
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11655  | https://doi.org/10.1038/s41598-020-68387-3

www.nature.com/scientificreports

identifying hotspots of invasive 
alien terrestrial vertebrates 
in europe to assist transboundary 
prevention and control
ester polaina1, tomas pärt1 & Mariano R. Recio1,2*

This study aims to identify environmentally suitable areas for 15 of the most harmful invasive 
alien terrestrial vertebrates (iAtV) in europe in a transparent and replicable way. We used species 

distribution models and publicly-available data from GBif to predict environmental suitability 

and to identify hotspots of iAtV accounting for knowledge gaps in their distributions. to deal with 

the ecological particularities of invasive species, we followed a hierarchical approach to estimate 

the global climatic suitability for each species and incorporated this information into refined 
environmental suitability models within europe. combined predictions on environmental suitability 

identified potential areas of IATV concentrations or hotspots. Uncertainty of predictions identified 
regions requiring further survey efforts for species detection. Around 14% of Europe comprised 
potential hotspots of IATV richness, mainly located in northern France, UK, Belgium and the 
Netherlands. IATV coldspots covered ~ 9% of Europe, including southern Sweden and Finland, and 
northern Germany. Most of Europe (~ 77% area) comprised uncertain suitability predictions, likely 
caused by a lack of data. priorities on prevention and control should focus on potential hotspots where 

harmful impacts might concentrate. Promoting the collection of presence data within data-deficient 
areas is encouraged as a core strategy against iAtVs.

Invasive alien species (IAS) are the second greatest cause of global biodiversity loss and endangerment, a�er 
habitat destruction, and pose an increasing threat to human economies and native  ecosystems1,2. �e varied 
insidious impacts caused by IAS have proli�cally been reported for island ecosystems due to the particular fragil-
ity of these  environments3. However, alien species have invaded all kind of ecosystems and their impacts at large 
continental scales are of great concern for the conservation of natural and human  systems4. In the United States 
alone, IAS are considered a threat for 42% of endangered species, and involve annual costs of U.S. $137 billion5. 
In Europe, IAS are responsible for estimated damage costs (i.e. excluding management costs) of €10–20 billion 
per  year6. Approximately 14,000 alien species were reported in 2015 in Europe, of which ~ 10–15% are consid-
ered  invasive7. However, the potential economic and ecological impact of about 90% of these species remains 
 unknown8. �erefore, improving knowledge about invasion patterns, risks, and impacts is still required.

Control of IAS is included as a priority to halt biodiversity loss in global initiatives, such as the Convention on 
Biological  Diversity9. Europe has speci�c legislation on IAS prevention and management; however, transbound-
ary cooperation is necessary to guarantee their compliance and e�ectiveness, including that from bordering non-
EU  countries10,11. To reduce the expansion and associated deleterious impacts of IAS, it is of critical importance 
to identify and characterize priority areas of management that include hotspots of achieved or potential invasion 
of the most harmful IAS at a continental level. Research e�orts in this direction can assist decision-making and 
inform policies that focus on cost-e�cient management  strategies12.

Anticipating areas where IAS are likely to persist can be achieved using species distribution models (SDM). 
�ese models identify the relationships between current species’ presence and the abiotic (usually climatic vari-
ables) and biotic (e.g. habitat, species interactions) factors that are associated with species survival and estab-
lishment in a given  area13. However, IAS violate the theoretical assumptions of traditional SDM methods. Niche 
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transferability does not always occur because invasive species can adapt to new conditions within invaded areas 
and, normally, they are not in equilibrium with the environment (i.e. their absence may not indicate unsuitable 
conditions but rather lack of detection, dispersal limitations or low propagule  pressure14). To overcome these 
limitations, when real absences are missing, SDM frameworks tailored for invasive species incorporate both 
native and invasive distribution ranges to include all recorded climatic conditions where the species may persist. 
In hierarchical approaches, this information is included in a global model, which approximates the global climatic 
suitability for the species, to partially overcome niche transferability issues. �ese results are used to weigth the 
pseudo-absences at the regional level, providing a higher weight (i.e. closer to a real absence) to areas where 
global suitability is lower and, therefore, regional suitability is likely to be low (vs. non-occupied)15.

Among alien species, invasive alien terrestrial vertebrates (herea�er only IATV) abound and are of particu-
lar relevance in Europe due to their high establishment rates and the broad range of impacts they cause within 
vast  areas16,17. IATV threaten native species by predation, competition, hybridization and spread of diseases, 
and have devastating impacts on socioeconomic systems and on public and animal  health18. As reported by the 
DAISIE Project (“Delivering Alien Invasive Species Inventories for Europe”), there are around 270 IATV spe-
cies in Europe, of which 15 are in the expert-based ranking list of the “100 of the Most Invasive Alien Species in 
Europe”, a representative sample of diverse harmful impacts known to occur in  Europe18. �ese 15 harmful IATV 
comprise nine mammals, four birds, one amphibian and one reptile (Table 1). �eir negative impacts include 
damage to crops, wood plantations and recreational areas by Cervus nippon or Branta canadensis19,20, transmis-
sion of diseases such as rabies or Lyme disease by Procyon lotor or Tamias sibiricus21,22, and introduction in 
Europe by Lithobates catesbeianus of the lethal chytrid fungus that threatens amphibian populations  worldwide23. 

