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Identifying Image Composites Through
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Abstract—In this paper, we propose a framework for detecting
tampered digital images based on photometric consistency of illu-

mination in shadows. In particular, we formulate color character-

istics of shadowsmeasured by the shadowmatte value. The shadow

boundaries and the penumbra shadow region in an image are first

extracted. Then a simple and efficient method is used to estimate

shadowmatte values of shadows. Our approach efficiently extracts

these constraints from a single view of a target scene andmakes use

of them for the digital forgery detection. Experimental results on

both simulated photos and visually plausible real images demon-

strate the effectiveness of the proposed method.

Index Terms—Image authentication, photo composites, shadow

matte.

I. INTRODUCTION

P EOPLE are fond of tamperingwith photos and videos. Op-

erations, such as matting and compositing, are introduced

to produce special effects [1]. Since then, image region copy

and paste has become one of themost common video editing and

manipulating techniques due to its simplicity. With the develop-

ment of powerful image and video editing tools, it is becoming

incredibly easy to generate visually plausible tampered images

and videos. At the same time, as internet and multimedia tech-

nologies are becoming increasingly mature and popular, there

are growing tampered photos and videos flooding the televi-

sions, magazines, and networks, which blocks our eyes towards

the truth. Therefore, evaluating the authentication of digital pho-

tography has turned out to be a crucial task nowadays.

Over the past few years, both blind [2]–[4] and non-blind ap-

proaches for image authentication have been developed. Among

the non-blind approaches, watermarking [5], [6] is a popular

technique, which inserts a watermark at the recording time and

extracts hidden message later to verify the image authenticity.

Unfortunately, the non-blind methods need preprocessing to the

original image, which is not feasible for images independent of

any pre-inserted information.

Manuscript received October 01, 2010; revised March 16, 2011; accepted
March 26, 2011. Date of publication April 07, 2011; date of current version Au-
gust 17, 2011. This work was supported by NSFC (No. 60905019, 61003200),
Program for New Century Excellent Talents in University, Tsinghua-Tencent
Joint Laboratory for Internet Innovation Technology, SKL of PMTI, SKL of
CG&CAD, and Open Projects Program of NLPR. The associate editor coor-
dinating the review of this manuscript and approving it for publication was
Prof. Jiwu Huang.
The authors are with the School of Computer Science and Technology, Tianjin

University, Tianjin 300072, China (e-mail: qliu@tju.edu.cn; xcao@tju.edu.cn;
dengchao@tju.edu.cn; xguo@tju.edu.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2011.2139209

Farid [7] roughly groups blind approaches for image authenti-

cation into five categories: 1) pixel-based techniques; 2) format-

based techniques; 3) camera-based techniques; 4) physically

based techniques; and 5) geometric-based techniques. Several

approaches in the first group detect statistical anomalies intro-

duced at the pixel level. In [8]–[10], copied regions are detected

by grouping and sorting duplicated blocks. Unnatural correla-

tions resulting from the resampling process when tampering an

image are identified and utilized as clues of forgery [11]. Anom-

alies in statistics of Fourier components can be used to detect

splicing of images [12]–[14]. However, those methods are all

limited to analyze correlations between pixels arising from a

specific form of tampering. As in the second categories, the

authors in [15]–[17] exploit properties of specific lossy com-

pression schemes for digital forgery detection. The authors in

[18] introduce JPEG error analysis to the study of image foren-

sics. They believe that lossy compression of the JPEG format

leaves evidences of forgery. Methods belonging to the third ap-

proach are also introduced for forgery detection by exploiting

artifacts introduced by the camera. Chromatic aberration [19],

color filter array [20], camera response [21], and sensor noise

[22]–[24] are modeled to infer the source digital cameras and re-

veal inconsistency in digitally altered images. Other works such

as [25] identify doctored images by tracing the entire in-camera

and post-camera processing operations. Several approaches in

the fifth group are also introduced into photo forgery detection.

