estimate. The promise of this ap-

proach, however, is that a complete scan of the log may not

be necessary to provide a correct classification. Rather, the

algorithm can preempt its backward scan at some point and

provide a classification using the (inexact) bound values.

2) Backward Classification Optimizations: In order to pro-

vide an intuition and outline for the backward classification

approach, Figure 3(a) gives an example of upper and lower

bounds for six records (R1 through R6) after scanning the

log back to time slice tn. Assuming K = 3, five records (R2

through R6) are in contention to be in the hot set, since their

upper bounds lie above the kth lower bound defined by R3.

We use the kth lower bound to provide two important op-

timizations that reduce processing costs. (1) We drop records

with upper bound values that are less than the kth lower bound

(e.g., record R1 in the example). By definition, such records

cannot be part of the hot set. (2) We translate the value of the

kth lower bound to a time slice in the log named the accept

threshold. The accept threshold represents the time slice in

4

Algorithm 1 Backward classification algorithm

1: Function BackwardClassify(AccessLog L, HotDataSize K)
2: Hash Table H ← initialize hash table
3: Read back in L to fill H with K unique records with calculated bounds
4: kthLower ← RecStats r ∈ H with smallest r.loEst value
5: acceptThresh ← ⌊te − log(1−α)kthLower⌋
6: while not at beginning of L do

7: rid← read next record id from L in reverse
8: RecStats r ← H.get(rid)
9: if r is null then

10: /* disregard new record ids read after acceptThresh time slice */
11: if L.curTime ≤ acceptThresh then goto line 6
12: else initialize new r

13: end if

14: update r.estb using Equation 3
15: H.put(rid,r)
16: /* begin filter step - inactivate all records that cannot be in hot set*/
17: if end of time slice has been reached then

18: ∀r ∈ H update r.upEst and r.loEst using Equations 4 and 5
19: kthLower ← find value of kth lower bound value in H

20: ∀r ∈ H with r.upEst ≤ kthLower, remove r from H

21: if num records ∈ H is K then goto line 25
22: acceptThresh ← ⌊te − log(1−α)kthLower⌋
23: end if

24: end while

25: return record ids in H with r.active = true

the log where we can instantly discard any new record ids

observed at or beyond the threshold, since we can guarantee

that these records will have an upper bound less than the kth

lower bound. The accept threshold is computed as

Threshold = te − ⌊log(1−α)kthLowerBound⌋ (6)

where te is the log’s end time slice. Since the accept threshold

allows the algorithm to instantly disregard records with no

chance of making the hot set, it greatly limits the memory

requirements of the hash table used by the algorithm. As

we will see in our experiments (Section V), this optimization

allows the memory requirements of the algorithm to stay close

to optimal (i.e., close to the hot set size).

Another primary advantage of the backward strategy is its

ability to end scanning early while still providing a correct

classification. As a concrete example, Figure 3(b) depicts our

running example after reading back four time slices in the

log to tn−4. At this point, the bounds have tightened leading

to less overlap between records. Here, the kth lower bound is

defined by R4, and only three records are in contention for the

hot set (R2, R3, and R4. At this point, we can stop scanning

the log and report a correct hot set classification, since no

other records have upper bounds that cross the kth threshold.

3) Algorithm Description: Algorithm 1 (BackwardClassify)

provides the pseudo-code for the backward algorithm. First,

BackwardClassify creates a hash table H to store running

estimates for each record it processes (Line 1). Table H
maps a record id rid to a structure RecStats containing three

fields: (a) backEst, the running backward access frequency

estimate (Equation 3), (b) loEst, a record’s lower-bound

access frequency estimate (Equation 5), and (c) upEst, a

record’s upper-bound access frequency estimate (Equation 4).

The algorithm scans backward in the log to fill H with an

initial set of K unique records and then finds kthLower, the

value of the kth lower bound (Line 4). The value of kthLower

is then used to define the accept threshold value acceptThresh
(Line 5), defined by Equation 6.

After the initialization phase completes, the algorithm scans

the log in reverse reading the next rid. If rid does not exist in

the hash table and the current time slice (L.curT ime) is less

(older) than acceptThresh, we discard rid and read the next

record (Line 11). Otherwise, we initialize a new RecStats
object for the record (Line 12). Next, the algorithm updates

the backward estimate and upper and lower bound values using

Equations 3 through 5, respectively, and the RecStats object

is put back into the hash table (Line 14-15).

When the algorithm reaches the end of a time slice in log L,

it commences a filter step that attempts to deactivate records

that are out of contention for the hot set and terminate early.

The filter step begins by adjusting the upper and lower bounds

(Equations 3 through 5) of all active records in H as of the

current time slice of the scan defined by L.curT ime (Line 18).

This step adjusts the distance between upper and lower bounds

to be uniform between all active records. Next, the algorithm

finds the current kth lower bound value and removes from the

hash table H all records with upper bounds lower than the new

kth lower bound (Lines 19- 20). Removing records allows us

to shrink the hash table size, reducing space overhead and

allowing for more efficient filter operations in the future. (We

discuss the correctness of removing records in Appendix A.) If

the number of records in H equals K , the algorithm ends and

reports the current set of active records as the hot set (Line 21).