To assist the prioritization of management strategies and policies, and to prevent future impacts of these IATV, 
this study aims to improve our understanding of the environmentally suitable areas for these species in Europe. 
We identify the areas where IATV potentially concentrate or are less present accounting for the areas where sig-
ni�cant knowledge gaps exist. �e speci�c factors determining the persistence of these terrestrial vertebrates in 
Europe are largely unknown, partly because they occupy wide and/or opportunistic niches and because previous 
studies are mostly local. Here we close this gap by modeling broad suitability areas for these IATV species at a 
continental scale based on a complete set of climate, land-use and additional habitat descriptors. We �t SDMs 
within Europe for each species adapting the hierarchical method suitable for invasive species particularities 
(weighting European pseudo-absences based on previously �tted global climatic models)15 and using exclusively 
open-access occurrence data from the Global Biodiversity Information Facility (GBIF)24. Predictions obtained 
from SDMs allow delimiting hotspots of IATV richness and devising a priority management area classi�cation 
that besides considers the uncertainty of predictions. Quality and accuracy of GBIF data are o�en questioned; 
however, we use this uncertainty to identify areas where further data collection is urged as a management action 
to approach IATV threats. Our results may contribute to prioritize and focus strategies to reduce the detrimental 
impacts caused by IATV in Europe, and our methods could be applied to other areas and species worldwide.

Table 1.  List of the 15 invasive alien terrestrial vertebrates (IATV) included in the DAISIE’s list of 100 of the 
worst alien species in  Europe67. Native ranges were retrieved from the CABI invasive species  compendium68.

Scienti�c name Common names Native range

Mammals

Cervus nippon (Temminck, 1836) Sika deer, Japanese deer Japan, Taiwan, China, Far Eastern Russia

Myocastor coypus (Molina, 1782) Coypu, nutria Argentina, Bolivia, southern Brazil, Chile, Paraguay, Uruguay

Neovison vison (Schreber, 1777) American mink
Canada and United States, except Arizona and the dry parts of California, 
Nevada, Utah, New Mexico, western Texas

Nyctereutes procyonoides (Gray, 1834) Racoon dog, mangut, tanuki, neoguri China, Japan, Macau, Mongolia, North and South Korea, Vietnam

Ondatra zibethicus L., 1766 Muskrat United States, Canada, northern Mexico

Procyon lotor L., 1758 Racoon Central and North America

Rattus norvegicus (Berkenhout, 1769) Brown rat, Norway rat Northeast China

Sciurus carolinensis (Gmelin 1788) Grey squirrel, American grey squirrel, Eastern grey squirrel Eastern United States and Canada

Tamias sibiricus (Laxmann, 1769) Siberian chipmunk, common chipmunk North Russia, China, Kazakhstan, Mongolia, North and South Korea

Birds

Branta canadensis L., 1758 Canada goose Canada, the Caribbean, Mexico, United States

Oxyura jamaicensis (Gmelin, 1789) Ruddy duck North America, the Caribbean, Andean regions of South America

Psittacula krameri (Scopoli, 1769) Rose-ringed parakeet

Bening, Burkina Faso, Cameroon, Chad, Côte d’Ivoire, Dijibouti, Ethiopia, 
Gambia, Ghana, Guinea, Guinea-Bissau, Mali, Mauritania, Niger, Nigeria, 
Senegal, Somalia, Sudan, Togo, Uganda, Afghanistan, Bangladesh, Buthan, 
India, Nepal, Myanmar, Pakistan, Sri Lanka

�reskiornis aethiopicus (Latham, 1790) African sacred ibis Great part of Africa, Iraq, Kuwait

Amphibians

Lithobates catesbeianus (Dubois, 2006) American bullfrog North America

Reptiles

Trachemys scripta (Schoep�, 1792) Slider turtle, yellow-bellied slider turtle Mexico, United States
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Results
European models (including climatic, land-use, accessibility, and other predictors) performed well for most 
species (Table 2; Supplementary Fig. S2.1.3), with an average of 91% of presences and 86% pseudo-absences 
correctly predicted. Model uncertainties �uctuated among species  (CVrange = 0.09–0.70; Table2; Supplementary 
Fig. S3.3.1). Range �lling (i.e. the proportion of reported presences over the binary potential suitable area for 
each species) varied widely among species, with values as low as < 0.1 for L. catesbeianus and T. sibiricus, and 
relatively high values (> 0.5) for B. canadensis and Rattus norvegicus (Table 2; Supplementary Fig. S2.1.4). Climatic 
predictors were the most relevant to predict environmental suitability in the European models for all species, 
with additional important variables for certain species, such as the fraction of urban areas for T. sibiricus, or 
roughness for L. catesbeianus (Supplementary Table S2.1.1). Global only-climatic models, �tted to weight the 
European pseudo-absences, correctly predicted on average 93% of the global presences (sensitivity) and 87% 
of the pseudo-absences (speci�city) of IATV (Table 3; Supplementary Fig. S2.1.1). Model uncertainties varied 
among species, ranging from CV = 0.08 (Oxyura jamaicensis) to 0.63 (N. vison; Supplementary Fig. S2.1.2), being 
on average higher than in European models. As expected, climatic suitable areas (binary predictions based on 
global models) were larger than environmentally suitable areas (binary predictions based on European models; 
Supplementary Fig. S2.1.4). For some species such as Neovison vison or B. canadensis, climatic suitable areas were 
not predicted as fully environmentally suitable although some presences were reported in those only-climatic 
suitable areas (Supplementary Fig. S2.1.4).