The authors in [26] discover composites of people by estimating

principle points, which requires relative high resolution for the

eye region. Wang and Farid [27] argue that the skew parameter

can also be compared to detect image re-projections. In [28],

two-view geometrical constraints are enforced to find fake re-

gions on pictures targeting the same scene. More recently, seg-

mentation techniques are introduced to improve the rough tar-

geted fake regions [29].

Our work falls into the fourth group, since we apply pho-

tometric constrains on shadows for detecting the forgery in an

image as shown in Fig. 1. Methods using physical rules detect

anomalies of interaction between objects in the target scene.

Johnson and Farid [30] approximate two components of light

source direction by considering the two-dimensional surface

normals at the occluding object boundary and use them to iden-

tify the inconsistency in a picture. Because of the missing com-

ponent of the light direction, this method might suffer from

an ambiguity. The authors in [31] estimate a three-dimensional

light source direction via analyzing a model of the human eye.

However, their method needs the existence of specular high-

lights on human eyes. In [32], complex lighting environments

are modeled by the linear sum of several spherical harmonic

1556-6013/$26.00 © 2011 IEEE
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Fig. 1. Shadows are the necessary part of an object when copying and pasting
the object into a target image to maintain the integrity. We use shadow matte
values extracted from the shadows of scene objects to detect image forgery. (a)
Example image to be detected. (b) Detected shadow boundaries. (c) Penumbra
shadow width. (d) Distribution of a set of shadow matte obtained by substrac-
tion of two constructed intensity surfaces for the sampled shadows marked by
colored rectangles in (a). The mean value of the distribution gives the actual
shadow matte value used in our work.

functions. The linear weights of these functions are compared

to reveal inconsistencies of lighting within a doctored image.

In our perception of the world, shadows provide important

visual cues for depth, shape, contact, and lighting [33]. When

tampering with photos, they are integral parts of an image and

following consistency of such properties in shadows can be sig-

nificantly difficult [34], [35] . Based on this observation, we

propose a new framework for detecting tampered digital images

using shadows. We show how to extract photometric constraints

from a single view of a target scene and to make use of them for

the digital forgery detection. The width of the penumbra shadow

region [Fig. 1(c)] in an image are first extracted. Then we eval-

uate a scale factor called shadow matte value by analyzing il-

lumination intensity in shadows. We effectively estimate the

shadow matte value of full shadows without being affected by

shape or texture of the shadow receiving surface. Inconsistency

of the matte value between shadows implies a forgery in an

image.

Zhang and Cao [36] extract the shadow matte value by

calculating the color intensity medians of two regions laid

in and out sides of the shadows and then evaluate the ratio

between them. This method works pretty well when the shadow

receiving surface is flat and not textured. However, shadows

in real-life pictures are usually projected onto sophisticatedly

textured surface with complex geometric features. Similarly,

Fredembach and Finlayson [37] find the shadow matte value by

minimizing differences between pixels inside and outside the

shadow boundary. This method is much faster than traditional

integration and works very well when the shadow is projected to

a flat non-textured surface, but still omits the geometric change

of the surface. Arbel and Hel-Or [38] improve the method by

reconstructing an intensity surface to acquire the shadow matte.

In the step of estimating the shadow matte values, we adopt

their mathematical model but with several improvements. We

develop an approximation to the thin plate model. As a result,

we propose a direct linear solution while [38], to achieve

optimization, has to use gradient descent algorithm and to

perform iteratively. Instead of reconstructing a single intensity

surface without shadow, we recover two intensity surfaces,

shadow intensity surface that reflects the intensities of the

sampled pixels with full shadow on them and non-shadow that

reflects the intensities of the sampled pixels without shadow

on them. In addition, our work is different from [38] in three

aspects. First, our work focuses on the application of image

authentication while they are interested in shadow removal.