Otherwise, the filter step ends by calculating a new accept

threshold based on the new kth threshold (Line 22). This

adjustment moves the accept threshold closer to the current

scan point in the log. That is, since the kth threshold is greater

than or equal to the last kth threshold, the new accept threshold

is guaranteed to be greater than or equal to the last accept

threshold. In the worst case, the algorithm ends when a scan

reaches the beginning of the log. At this point, all calculated

access frequency estimates are exact (i.e., upper and lower

bounds are the same), thus the algorithm is guaranteed to find

K hot records.

IV. PARALLEL CLASSIFICATION

We now turn to a discussion of how to parallelize the classi-

fication task. In this section, we first discuss a parallel version

of the forward classification algorithm. We then discuss how

to parallelize the backward classification approach.

A. Parallel Forward Algorithm

Record id partitioning. One way to parallelize the forward

algorithm presented in Section III-A is to split the log into

n pieces (hash) partitioned by record id. To perform classi-

fication, we assign a worker thread to each partition. Each

thread uses the serial forward algorithm (Section III-A) to

calculate access frequencies for its set of records. After each

thread finishes, a final step finds the hot set by retrieving the

K records with highest access frequency estimates across all

partitions.

5

tB tE

tp

Fig. 4. Exponential smoothing broken up on time boundary

Time slice partitioning. Another parallelization approach

is to use a single log but partition the workload by time slices.

To illustrate the intuition behind this approach, we unroll

the recursive exponential smoothing estimate function from

Equation 2 obtaining

estr(tn) = α

tn
∑

i=tb

xtn−i
(1− α)i−1 + (1 − α)tn (7)

Here, tb represents the beginning time slice in the log, tn
is the current time slice, while xtn−i

represents an observed

value at time slice tn−i (0 or 1 in our case). Figure 4 depicts

a hypothetical log broken into two segment delineated by

time slices tp. Under each segment is the summation from

Equation 7 representing the segment’s “contribution” to the

access frequency estimate value. The circled term and arrow

in the figure highlight that only a single term in the summation

of the last segment relies on the estimate value calculated from

the previous segment. This property is true for n segments as

well: only a single term in the summation for each of the

n segments relies on the estimate calculated in the previous

segment so the bulk of the calculation for each segment can

be done in parallel.

The forward parallel algorithm splits the log into n parti-

tions on time slice boundaries, where each partition contains

consecutive time slices and the number of time slices in

each partition is roughly equal. We assign a worker thread

to each partition, whose job is to scan its log partition

forward and calculate partial access frequency estimates for

the records it encounters (using the serial forward algorithm

from Section III-A). Each thread stores its estimate values in

a separate hash table.1 At the end of this process, we have

n hash tables populated with the partial estimate values from

each log segment. For ease of presentation, we assume hash

table H[n] covers the tail of the log, H[n − 1] covers the

partition directly before partition n, and so forth. We then

apply an aggregation step that computes final estimates for

each record using the partial estimates in the n hash tables.

The K records with highest complete estimate values are then

returned as the hot set.

B. Parallel Backward Algorithm

We now discuss a parallelization strategy for the backward

approach. Unlike the forward approach, we want to avoid

partitioning the workload by time, since the point of backward

classification is not to scan back to the beginning time slice

in the log. Therefore, our parallel backward classification

approach assumes the log is partitioned into n pieces by record

id. Our partitioning strategy creates n separate log streams.

1For presentation clarity we use n separate hash tables to store estimates.
We can also use a shared hash table.

Algorithm 2 Backward parallel classification

1: Function BackParController(HotDataSize K, NumParts n)
2: /* Phase I: Initialization */
3: Request from each worker (1) knlb: lower bound of K

n

th
record, (2) up: num

records with upper bounds above knlb, (3) low: num records with lower bound
above knlb.

4: /* Phase II: Threshold search */
5: Q← median knlb reported from Phase I
6: tlow ← total low count from all workers
7: tup← total up count from all workers
8: if tlow < K then decrease Q

9: else increase Q

10: issue ReportCounts(Q) command to workers, get new tlow and tup values
11: if |tup− tlow| > 0 then issue TightenBounds command to workers
12: repeat steps 8- 11 until tlow = K and |tup− tlow| = 0
13: /* Phase III: Finalization */
14: List S ← record ids from all workers with upper bound estimates above Q

15: return S

16:
17: Function BackParWorker(LogPartition L, ControllerCommand C)
18: if C = Initialization then

19: read back in L far enough to find knlb, low, and up

20: return knlb, lower, and upper to controller
21: else if C = ReportCounts(Q) then

22: perform new counts for low and up given Q

23: return new low and up values to controller
24: else if C = TightenBounds then

25: read back in L to tighten upper and lower bounds for all records
26: else if C = Finalize(Q) then

27: return record ids with upper bounds above Q to controller
28: end if

When logging an access during runtime, the system uses a

hash function to direct the write to the appropriate log stream.

In this approach, a single controller thread manages a set

of worker threads each assigned to a single log partition. The

controller uses the workers to perform a distributed search

for a hot set. The worker threads are responsible for reading

back in their logs and maintaining backward estimates, upper

bounds, and lower bounds using Equations 3 through 5 in the

same way as the serial backward algorithm. The controller

thread, meanwhile, issues commands to the workers asking

for upper and lower bound counts around a given threshold

and also instructs the workers how far to read back in their

logs. Algorithm 2 provides the psuedo-code for both controller

and workers outlining the backward-parallel approach. This

algorithm works in three main phases, namely initialization,

threshold search, and finalization.