Predictions of the European models showed the maximum predicted IATV richness per grid-cell in the 
northwest part of continental Europe and the British Islands. Minimum predicted IATV richness values occurred 
in eastern Europe, northern Scandinavia, and Iceland (Supplementary Fig. S2.2.1). Areas of high IATV richness 
de�ned by only-climatic global predictions were wider, as expected from less restrictive models (Supplementary 
Figs. S2.2.1 and S2.2.2). Based on the uncertainty criteria, measured by the average CV of all-species European 
ensemble predictions, we de�ned two groups of areas within Europe, certain (low CV values; A–F, Fig. 1) and 
uncertain (high CV values; C–F, Fig. 1). Within the �rst group, areas of high predicted IATV, ‘hotspots’ (B), 
covered about 14% of Europe, and were mostly concentrated in central north-western Europe (Fig. 2). Several 
‘coldspot’ areas of IATV were determined (A), conforming ~ 9% of the grid-cells and mostly located in southern 
Sweden and Finland, northern Germany, and scattered patches in central France and Ireland (Fig. 2). Within 
uncertain areas, areas where European and global predictions agreed conformed either ‘uncertain hotspots’ (0.5% 
of study area; F, Fig. 2) or ‘uncertain coldspots’ (29% of study area; C, Fig. 2). Around 48% of Europe (east and 
south of continental Europe) was predicted as climatically suitable (global model) for numerous IATV species, 
although this was not consistent with the European models, predicting low IATV richness; therefore, it was clas-
si�ed as ‘uncertain climatic hotspots’ because it would be classi�ed as hotspot only attending to climatic criteria 

Table 2.  Results on the predictive ability of the European models �tted with certain datasets. n indicates the 
number of presence points used to �t the model. TSS is the true skill statistic. Sensitivity is the proportion of 
positives correctly predicted. Speci�city is the proportion of absences correctly predicted. Cut-o� binary shows 
the value of suitability (0–1) that maximized the sum of sensitivity and speci�city and was used to convert the 
continuous prediction into binary. Mean CV is the mean coe�cient of variation among models in the ensemble 
prediction standardized between 0 and 1. Range �lling represents the fraction of the grid-cells classi�ed as 
‘presence’ in the binary map that overlapped with the observed records on species presences.

Species n TSS Sensitivity Speci�city Cut-o� binary Mean CV Range �lling

Mammals

Cervus nippon 368 0.83 95.09 87.63 0.64 0.31 0.18

Myocastor coypus 2,444 0.63 82.03 81.41 0.58 0.56 0.47

Neovison vison 1,328 0.81 92.74 87.99 0.63 0.44 0.51

Nyctereutes procyonoides 422 0.72 92.12 80.38 0.58 0.42 0.14

Ondatra zibethicus 1,223 0.68 87.83 79.75 0.08 0.44 0.31

Procyon lotor 405 0.84 94.57 89.61 0.67 0.33 0.23

Rattus norvegicus 3,064 0.74 90.10 83.87 0.58 0.09 0.63

Sciurus carolinensis 631 0.93 95.51 97.29 0.61 0.37 0.54

Tamias sibiricus 71 0.86 100.00 86.00 0.41 0.25 0.03

Birds

Branta canadensis 3,704 0.66 81.64 84.23 0.58 0.70 0.67

Oxyura jamaicensis 528 0.73 88.55 84.24 0.75 0.28 0.20

Psittacula krameri 564 0.74 88.45 85.11 0.41 0.50 0.21

�reskiornis aethiopicus 281 0.79 92.47 86.43 0.56 0.28 0.13

Amphibians

Lithobates catesbeianus 51 0.88 96.08 91.89 0.58 0.56 0.04

Reptiles

Trachemys scripta 1,210 0.73 86.03 86.69 0.69 0.32 0.40
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(D, Fig. 2). No grid-cell was identi�ed as an ‘uncertain environmental hotspot’ (E), characterized by high IATV 
richness according to the European model (all environmental predictors) and low IATV richness as for the global 
model (only climatic predictors; Fig. 1). Uncertainties associated with dissimilar environmental conditions 
(measured by MESS) and with GBIF spatial bias (measured by half-ignorance index) were on average higher 
within ‘uncertain coldspots’ and ‘uncertain climatic hotspots’, being minimum within ‘hotspots’ (Table 4). �ese 

Table 3.  Results on the predictive ability of the global models using the certain + NA dataset. n indicates the 
number of presence points used to �t the model. TSS is the true skill statistic. Sensitivity is the proportion 
of positives correctly predicted. Speci�city is the proportion of absences correctly predicted. Cut-o� binary 
shows the value of suitability (0–1) that maximized the sum of sensitivity and speci�city (TSS) and was used to 
convert the continuous prediction into binary. Mean CV is the mean coe�cient of variation among models in 
the ensemble prediction standardized between 0 and 1.