Second, we estimate the penumbra region width and do not

need to provide a penumbra mask as input in their paper. Third,

we adopt the shadow detection to automate the image forensic

process. Methods in [39] and [40] also remove shadows by

estimating the shadow matte value. Instead of using a uniform

shadow matte value, they assume the shadow matte values in

the full shadow region varies. Utilizing nonuniform shadow

matte value is more accurate for shadow removing. However,

we argue that a uniform shadow matte value assumption is

sufficient and valid to reflect the illumination condition in our

image forensic application. The main reason is the observa-

tion [39], [41] that the shadow matte values are smooth and

only change mostly according to the distance to the shadow

boundary. However, our anchor points used to compute the

shadow matte values are close to shadow boundary. In addition,

the tiny variance in shadow matte values for our anchor points

are trivial when compared to the shadow matte differences

between the authenticate and composite shadow regions. Many

approaches [42]–[45] have managed to derive an image into

intrinsic images, from which the shadow matte value can be

obtained. We evaluate the shadow matte value without directly

recovering the intrinsic images, which is much simpler for

implementation and sufficient for image forgery detection.

The contributions of this paper include: 1) We make use of

the shadow matte values for the digital forgery detection. 2) We

identify the width of the penumbra region of a shadow utilizing

the similarity of the shape between the averaged penumbra

curve and the sigmoid function. 3) We explore a new simple

and efficient method to extract shadow matte values of shadows

from a single view of a target scene.

The rest of this paper is organized as follows: After intro-

ducing preliminaries of shadow characteristics used in this work

in Section II, we describe our method in Section III. The perfor-

mance of our method is demonstrated by experimental results

in Section IV. Finally, Section V concludes this paper.

II. PRELIMINARIES ON SHADOW PROPERTIES

As a necessary part of most real-world photos and an impor-

tant clue for photographic composite detection, shadows share

characteristics on such as generation, composition, and visual

appearance. We will discuss them in this section.

A. Geometric Properties of Shadows

Although shadows differ in geometric appearance due to dif-

ferent shapes of the objects from which shadows are casted and

various surfaces to which shadows are projected, the composi-

tion of shadows is similar.
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Fig. 2. Shadow generation. Part of the light from a light source is obstructed
by a sphere and cast a shadow on a plane.

As can be noticed in Fig. 2, shadows are caused by the shadow

casting object obstructing the direct light from the light source to

the shadow receiving object. The darker region on the surface of

the shadow casting object facing opposite direction to the light

source is called self shadow. The darker area on the surface of

the shadow receiving object is referred to as cast shadow. The

contour of the shadow casting object forming the boundary of

the cast shadow is shadow casting edge. As can be seen, the cast

shadow is not solely colored and is divided into two regions. We

call the darker area full shadow and the less dark area penumbra

shadow.

In a nature scene, illumination is much more complex. Rather

than a simplistic distance (small-area) point light source, light

reaching to a surface may come from more than one source,

such as other light sources, atmosphere, and inter-reflections in

a scene. However, for outdoor images, we assume that all the

light sources can be divided into two types: the sun and ambient

light. The ambient light in a scene is assumed to be the same

everywhere and the sun can be seen as a (small-area) point light

source. With this assumption of two types of light sources: the

sun and the ambient light, shadows are formed by obstructing

direct light from the sun, leaving the shadow areas partially illu-

minated and the idea of full and penumbra shadow can be sim-

ilarly defined as in Fig. 2.