1) Phase I: Initialization: The goal of the initialization

phase (Line 3) is to have each worker thread report to the

controller an initial set of statistics to determine the “quality”

of the records contained in each worker’s log. In a perfect

world, each worker will hold K
n

records that contribute to the

hot set. This is rarely, if ever, the case. Since the controller has

no a priori information about the records in the log, it requests

that each worker read back in its log partitions far enough to

find (a) knth, the lower-bound estimate of the partition’s K
n

th

hottest record, (b) low a count of the number of records that

have lower bounds above or equal to knth, and (c) up, a count

of the number of records with upper bounds above knth. To

report accurate counts, each worker must read back far enough

to ensure it has read all records that can possibly have upper

bound estimates greater than the knth threshold. We ensure

that this happens by translating the value knth to a time slice

6

t in the log using Equation 6 (the equation used to defined

accept threshold in serial backward classification algorithm).

All records read before reaching t will have upper bounds

above knth.
Figure 5(a) provides a graphical example of this initializa-

tion phase for three worker threads and K value of 9. In this

example, worker w1 reports a knth estimate of 0.7, a low
count of 3 and an up count of 6. For worker w2, knth is 0.6,

low is 3, and up is 7, meanwhile for w4, knth is 0.8, low is

3 and up is 8. This data serves as a running example for the

rest of this section to describe the algorithm.
2) Phase II: Threshold Search: The goal of the threshold

search phase (Lines 5- 12) is to search for a common threshold

across all log partitions guaranteed to yield a final hot set size

of K . The basic idea of this phase is to use the knth threshold

values, up, and low counts reported in the initialization phase

as a search space for finding a threshold that will yield the

correct hot set. We know that such a threshold value must exist

between the highest and lowest knth threshold values reported

from the workers in the initialization phase (Appendix B pro-

vides an intuitive explanation).
During this phase, the controller communicates with the

workers using two commands:

• TightenBounds: this command requests that each worker

read back in its log partition further in order to tighten the

upper and lower bound estimates for its records. Scanning

further back in the log guarantees that the upper and lower

bounds for all records will converge and reduce overlap

between records. This means the gap between up and

low counts will converge, giving the controller a better

resolution of the number of records in contention for the

hot set.

• ReportCounts(Q): this command asks each worker to re-

port their up and low counts for a given threshold Q. The

controller uses this information to test how many records

are in contention for the hot set at a given threshold value.

To perform the search, the controller first picks the me-

dian threshold value Q reported from the initialization phase

and issues a ReportCounts(Q) command to each worker. The

workers then return their low and up counts. The total low
count from all workers tlow represents the lower bound count

for records in contention to be in the hot set at threshold Q.

Likewise, the total up count tup represents the upper bound

count for records in contention for the hot set. If tlow is

below K (i.e., too few records are in contention), the controller

reduces Q in order to yield more records. On the other hand,

if tlow is above K, it increases Q. Initially, choosing a new

value for Q involves taking the next step (greater or less)

in the list of threshold values generated in the initialization

phase. After such a move causes the tlow count to become

too low (or too high), the search makes incremental half-steps

(like binary search) between the current Q and previous Q
value. After finding a new Q, the controller issues another

ReportCounts(Q) command and receives new tlow and tup
counts. If at any point, the absolute difference between tlow
and the total tup is greater than zero, it issues a TightenBounds

command in order to converge the total count resolution. This

search process continues until the tlow count is K , and the

absolute difference between tup and tlow is equal to zero.

As an example of how this process works, we can return to

the example data in Figure 5(a), assuming K = 9. The search

phase begins with the controller picking an initial threshold

value of 0.7 (the median knth value from the initialization

phase). After issuing the command ReportCounts(0.7), assume

that tup = 21 and tlow = 11. At this point, the difference

between tup and tlow is above zero, so the controller issues

a TightenBounds command. The controller next sets Q to 0.8

(the next highest knth value reported during initialization),

since tlow is currently greater than K . After issuing the com-

mand ReportCounts(0.8). Assume tlow = 6 and tup = 7.

Since tlow value is now less than K , the controller sets Q
to 0.75 (the average of the previous and current Q values).

Figure 5(b) provides an example of the data after the controller

issues the command ReportCounts(0.75), where worker w1

returns up and low counts of 3, w2 returns up and low counts

of 2, and w3 returns up and low counts of 4. At this point,

tlow = 9 and the absolute difference between tlow and tup
is zero, and the search process ends.

3) Phase III: Finalization: In this phase (Line 14), the

controller threads sends the worker a final threshold value Q.

Each worker then reports to the controller all record ids in its

log partition with upper bound values above Q. The controller

then returns the union of these record ids as the hot set.

V. EXPERIMENTS

In this section, we experimentally evaluate the hit rate ob-

tained by the exponential smoothing estimation method as well

as the performance of our algorithms. All experiments were

implemented in C/C++ and run on an Intel Core2 8400 at 3Ghz

with 16GB of RAM running Windows 7. The input in our

experiments consists of 1B accesses for 1M records generated

using two distributions: (1) Zipf with parameter s = 1 and

(2) TPC-E using the TPC-E non-uniform distribution. For the

exponential smoothing method, we set the time slice size to

10,000 accesses, while the default hot data set size is 10% of

the number of records.

Our experimental evaluation is organized as follows. In Sec-

tion V-A, we compare the hit rate obtained using the exponen-

tial smoothing approach to that of a fictional perfect estimator,

as well as two well-known caching techniques, LRU-2 and

ARC. In Section V-B, we evaluate the effect of sampling on

the hit rate. Finally, Section V-C studies the performance and

space overhead of our classification algorithms.