Species n TSS Sensitivity Speci�city Cut-o� binary Mean CV

Mammals

Cervus nippon 457 0.91 98.02 92.92 0.44 0.55

Myocastor coypus 3,151 0.83 94.25 88.85 0.54 0.62

Neovison vison 2052 0.87 93.84 93.56 0.59 0.63

Nyctereutes procyonoides 689 0.88 96.92 91.56 0.49 0.54

Ondatra zibethicus 2,321 0.77 95.24 81.91 0.20 0.60

Procyon lotor 2,635 0.75 89.59 85.42 0.75 0.47

Rattus norvegicus 3,880 0.85 92.83 92.13 0.63 0.59

Sciurus carolinensis 2088 0.86 96.01 89.84 0.27 0.56

Tamias sibiricus 93 0.88 91.21 96.37 0.64 0.48

Birds

Branta canadensis 22,953 0.73 86.11 86.66 0.73 0.37

Oxyura jamaicensis 13,030 0.70 89.99 80.31 0.30 0.08

Psittacula krameri 5,741 0.70 88.51 81.08 0.58 0.53

�reskiornis aethiopicus 2,694 0.77 93.52 83.48 0.50 0.10

Amphibians

Lithobates catesbeianus 1937 0.76 92.56 83.73 0.44 0.46

Reptiles

Trachemys scripta 2,863 0.79 92.44 86.68 0.49 0.57

Figure 1.  Classi�cation tree applied to determine the category of each grid-cell within the ‘priority 
management areas’ classi�cation. CV Europe ensemble model is the average of the coe�cient of variation of the 
15 IATV European ensemble models (including all type of predictors). Predicted IATV richness, Europe is the 
sum of all binary predictions of the 15 IATV European ensemble models. Predicted IATV richness, Global is 
the sum of all binary predictions of the 15 IATV global ensemble models (including only climatic predictors). 
�resholds to determine high and low values are the central values for each variable (CV = 0.5; predicted IATV 
richness = 7).
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analyses overall revealed that the predictions in eastern Europe, north of Scandinavia, Iceland and the Iberian 
Peninsula would be more uncertain due to dissimilar environmental conditions, with di�erences among spe-
cies (Supplementary Fig. S3.1.1). Looking at the GBIF spatial bias, we found eastern Europe, Portugal, northern 
Fennoscandia and Iceland are the most poorly sampled areas (Supplementary Fig. S3.2.1.1).

We decided to include occurrence data of unknown spatial uncertainty (as de�ned by GBIF) in global models 
to incorporate undersampled regions of the world (certain + NA dataset; Supplementary Fig.S1.1). Using the cer-
tain + NA dataset led to slightly less accurate and more uncertain results, with small di�erences in spatial predic-
tions except for birds, compared to the alternative �tted using only occurrences with uncertainty appropriate for 
our spatial resolution (certain dataset; Supplementary Table S2.1.2, Supplementary Figs. S2.1.6–S2.1.7). However, 
the derived European models were essentially as good as those based on global models �tted with certain datasets 
(Table 2 vs. Supplementary Table S2.1.3), with di�erences among species. Continuous environmental suitability 

Figure 2.  Priority management areas obtained from the application of the classi�cation criteria described in 
Fig. 1, based on Supplementary Figs. S2.2.1, S2.2.2 and S3.3.1. �e pie-chart to the le� represents the proportion 
of grid-cells that belong to each class a�er aggregating all the categories under the ‘uncertain areas’ group, i.e. 
zones C to F (grey area). �e pie-chart to the right represents the percentage of grid-cells within each category 
within ‘uncertain areas’. No grid-cell was classi�ed as E (uncertain environmental hotspot). �is �gure was 
generated with QGIS v.3.2.366 (www.qgis.org).

Table 4.  Summary statistics of the di�erent sources of uncertainty, associated with the environmental 
predictors (MESS, Multivariate Environmental Similarity Surfaces, expressed as the proportion of species 
present in each grid-cell presenting dissimilar environments); the occurrence data (Ignorance index, half-
ignorance index per grid-cell calculated as in Supplementary Eq. S1; higher values indicate less occurrence 
data); and the variability of predictions (CV, average coe�cient of variation per grid-cell over all-species 
ensemble predictions). Mean, minimum (Min) and maximum (Max) values per zone are reported.

Zones

MESS Ignorance index CV

Mean Min Max Mean Min Max Mean Min Max

A. Coldspot 0.30 0.00 0.80 0.44 0.02 1.00 0.45 0.29 0.50

B. Hotspot 0.15 0.00 0.87 0.24 0.00 1.00 0.31 0.00 0.50

C. Uncertain coldspot 0.61 0.20 1.00 0.70 0.02 1.00 0.67 0.50 0.97

D. Uncertain climatic hotspot 0.52 0.00 1.00 0.68 0.01 1.00 0.66 0.50 0.98

E. Uncertain hotspot 0.28 0.07 0.67 0.39 0.02 0.92 0.53 0.50 0.63

http://www.qgis.org
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predictions were also very similar (Bhattacharyya distances < 0.08; Supplementary Table S2.1.3 and Supplemen-
tary Fig. S2.1.9). On the other hand, we prioritized precision in European models, thus we removed occurrence 
data of unknown spatial uncertainty (certain dataset). Adding uncertain observations (NA + certain dataset) to 
�t European models resulted in less accurate and more uncertain models (Supplementary Table S2.1.4), with 
suitability predictions relatively dissimilar to the main version (�tted with only certain datasets at the European 
level, but including NA observations globally; Bhattacharyya distances < 0.40; Supplementary Table S2.1.4 and 
Supplementary Fig. S2.1.11). Overall, using the certain + NA dataset instead of the certain one to �t European 
models did not reduce uncertainties associated with dissimilar environmental conditions, except for three spe-
cies of birds (Supplementary Figs. S3.1.1 and S3.1.2).

Discussion
We contributed with a spatial approach to forecast potential environmentally suitable areas for 15 of the most 
harmful IATV in Europe to assist in prioritizing decision-making on the management of these species. Our 
approach enabled the identi�cation of certain hotspots in terms of predicted species richness, where the imple-
mentation of control measures is crucial. We also incorporated model uncertainties to identify where improved 
species monitoring e�orts are necessary, and assessed additional sources of uncertainty to support our results. 
Northwestern Europe accounts for the largest areas of potential IATV hotspots, but additional smaller hotspots 
are distributed over the study area. Nearly 77% of the continent requires further monitoring e�orts to collect 
additional information on IATV presence that can improve model predictions on the potential distribution of 
these species and better inform management actions of prevention and control.

�e main IATV hotspot in central north-west Europe would provide suitable environmental conditions 
for most of the studied species, including in areas of current unknown presences (B; Fig. 2). �is hotspot is 
characterized by dense human populations, high socioeconomic development, and high levels of human dis-
turbance, which are all factors typically associated with increased concentrations of IAS in  general25. Previous 
research based on additional taxa and data sources also revealed the potential of these areas to concentrate 
alien  species26,27. Additionally, a greater awareness of the problem of invasive species by the authorities and the 
general public might occur in these areas and result in more exhaustive dataset compilations from opportun-
istic citizen science data and standardized inventories. Rich and complete datasets on species presences could 
explain the high certainty of predictions in these areas (Table 4). �e concentration of several invasive species in 
the same geographical area may add extra pressure on native ecosystems, and make any control program more 
 challenging28. Firstly, di�erent species have di�erent habitat requirements, behaviours and ecology, and thus 
require di�erent control measures that all together may be costly and logistically arduous. Second, IATV a�ect 
various socioeconomic sectors (cattle industry, croplands, cities) and natural systems (protected areas or species), 
which may cause con�icts of interests among stakeholders and thus, hindering the establishment of management 
 priorities29. �ird, high concentrations of IATV across national borders represent a signi�cant challenge for 
control programs and transboundary policies and thus, requires cooperation between  countries30. Considering 
all the potential negative impacts of IATV on native ecosystems, the economy and the management challenges 
that a high concentration of IATV would imply, prevention and early control should be prioritized within these 
areas. In this way, damages can be reduced and it could be possible to prevent potential reservoirs or stepping 
stones from source hotspots where IATV can expand into neighboring suitable  areas31.

Only 9% of Europe was identi�ed as coldspots for the IATV studied (A, Fig. 2) and mostly included areas in 
southern Fennoscandia. From socioeconomic and social-awareness perspectives, these areas are similar to those 
of IATV hotspots. However, Fennoscandia is less populated than most other hotspots in central Europe, and the 
climatic conditions are more extreme and less suitable for several species such as C. nippon or L. catesbeianus 
(Kaji et al.33; Yiming et al.32). In principle, less IATV species would imply lower impacts. However, ignorance 
related to GBIF datasets is higher within these areas than within hotspots, therefore greater caution is required 
(Table 4). Besides, these northern regions can host vulnerable native species and ecosystems sensitive to even few 
IATVs (e.g. predation of breeding wetland birds by N. vison34). Fewer IATV species makes control and eradication 
objectives a priori more approachable. Still, if relatively extreme climate conditions are limiting IATV expansion 
into these areas, caution is also required for the future e�ects of climate change. �e potential warming of these 
areas could promote more favorable habitats for some IATV species and gradually become  hotspots35.

Some other areas of Europe may also present favorable conditions to harbor large numbers of IATV; however, 
these remain unidenti�ed due to di�erent uncertainties, as suggested by the high variability within the predic-
tions of our models. More than 75% of the studied area in Europe would bene�t from additional occurrence 
data on IATV to provide improved information on their potential distribution, invasion risk, and subsequent 
detrimental impacts. We con�rmed uncertain predictions within uncertain coldspots and uncertain climatic 
hotspots are mostly caused by a lack of data and, consequently, coverage of speci�c environmental conditions 
where it is hard to infer accurate predictions (Table 4). Within ‘uncertain’ areas, those presenting high climatic 
suitability but low environmental suitability deserve special attention (uncertain climatic hotspots; Fig. 2D). 
Although these areas have favorable climatic conditions for numerous species, non-climatic factors might be 
limiting the distribution of IATV, added to other possible causes such as dispersal limitations or low propagule 
 pressure36. Caution is required for the potential changes of land-use that could create suitable environments for 
IATV and/or remove dispersal barriers for the expansion of IATV into climatically favorable areas. Additional 
data covering all environmental conditions in Europe could help to understand the on-going process in the 
uncertain areas (Supplementary Figs. S3.1–S3.8).