A. Hit Rate Comparison

In this section, we experimentally evaluate the hit rate ob-

tained by exponential smoothing (abbr. ES). This experiment

feeds the 1B record accesses to the classifier, whose job is

to rank order records according to their estimated access fre-

quency and identify the top K% of the records as the hot

set. We then count the number of accesses to “hot” records

(out of the 1B) that the classifier would produce for varying

7

Controller

w1 w2 w3

.07

.06

.08

knth: 0.7

up: 6 low: 3

knth: 0.6

up: 7 low: 3

knth: 0.8

up: 8 low: 3

(a) Initialization

Controller

w1 w2 w3

0.75

up: 3 low: 3 up: 2 low: 2 up: 4 low: 4

ReportCounts(0.75)

(b) Controller issuing command ReportCounts(0.75)

Fig. 5. Backward parallel classification example

0

2

4

6

8

10

12

14

16

18

0.10 0.20 0.40 0.80 1.60 3.10 6.30 12.5025.0050.00

L
o

s
s

 i
n

 H
it

 R
a
te

 (
%

)

Hot Data Size (% of Database Size)

ES ES (10%) LRU2

LRU2 (10%) ARC ARC (10%)

Fig. 6. Loss in hit rate (Zipf)

hot data sizes. We compare ES to a fictional perfect classifier

(abbr. Perfect) that knows exact access frequencies and thus

identifies the hot set with exact precision.

We also compare ES with two well-known cache replace-

ment techniques: (1) LRU-2 [14], which ranks records based

on the distance between the last two accesses to the record.

(2) ARC [15], a method that manages its cache using two

queues, one for “recency” (i.e., recently requested single-access

items) and the other for “frequency” (i.e., recently requested

items with multiple accesses). ARC adaptively adjusts the size

of each queue to react to workload characteristics.

The dark solid lines in Figure 6 plot the loss in hit rate

caused by each method for varying hot data sizes using the

Zipf distribution. Loss in hit rate is the difference between

the hit rate for each tested method and the Perfect classifier.

ES is consistently the most accurate, maintaining a loss in hit

rate below 1% for all hot data sizes. LRU-2 remains fairly

accurate for small hot set sizes, but exhibits a hit rate loss

as high as 7.8% for larger hot set sizes. ARC produces a

consistent 2% loss in hit rate, outperforming LRU-2 for most

hot data sizes, a result that is consistent with the original ARC

experiments [15].

Figure 7 provides the loss in hit rate when using accesses

following the TPC-E distribution. Again, the ES approach con-

sistently tracks the Perfect classifier, maintaining a loss in

hit rate well below 1%. ARC and LRU-2 are considerably

less accurate, reaching a loss in hit rate of 6.5% and 8.5%,

respectively. These experiments show that ES is consistently

accurate and motivate our use of exponential smoothing.

0

5

10

15

20

25

30

0.10 0.20 0.40 0.80 1.60 3.10 6.30 12.5025.0050.00

L
o

s
s

 i
n

 H
it

 R
a

te
 (

%
)

Hot Data Size (% of Database Size)

ES ES (10%) LRU2

LRU2 (10%) ARC ARC (10%)

Fig. 7. Loss in hit rate (TPC)

B. Effect of Sampling

As mentioned in Section II-E, sampling is very attractive to

our framework as it reduces the overhead of logging record

accesses. Sampling can also be applied to LRU-2 and ARC

to reduce their overhead. We implement sampling as follows.

On a hit in the cache – presumably the most common case –

we randomly choose, with a probability equal to the sampling

rate, whether to update the LRU-2 or ARC queues. On a miss

we don’t have a choice: the record has to be brought in and

the queues updated.

The gray dashed lines in Figures 6 and 7 plot the results for

each method when sampling 10% of the total accesses (i.e.,

dropping 90% of the accesses) when compared to the Perfect

classifier. LRU-2 exhibits a roughly 3x accuracy degradation

for both data sets when sampling is a applied. ARC is more

oblivious to sampling with a consistent 1.75x drop in accuracy.

However, ES is still more accurate when accesses are sampled,

showing at most a 3.2 percentage point loss in hit rate.

Focusing on ES, for smaller hot data sizes (less than 1%

of the the database size), sampling does not have a noticeable

effect on accuracy. However, for larger hot data sizes, sampling

decreases the accuracy of ES. A likely explanation is that for

both the Zipf and TPC-E distributions, most of the accesses

are skewed toward a small number of records. Sampling does

not noticeably affect frequency estimations for these records.

However, for records with fewer accesses, sampling reduces

the accuracy of the estimates, thus causing errors in the rank

ordering used for classification. While sampling clearly re-

duces the hit rate, we believe the loss is still manageable.

For instance, a sample rate of 10% introduces only a roughly

8

2.5% drop in hit rate compared with logging and analyzing all

accesses. We see this as a tolerable trade-off for eliminating

90% of logging activity.

C. Performance

In this section, we study the performance of the classifica-

tion algorithms presented in Sections III and IV. All experi-

ments report the time necessary for each algorithm to perform

classification on a log of 1B accesses. We use eight threads

for the parallel algorithms.