Although using exclusively GBIF data might limit predictive capabilities of the models, the use of publicly 
available and feasible occurrence data guarantees transparency and the possibility to improve models when 
more data become available, key for invasive species. New legislation and rankings of invasive species constantly 
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appear, thus having a uni�ed data source and a common analytical framework are key to guarantee long-term 
 evaluations37,38. Using fragmented, dispersed, not-standardized, non-digitalized, and o�en not publicly available 
data hampers modelling initiatives at wide scales, hinders reproducibility, and impedes real comparison among 
similar studies. Consequently, we suggest as common practice the uploading of occurrence data from literature 
reviews into an established open-access occurrence dataset, such as  GBIF39. Alternative initiatives to collect 
data on species’ presence over large spatial scales already exist and are downloadable upon request. However, 
these sources o�en focus on over-represented areas of EU and USA, or consider the occurrences separately in 
invasive and native ranges (e.g. CABI-ISC, https ://www.cabi.org/isc; ISSG, https ://www.issg.org; EASIN, https 
://easin .jrc.ec.europ a.eu). We acknowledge our data comes from a snapshot of a continuously growing dataset 
repository relying on di�erent levels of participation between countries and regions, which may potentially lead 
to geographic bias on IATV presence datasets. However, our analysis framework explicitly incorporates the 
identi�cation of these areas as ‘uncertain’, i.e. where predictions are less solid, omission errors are more probable, 
and vice versa. Reinforcing the participation of non-EU countries in EU policies against IAS would enhance the 
success of control programs at continental levels (particularly in border countries) and it would contribute to data 
collection in uni�ed initiatives like  GBIF40. In general, the data coverage of GBIF in Europe is similar to other 
reference organisms such as CABI, which lacks point-occurrence information (Supplementary Table S3.2.2.1).

We acknowledge uncertainty is an inherent characteristic to all statistical models (Supplementary SI3). �is 
uncertainly is particularly high at broad scales and when using data containing opportunistic records such as 
GBIF. However, the identi�ed uncertainty can be seen as an advantage as it allows us identifying where greater 
support for continuous and intensive e�orts on monitoring IATV is  required41. We identi�ed the lack of data in 
some regions as the main source of uncertainty, which implies not all the environmental conditions included 
in the models are equally covered (Supplementary Information S3). Another concern could arise from the 
predicted suitable ranges, which might potentially be overestimated, particularly by our global models. Never-
theless, this attribute is considered as an advantage to predict potential areas of invasion where false positives 
are preferred over false negatives in management  actions42. Moreover, these predictions were exclusively used 
to weight European pseudo-absences, and to con�rm European predictions within uncertain areas. We aimed 
a trade-o� by including an expanded dataset of species presences to �t the global models and a more restricted 
dataset for the European models. �is way, we con�rmed that including NA observations in the global models 
did not compromise model accuracy and spatial predictions. On the contrary, including NA observations in the 
European models led to poorer results. Overall, our research approach delimitates risk areas on a broad scale 
while implementing management and research recommendations, and sets a baseline for research on the future 
expansion of IATV.

Future scenarios on climate and land-use changes are expected to in�uence the invasion capacity of the spe-
cies through synergistic  processes43,44. Considering available data on climate and land-use changes are mostly 
available at low  resolutions45, these could be directly incorporated into our modeling to strengthen the forecasting 
of plausible scenarios and to interpret alternative invasion processes, either facilitating or constraining IATV 
expansion. �ese initiatives would be precious to account for the future impacts of IATV so that decision-making 
in management strategies could adjust to coming changes.

European regulations against invasive species highlight the need for international transboundary cooperation 
to achieve prevention and control successfully within member  states46. However, IATV detection and study is still 
very fragmented in  Europe21, which hinders collaboration between di�erent countries and the implementation 
of common transboundary strategies to solve shared conservation problems. In addition, collaborations o�en 
exclude non-EU countries with similar concerns on IATV management. Our research is a valuable initiative 
to warn about the dimension of the IATV problem at a continental level, highlighting the ignorance on their 
potential spatial distribution. Field studies, citizen-science initiatives and the promotion of open-access data 
availability are all fundamental to obtain the best possible quality data and to reduce the uncertainties here 
identi�ed. Our modelling approach was speci�cally developed for invasive species and proposes a framework 
to provide results in a straightforward and replicable fashion, applicable to other areas. It also enables predic-
tions on future potential suitable areas for these species under di�erent climatic and land-use change scenarios.

Methods
We followed a SDM approach devised for invasive species based on presence-only  data15. �is approach consisted 
of the �tting, for each IATV species, �rstly a global model, and second a European model within the invaded 
area of interest (Fig. 3).

We considered Europe as the area comprised of the 27 European Union countries, Great Britain, Norway, 
Switzerland, Iceland, the Balkan countries, and the European microstates (Supplementary Table S1.1). Global 
models approximated the global climatic niche of each species by including the native and invaded ranges to 
account for the non-conservation of the niche typical of  IAS47. To correct for the lack of equilibrium with the 
recipient environment, the European models incorporated the output of the global model to weight the reli-
ability of each pseudo-absence. European models estimated the realized regional niche and represented current 
environmental suitability according to the information available, instead of a comprehensive description of the 
ecological niche of each  species14. We computed global and European models using a grid size of 0.25° × 0.25° 
(c. 30 × 30 km), corresponding to the minimum available resolution of the predictor datasets on land use. All 
analyses were made in  R48.

Data compilation. We assumed the climate was the main factor limiting global species’ distribution, 
whereas, at the European scale, additional factors shaped their probability of  presence13. �erefore, we selected 
only climatic variables for the global models (CHELSA  database49) and added general habitat descriptors to the 

https://www.cabi.org/isc
https://www.issg.org
https://easin.jrc.ec.europa.eu
https://easin.jrc.ec.europa.eu
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European models, including variables on land use (land-use harmonization  project45), water  availability50,51, 
distance to the coast,  topography52, and accessibility to major cities (distance  based53; Supplementary Tables S1.2 
and S1.3). When required, we averaged raster predictors to the adopted pixel resolution of 0.25° × 0.25° (Sup-
plementary Box S1.1 and Supplementary Table S1.4). We used the same variables for all the species to follow a 
parallel modelling approach, and because inferring speci�c causality at this scale and resolution is unrealistic. 
Predictors exhibiting multicollinearity (variance in�ation factor, VIF > 4) were excluded from all models (‘vif-
step’ function, usdm  package54), which resulted in a �nal set of 8 and 18 for the Global and European model, 
respectively (Supplementary Table S1.3).

We obtained occurrences of the 15 IATV included in the DAISIE list ‘100 of the Most Invasive Alien Spe-
cies in Europe’, an expert-based ranking aimed to cover the most harmful IAS in Europe. We downloaded data 
from  GBIF24 (Supplementary Table S1.5) using the rgbif  package55. We selected all the available georeferenced 
observations collected worldwide from human or machine observations (e.g. camera traps). We also �ltered 
our data using the GBIF �eld ‘uncertainty in meters’, and selected records with an uncertainty ≤ 15,000 m to 
match the circumference radius of c.30 km of our grid-cell size. Excluding uncertain records to �t the models 
reduced the inclusion of environmental conditions not associated with the species. However, entries containing 
unknown (NA) ‘uncertainty in meters’ are numerous in GBIF, which may be caused by skipping the �lling of this 
information. �e inclusion of these observations increases the number and coverage of presence records, namely 
for the less-sampled regions in Africa or  Asia56 (Supplementary Fig. S1.1 and Supplementary Table S1.5). We 
incorporated these records in the global model to maximize the estimated global climatic niche and to capture the 
greatest number of regions where the species are present (certain + NA dataset;  Nrange = 93–22,953 for the 15 spe-
cies; Table 3) but removed NA records to �t European models (certain dataset;  Nrange = 51–3,704; Table 2), where 
we prioritized precision. Using the package CoordinateCleaner57, we further removed common spatial errors 
(i.e. country centroids, equal longitude-latitude observations, GBIF headquarters, biodiversity institutions and 
zero coordinates). Finally, only one observation per grid-cell was retained to control for pseudo-replication and 
to reduce the spatial bias of  GBIF58. To test the in�uence in the results of using certain and certain + NA datasets 
as explained, we also run the models using certain datasets to �t global models, and certain + NA datasets to �t 
the European model (Supplementary SI2).

Modelling. Handling SDM pseudo-absences. For each species, we �rst ran a global model randomly select-
ing pseudo-absences (N = 20,000) within the entire global land surface (excluding Antarctica). We also random-
ly located pseudo-absences (N = 5,000) over Europe in the European model but weighted them by the climatic 
suitability obtained from the global model. �e lower the climatic suitability in a given location, the higher the 
probability a pseudo-absence tended to be a real absence, and vice versa. We calculated pseudo-absence weights 
using an inverse logistic  transformation15 (Eq. 1):

where Weight(x) is the weight of the pseudo-absence in the location x, and projG(x) is the global model predic-
tion in x. If projG(x) = 1 then Weight(x) = 0.

Fitting species distribution models (SDMs). We �tted SDMs using �ve algorithms in the BIOMOD2 package 
(version 3.3-759), generalized linear model (GLM), generalized additive model (GAM), �exible discriminant 
analysis (FDA), generalized boosting model (GBM) and maximum entropy (MAXENT. Phillips; Supplementary 