1) Varying Hot Data Set Sizes: Figures 8(a) and 8(b) plot

the performance of the forward (abbr. Fwd), forward parallel

(abbr. Fwd-P), backward (abbr. Back), and backward parallel

(abbr. Back-P) classification algorithms using both the Zipf

and TPC-E data sets. The run time of each algorithm remains

relatively stable as the hot set size increases, with Back-P

demonstrating the best performance. For the Zipf experiments,

the run time for Back-P increases from 0.03 seconds to 4.7

seconds as the hot set size increases from 0.1% to 80% of the

data size. The run time for the serial Back increase from 0.03

seconds to 14 seconds. The run time for the Fwd algorithm

remains relatively stable around 205 seconds for most hot

set sizes, while the Fwd-P algorithm finishes in around 46

seconds. The results for the TPC-E data reveal similar results

but the run times for all algorithms are slightly higher across

the board. This is caused by less skew in the TPC-E data.

2) Varying Accesses per Time Slice: Figures 8(c) and 8(d)

plot the performance of each algorithm as the number of ac-

cesses per time slice increase from ten to 1M. In the extreme

case of 1M accesses per slice (i.e., the total number of records

in our experiments), it is likely that all records will have nearly

the same access frequency estimates, since there is a greater

chance that an access for each record will be present in each

time slice. While we do not expect such a scenario in real life

(i.e., time slice sizes should be set to a fraction of the total

data size in practice), we test these extreme cases to explore

the boundaries of our classification algorithms.

Figure 8(c) depicts the results for the Zipf data set. The

classification time for Fwd slowly decreases as the number

of time slices decrease. We believe this trend is mostly due

to increased redundancy within a time slice: since a record’s

estimate is only updated once per time slice, subsequent ac-

cesses for the same record in the same slice will not trigger

an update. Back and Back-P demonstrate superior performance

for smaller time slices, but show a steep performance decline

for the larger time slices. For time slices that contain between

ten and 10K accesses, the classification times for the Back-P

algorithm remain in the sub-second range going from 0.039

seconds to 0.96 seconds, while times for the Back algorithm

increase from 0.031 seconds to 8.03 seconds in this range.

For small time slice sizes, both algorithms are able to ter-

minate early but, for larger time slices, the performance of

both backward algorithms degrades. In this case, many records

have overlapping upper and lower bounds due to the greater

chance that most records will have an access within each

time slice. At 100K (i.e., the size of the hot set size), the

8
.0

0

8
.0

0

8
.0

0

8
.0

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.1 10 40 80M
a

x
im

u
m

 H
a

s
h

 T
a

b
le

 S
iz

e

M
il

li
o

n
s

Hot Data Size (% of Total Data)

Fwd-P Fwd Back-P Back Min

Fig. 9. Space overhead (Zipf)

backward algorithms start to see an overwhelming amount of

overlap between upper and lower bounds and thus are unable

to quickly delineate a threshold to determine the hot set. For

time slice sizes of 1M accesses, early termination is even more

difficult for these algorithms.

Figure 8(d) reports the classification times for the TPC-

E dataset. The results are similar in nature to the Zipf ex-

periments. However, classification times across the board are

slightly higher for reasons similar to those discussed in Sec-

tion V-C.1.

3) Space Overhead: Figures 9 and 10 depict the space used

by each algorithm for varying hot data sizes. We measure

space overhead as the maximum number of entries that each

algorithm stores in its hash table. The Min bar in the graph

represents the minimum number of entries possible for each

hot set size (i.e., the number of records in the hot set).

The Fwd algorithm has space overhead equivalent to the

number of unique record in the access log (in our case 1M).

The Fwd-P requires the most space of all algorithms, requiring

roughly 6.7M entries for the TPC workload and 8M entries

for the Zipf workload. The reason is that a record id may be

present in several log partitions, meaning each worker thread

will store its own statistics for that record. The Back algorithm

uses the accept threshold to only keep records in its hash

table that are in contention for the hot set. As we can see, this

optimization allows the space overhead of Back to stay close to

the optimal Min overhead. Meanwhile, the Back-P algorithm

also tracks the Min overhead fairly closely. It requires space

overhead slightly more than that used by Back, since some

worker threads will maintain local statistics for records that

end up not making it into the hot set. Overall, the backward

variants of the algorithms are clearly superior in terms of space

requirements.

D. Discussion

Our experiments show the relative strengths of our classi-

fication framework. We now briefly summarize two scenarios

where this approach is not applicable. (1) Detecting rapid

access fluctuations. Our framework is not designed to de-

tect rapid, short-lived changes in access patterns. We aim to

observe access patterns over a longer period (on our log) to

ensure that infrequently accessed records are sufficiently cold

and are likely to remain cold. (2) Use with very low sample

rates. If sampling rates are very low (e.g., possibly due to a

9

0

50

100

150

200

250

300

0.1 1 10 20 40 50 80

C
la

s
s

if
ic

a
ti

o
n

 T
im

e
 (

s
e

c
)

Hot Data Size (% of Total Data)

Fwd Fwd-P Back Back-P

(a) Zipf

0

50

100

150

200

250

300

0.1 1 10 20 40 50 80C
la

s
s
if

ic
a

ti
o

n
 T

im
e
 (

s
e

c
)

Hot Data Size (% of Total Data)

Fwd Fwd-P Back Back-P

(b) TPC

0

50

100

150

200

250

300

10 100 1K 10K 100K 1M

C
la

s
s

if
ic

a
ti

o
n

 T
im

e
 (

s
e

c
)

Num Accesses per Time Slice

Fwd Fwd-P Back Back-P

(c) Zipf

0

50

100

150

200

250

300

10 100 1K 10K 100K 1M

C
la

s
s

if
ic

a
ti

o
n

 T
im

e
 (

s
e

c
)

Num Accesses per Time Slice

Fwd Fwd-P Back Back-P

(d) TPC

Fig. 8. Performance of classification algorithms. Figures (a) and (b) plot performance for varying hot set sizes. Figures (c) and (d) plot performance for
varying number of accesses per time slice.

6
.7

2

6
.7

2

6
.7

2

6
.7

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.1 10 40 80M
a

x
im

u
m

 H
a

s
h

 T
a

b
le

 S
iz

e

M
il

li
o

n
s

Hot Data Size (% of Total Data)

Fwd-P Fwd Back-P Back Min

Fig. 10. Space overhead (TPC)

high load on the system), the accuracy of our estimates may

drop outside of a reliable threshold. This is true of any es-

timation technique including well-known caching approaches.

However, we find that a 10% sampling rate provides estimates

that are accurate enough while sufficiently reducing access

logging on the system’s critical path.

VI. RELATED WORK

Main memory OLTP engines. There has been much work

recently exploring OLTP engine architectures optimized for

main-memory access [1], [3], [4], [5], [6]. Research prototypes

in this space include H-Store [18], [5], HYRISE [1], and

HyPer [2]. Commercial main-memory systems are currently

available such as IBM’s solidDB [3], Oracle’s TimesTen [4],

and VoltDB [6]. VoltDB assumes that the entire database fits in

memory, completely dropping the concept of secondary stor-

age. We diverge from this “memory-only” philosophy by con-

sidering a scenario where a main-memory optimized engine

may migrate cold data to secondary storage and investigate

how to identify hot and cold data.

Caching. One straightforward solution is to apply caching

where hot records are those inside the cache while other records

are cold. Caching has been an active area of research for over

40 years and many caching algorithms have been proposed,

for example, LRU [12], LRU-k [14], ARC [15], 2Q [13],

and others [19], [20], [21], [22], [23]. However, caching has

significant drawbacks for our particular problem. The overhead

is high both in space and time: a minimum of 25% in CPU

time and 16 bytes per record. We also found that exponen-

tial smoothing estimates access frequencies accurately which

results in a higher hit rate than the best caching techniques.

“Top-k” processing. The backward algorithms we propose

create upper and lower bounds thresholds on record access

frequency estimates in order to potentially terminate early.

This gives the techniques a flavor of “top-k” query processing

(see [24] for an extensive survey). The problem we study in

this paper is not equivalent to top-k processing, since our envi-

ronment differs in two fundamental ways: (1) Top-k process-

ing ranks objects by scoring tuples using a monotonic function

applied to one or more of the tuple’s attributes. The problem

we study deals with efficiently estimating access frequencies

based on logged record accesses. (2) To run efficiently, all

top-k techniques assume sorted access to at least a single

attribute used to score the tuple [24]. Our proposed algorithms

scan accesses as they were logged, and do not assume any

preprocessing or sort order.

Cold data in main-memory databases. The HyPer system

is a main-memory hybrid OLTP and OLAP system [2]. HyPer

achieves latch-freedom for OLTP workloads by partitioning ta-

bles. Partitions are further broken into “chunks” that are stored

in a decomposed storage model in “attribute vectors” with each

attribute vector stored on a different virtual memory (VM)

page. This approach enables VM page snapshoting for OLAP

functionality. HyPer has a cold-data management scheme [16]

capable of identifying cold transactional data, separating it

from the hot data, and compressing it in a read-optimized

format for OLAP queries.

HyPer’s cold data classification scheme differs from ours in

several dimensions. (1) Classification granularity. HyPer per-

forms cold/hot data classification at the VM page level, which

is the granularity of its data organization. Our method clas-

sifies data at the record level due to Hekaton’s record-centric

organization. (2) Classification method. HyPer’s classification

technique piggybacks on the CPUs memory management unit

setting of dirty page flags used for VM page frame relocation.

Since HyPer pins pages in memory, it is able to read and reset

dirty flags to help classify cold and hot pages. We propose

logging a sample of record accesses and classifying cold data

offline based on the algorithms proposed in this paper. (3) Pur-

pose. HyPer’s technique aims primarily at reducing copy-on-

write overhead (caused by VM page snapshots) and reducing

the memory footprint for data still accessed by OLAP queries.

Our technique aims at maximizing main-memory hit-rate and

assumes that cold data on secondary storage is infrequently

(or never) accessed.

10

VII. CONCLUSION

This paper takes a first step toward realizing cold-data man-

agement in main-memory databases by studying how to effi-

ciently identify hot and cold data. We proposed a framework

that logs a sample of record accesses, a strategy that introduces

minimal system overhead. We use exponential smoothing as a

method to estimate record access frequencies, and show both

theoretically and experimentally that it is more accurate than

LRU-2 and ARC, two well-known caching techniques. We

proposed a suite of four classification algorithms that effi-

ciently identify hot and cold records based on logged record

accesses. Through experimental evaluation, we found that the

backward algorithms are very time and space efficient. Specifi-

cally, these algorithms are capable of sub-second classification

times on a log of 1B accesses and provide close to optimal

space efficiency.

REFERENCES

[1] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden, “HYRISE - A Main Memory Hybrid Storage Engine,” in
VLDB, 2012.