(1)
Weight(x) =

1

1 +

(

projG(x)
projG(x)−1

)2
,

Figure 3.  Work�ow of the methods used to obtain global climatic and European environmental suitability for 
each of the 15 invasive alien terrestrial vertebrates (IATV) of study.
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Table S1.6). Each model ran three times for each algorithm using alternative sets of random pseudo-absences. 
To validate the model performance, we applied a cross-validation procedure using 70% of the data for the model 
training and 30% for the model  evaluation60,61. �e complete process resulted in 60 models per species and 
spatial setting (i.e. global or European). �e resultant models produced from the di�erent algorithms were used 
to build an ensemble model by applying the committee averaging  method60 (predictions close to 0 or 1indicate 
models agree to predict 0 and 1, respectively. Predictions of ~ 0.5 indicate half of the models predict 1 and the 
other half 0). Whenever possible, only individual models with a good predictive performance were selected, 
measured by the true skill statistic (TSS). �is measure combines the model ability to predict presences correctly 
(sensitivity) and pseudo-absences (speci�city) independently of the  prevalence62 (TSS ≥ 0.7). If none of the mod-
els concurred with the minimum threshold value, we selected the best available models (10% top quantile) to 
ensure the production of one ensemble model for each species and spatial setting. For each ensemble model, we 
converted the resulting continuous predictions (between 0 and 1) into a binary classi�cation that approximated 
the suitable area of the species using a threshold that maximized the  TSS63. We also calculated the coe�cient of 
variation (CV) and the predictive performance of the ensemble models as speci�city, sensitivity and TSS. As a 
proxy of the distance to pseudo-equilibrium, we calculated the range �lling of each IATV as the proportion of 
pixels of reported presences that overlapped the predicted binary presence obtained from the European  model15.

Multi-species summary. Combining all the binary predictions of each European model output, we esti-
mated the potential IATV richness as the total number of species that scored a presence in each grid-cell, which 
indicated the potential number of species that would �nd suitable conditions to  persist27. Additionally, we imple-
mented a classi�cation system per grid-cell to de�ne general priority management areas (Fig. 1) from three 
indicators: (i) the uncertainty of the predictions in the European models, (ii) the invasive species richness as 
predicted by the European models, and (iii) the invasive species richness as predicted by the global models. 
�e uncertainty of predictions was calculated as the average of the coe�cients of variation (CV) of the Euro-
pean ensemble models for each species. We categorized each of the three indicators into two groups (high and 
low) using the central value of its range, which was seven for species richness in both the European and Global 
model predictions (range between 0 and 15), and 0.5 for CV (range between 0 and 1). Grid-cells scoring a high 
CV (> 0.5) depicted di�erent suitability values across algorithms, pseudo-absences and cross-validation runs, 
whereas low CV values indicated agreement among model predictions.

We considered the most reliable results as those of low average CV over all the species (< 0.5, ‘certain areas’). 
In this group (categories A and B), the areas with a high predicted IATV richness (IATV hotspots; Fig. 1B) were 
considered of high ecological and socioeconomic concern given their potential to harbor a higher number of 
IATV species and, consequently, to receive increased impacts (e.g. predation or spread of diseases to native fauna, 
damages to croplands or forestry). �e opposite applied to IATV coldspots (areas with low predicted IATV 
richness; Fig. 1A). Conversely, we considered that a high mean CV required cautious interpretation due to the 
disagreement among the di�erent model outputs, regardless of the predicted IATV richness (categories C to F, 
Fig. 1). To better characterize these uncertain areas, we further classi�ed them considering the predicted IATV 
richness calculated from the global model. Where global and European predictions agreed and IATV richness 
values were high, we assumed a high probability of being an IATV hotspot (uncertain hotspots, Fig. 1F). �e 
areas where both predictions were low would be most likely coldspots (uncertain coldspots, Fig. 1C). Sometimes 
predicted invasive species richness disagreed between global and European models. In that case, the areas with 
high species richness as predicted by the European models but low according to the global predictions would 
indicate unfavorable climatic conditions for many species. However, other local factors could facilitate the estab-
lishment of numerous IATV (e.g. urban areas, uncertain environmental hotspots, Fig. 1E). Alternatively, areas of 
low predicted IATV richness as predicted by the European models but high according to the global ones would 
imply potential favorable climatic conditions for numerous IATV. In this case, the non-climatic conditions of 
these areas could be unsuitable (uncertain climatic hotspots, Fig. 1D).

Sources of uncertainty. To identify further sources of uncertainty besides those related to the parametri-
zation of the model, we measured the uncertainty of extrapolating model predictions to environmental condi-
tions not covered by the �tted model by calculating the Multivariate Environmental Similarity Surfaces (MESS) 
in R-package dismo64. Additionally, we computed ignorance maps (~ the inverse of the number of occurrences 
per reference group per grid cell) using taxonomical families as reference groups, which are useful tools to dif-
ferentiate non-sampled areas from those containing real  absences65. Ignorance maps assume the de�ciency of 
reports of any species from a reference taxonomic group at a particular location is likely caused by a lack of 
observers rather than to the total absences of the species. Assuming equal sampling perception of native and 
invasive species by observers might be misleading because invasive species may be particularly well sampled in 
an area where a speci�c management project has been conducted. However, we used these maps to illustrate the 
spatial bias of the GBIF occurrence data and to help interpreting results (see Supplementary Information S3 for 
further details).

Data availability

�e original datasets are freely available on the sources mentioned in the text. Filtered versions of these data are 
available from the corresponding author on request. A complete code of the modelling procedure is available at 
[https ://githu b.com/ester polai na/Curre nt_IATV_distr ibuti on].

https://github.com/esterpolaina/Current_IATV_distribution
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