[2] A. Kemper and T. Neumann, “HyPer: A Hybrid OLTP & OLAP Main
Memory Database System Based on Virtual Memory Snapshots,” in
ICDE, 2011, pp. 195–206.

[3] “IBM solidDB, information available at http://www.ibm.com/.”
[4] “Oracle TimesTen In-Memory Database, information available at

http://www.oracle.com.”
[5] M. Stonebraker et al, “The End of an Architectural Era (Its Time for a

Complete Rewrite),” in VLDB, 2007.
[6] “VoltDB, information available at http://www.voltdb.com/.”
[7] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and

M. Zwilling, “High-Performance Concurrency Control Mechanisms for
Main-Memory Databases,” in VLDB, 2012.

[8] I. Pandis, P. Tozun, R. Johnson, and A. Ailamaki, “PLP: Page Latch-free
Shared-everything OLTP,” in VLDB, 2011.

[9] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey, “PALM: Parallel
Architecture-Friendly Latch-Free Modifications to B+ Trees on Many-
Core Processors,” in VLDB, 2011.

[10] S. Blanas, Y. Li, and J. M. Patel, “Design and Evaluation of Main
Memory Hash Join Algorithms for Multi-Core CPUs,” in SIGMOD,
2011, pp. 37–48.

[11] J. Gray and F. Putzolu, “The 5 Minute Rule for Trading Memory for
Disk Accesses and the 10 Byte Rule for Trading Memory for CPU
Time,” in SIGMOD, 1987.

[12] P. J. Denning, “The Working Set Model for Program Behaviour,”
Commun. ACM, vol. 11, no. 5, pp. 323–333, 1968.

[13] T. Johnson and D. Shasha, “2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm,” in VLDB, 1994, pp. 439–
450.

[14] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K Page Replace-
ment Algorithm For Database Disk Buffering,” in SIGMOD, 1993, pp.
297–306.

[15] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning, Low Overhead
Replacement Cache,” in FAST, 2003.

[16] F. Funke, A. Kemper, and T. Neumann, “Compacting Transactional Data
in Hybrid OLTP & OLAP Databases,” PVLDB, vol. 5, no. 11, pp. 1424–
1435, 2012.

[17] J. R. Movellan, “A Quickie on Exponential Smoothing, available at
http://mplab.ucsd.edu/tutorials/ExpSmoothing.pdf.”

[18] R. Kallman et al, “H-store: A HighPerformance, Distributed Main
Memory Transaction Processing System,” in VLDB, 2011.

[19] S. Bansal and D. S. Modha, “CAR: Clock with Adaptive Replacement,”
in FAST, 2004, pp. 187–200.

[20] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-reference Recency
Set Replacement Policy to Improve Buffer Cache Performance,” in
SIGMETRICS, 2002, pp. 31–42.

[21] D. Lee et al, “LRFU: a spectrum of policies that subsumes the least
recently used and least frequently used policies,” Computers, IEEE

Transactions on, vol. 50, no. 12, pp. 1352–1361, dec 2001.
[22] J. T. Robinson and M. V. Devarakonda, “Data Cache Management Using

Frequency-Based Replacement,” in SIGMETRICS, 1990, pp. 134–142.
[23] Y. Zhou and J. F. Philbin, “The Multi-Queue Replacement Algorithm

for Second Level Buffer Caches,” in USENIX, 2001, pp. 91–104.
[24] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query

processing techniques in relational database systems,” ACM Comput.

Surv., vol. 40, no. 4, 2008.

APPENDIX

A. Hash Record Removal in Backward Algorithm

We provide an intuitive argument for why it is safe to

remove a record r from the hash table during the filter step

in the backward algorithm (Section III-B). First, r cannot

possibly be in the final hot set, since its upper bound access

frequency estimate is less than the value representing the kth

lower bound (abbr. q). Second, we can safely discard the

statistics for r since it will never be added back to the hash

table. If we encounter r while reading further back in the log

at time slice tn, the largest upper bound it can possible have at

tn is a value that falls below q. That is, it cannot be higher than

its upper bound value that caused it to be removed from the

hash table in the first place. Thus, by definition of the accept

threshold (Equation 6), tn must be less than than the accept

threshold defined by q, otherwise r’s upper bound would be

above q, which contradicts our reason for removing it from the

hash table in the first place. Since tn is less than the accept

threshold, r will never be added back to the hash table in the

future. For the two reasons just described, removing r from

the hash table is safe, i.e., we are not removing a record that

could possibly be in the hot set.

B. Threshold Search Convergence

Using Figure 5(a) as an example, we now show that a

threshold between 0.6 (the lowest knth value reported in ini-

tialization) and 0.8 (the highest knth value reported during

initialization) will yield a correct hot set, assuming K =
9. With a threshold of 0.6, worker w2 will retrieve at least

three records (since its low count is three). Since the other

workers have knth values greater than 0.6, we are guaranteed

to retrieve at least nine records in total (our target). However, at

a threshold value of 0.6, workers w1 and w3 will likely have

lower bound counts greater than three, meaning a threshold

of 0.6 may be too conservative. Meanwhile, at a threshold of

0.8, there may be too few records, since w3 is the only worker

guaranteed to return three records at this threshold (i.e., has a

low count of three). Therefore, a ”sweet spot” must exist in

between thresholds of 0.6 and 0.8 that produces a hot set size

of exactly K records.

C. TightenBounds Details

In this section, we discuss how to define the distance each

worker must read back after receiving a TightenBounds com-

mand from the controller. While executing a ReportCounts(Q)

command, we require that each worker keep track of a min-

imum overlap value. This value is the minimum difference

11

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
il

it
y

Estimated access frequency

LRU-2

LRU-3

LRU-4

Fig. 11. Probability distribution of access frequency estimate (p = 0.2).

between the given threshold Q and the upper bound esti-

mate value closest to but greater than Q. During the Tight-

enBounds process, we require that each worker read back far

enough to tighten its bounds within this minimum overlap

value. The intuition behind this requirement is that if bounds

are shrunk to the minimum overlap range, the overall overlap

between records across partitions should be sufficiently small

and shrink the tlow and tup counts to a sufficient level.
Given a minimum overlap value of M , how far must a

worker read back in its log partition to tighten estimate bounds

within M? The goal is to translate M to a time slice in the log.

Recall from Equations 3 through 5 that we calculate the upper

bound by adding a value U = (1−α)te−tn+1 to the estbr value

(from Equation 3). Likewise, we calculate the lower bound by

adding the value U = (1−α)te−tb+1 to estbr. Since U is the

variable term (due to its reliance in tn), we want to shrink U
such that U ≤ M . In other words, we want (1−α)te−tn+1 ≤
M . Solving for tn gives us the time slice defined as: tn =
te + 1− log(1−α)M .

D. Distribution of LRU-k Estimates

The LRU-k caching policy ranks items in the cache ac-

cording to the observed distance between the last k accesses

an item and evicts the item with the longest distance. This is

equivalent to estimating the access frequency based on the last

k accesses and rank ordering the items based on the estimate.

In this section we derive the probability distribution of the

access frequency estimated by LRU-k under the independent

reference model.
Suppose we observe an access to a record r and the distance

to the kth previous access is n. Represent an access to a record

r by a red ball and an access to any other record by a blue

ball. If so we have a sequence of n+1 balls where the first and

last balls are both red and the remaining n− 1 balls is a mix

of k− 2 red balls and n− 1− (k− 2) = n− k+1 blue balls.

There are
(

n−1
k−2

)

distinct ways to arrange a set of n−1 red and

blue balls where k − 2 balls are red. Suppose the probability

of drawing a red balls is p (p is the probability of accessing

record r). When drawing a red ball, then the probability of

having a prior sequence of n balls that ends with a red ball

and contains k − 2 additional red balls is

Pr(n, k − 1) =

(

n− 1

k − 2

)

pk−1(1 − p)n−k+1 n ≥ k − 1 (8)

The LRU-k policy amounts to estimating the probability p
by p̂ = (k − 1)/n, that is, the fraction of red balls in the

sequence of n balls. The estimate takes only the discrete values

1, (k−1)/k, (k−1)/(k+1), (k−1)/(k+1), The probability

distribution of the estimate computed by LRU-k is then

Pk(p̂ =
k − 1

n
) =

(

n− 1

k − 2

)

pk−1(1−p)n−k+1 n ≥ k−1 (9)

The formulas for the special cases k = 2, k = 3, and k = 4
are much simpler as shown below. For example, the LRU-2

estimate follows a geometric distribution.

P2(p̂ = 1/n) = p(1− p)n−1 n = 1, 2, 3, ...

P3(p̂ = 2/n) = (n− 1)p2(1− p)n−2 n = 2, 3, 4, ...

P4(p̂ = 3/n) =
(n− 1)(n− 2)

2
p3(1− p)n−3 n = 3, 4, 5, ...

Figure 11 plots the distribution of the access frequency

estimated by LRU-2, LRU-3, and LRU-4. The true access

frequency is p = 0.2. As expected the variance of the estimate

is reduced as k increases but, in general, it remains quite high.

E. N-Minute Rule Calculation

SSD and DRAM hardware trends can be translated into an

updated version of the n-minute rule introduced by Gray and

Putzolu [11]. The n-minute rule is defined as:

BEInterval =
SSDPrice

IO/s
×

1

ItemSize× RAMPrice
(10)

The equation shows that data should be cached if it is accessed

more often than once per break-even interval (BEInterval),

otherwise it is more economical to store it on an SSD. The

first term of the equation represents the price paid for one SSD

IO per second, while the second term represents the cost of

buffering an item (page, tuple. etc) in memory. The SSD cost

per IO/s is surprisingly uniform across hardware vendors in the

range of $0.05-0.10 per read IO/s, while server class DRAM

costs around $15/GB. Therefore, the break-even point for a

200 byte record is about 60 minutes, while for a traditional

4kB page is about 3 minutes. The break-even interval for a

4kB page is around 175 sec, remarkably close to the 400 sec

threshold derived by Gray and Putzolo 25 years ago despite

orders of magnitude improvements in hardware. The break-

even interval grew slowly over time as improvements in the

cost of a HDD IOs ($1000 per IO/s in 1986, $2 per IO/s

in 2012; approx. 500X improvement) lagged behind DRAM

cost improvements ($5/kB in 1986, $15/GB in 2012; approx.

350,000X improvement). Switching from a magnetic disk to

an SSD improves IO cost by about 100X. In essence, SSDs

have made the n-minute rule once more relevant.

The prices used in the calculation were obtained from the

Crucial and Dell web sites and from recent price quotes and

web sites of suppliers of SSDs. I/O rates were obtained from

SSD spec sheets.

12