B. Photometric Properties of Shadows

Shadowed image areas are made up of discrete color or inten-

sity values. These values relate to a various of factors including

lighting in the environment, surface properties and geometry,

camera optics, scene geometry layout, mutual occlusion along

the light rays, and sensor properties. A more detailed treatment

of these topics can be found in [40], [46], and other textbooks on

computer graphics. In this paper, we adopt the commonly used

model [43], [44] on intrinsic images that the intensity at a pixel

for channel is due to reflectance and il-

lumination :

(1)

Shadows are formed by reduction in the illumination field

resulting from obstructing part of the direct light received at

a surface point. This reduction of illumination is assumed by

multiplying a scale factor called shadow matte value to

field. is ranging from 0 to 1, denoting between irradiance and

radiance regions. Therefore, the actual color intensity sponsored

can be expressed as

(2)

If we denote indicating the intensity without

shadow, then

(3)

This image model simply means that the observed image is

the shadowless image scaled by the fractional shadow matte

value . For a region in the full shadow area, the value of

is assumed to be uniform, whereas changes smoothly across

the penumbra shadow. Taking the logarithm of both sides of (3)

gives a more intuitive understanding that the color intensity is

additively obtained:

(4)

where , , and are the logarithms of , , and , respec-

tively. Our method is operated over the log domain of the im-

ages for each channel. We omit in all the above notations for

simpleness. When we refer to shadow matte value in the rest of

the paper, we use the log domain .

Note that the specular component in the typical bidirectional

reflectance distribution function (BRDF) model is omitted. In

the shadow region, we assume only the diffuse component (also

known as Lambertian or matte reflection) scatters light uni-

formly in all directions. This assumption is mostly valid as the

shadow receiving surfaces in outdoor scenes are typically as-

phalt, brick, stone, mud, grass, and concrete [47]. In addition to

those lighting factors mentioned above, the acquisition and dig-

itization pipeline in the camera also affects the pixel intensity

in an image. Sensors will bring noises into the image, informa-

tion loss also occurs due to clipping of pixel intensities caused

by the limited range of camera sensors, and postprocessing is

commonly performed in the pipeline. Many of these factors are

not consistent with our model. Unfortunately, a further discus-

sion of them is beyond the scope of this paper. We assume these

factors do not affect the direct proportion relationship between

the pixel intensity in an image and the sponsored intensity of the

sensor.

III. METHOD

The illumination of real-world scenes is complex and the

shadows formed in the same photo may vary and overlap with

each other if there are multiple light sources. Fortunately, in

most of the natural scenes, especially outdoor views, there is

only one distant direct light source, e.g., the sun. In this work,

we focus on the outdoor scenes where the single distant light

source assumption is valid. As mentioned above, the shadow

receiving surface has to be nearly Lambertian. Although there

are specular shadow receiving areas such as marble in the out-

doors, the typical ground materials are asphalt, brick, stone,

mud, grass, and concrete, which are mostly Lambertian. The at-

tenuation of the lighting varies when the shadow casting object

becomes transparent or the distance from the shadow casting

object and the shadow receiving surface is too small. It is as-

sumed in this work that the shadow casting object is opaque

and that the distances between the shadow casting and shadow

receiving objects are nontrivial. This assumption is valid con-

sidering the fact that most of the image composites involve the

targets such as humans, cars, and animals, which are thick, siz-

able, and opaque. Note that the shadow receiving surface does
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Fig. 3. Shadow sampling. (a) Shadow is sampled bidirectionally along the
normal direction of the shadow edge. (b) The sampled pixels generate a rec-
tangle region. (c) 3D surface constructed using intensities of the sampled pixels.

not have to be flat as our method is able to handle curved sur-

faces.We also assume that there exists another authentic shadow

which has similar shadow receiving surface to that of the com-

posite shadow. In addition, the two shadows are assumed to be

close so that the nonlinear radiometric responses and perspec-

tive distortions of the common camera will trivially affect the

values of the shadow matte in the two shadow areas. Therefore,

the shadow matte values of these shadows should be close. The

inconsistency of shadow matte values in the same image will

indicate a forgery.

A. Calculating Shadow Matte Value

The intensity of pixels on a curved surface without the

shadow produces an intensity surface. By reconstructing this

intensity surface on the shadowed region, we can find how

much the shadow affects the intensity of the shadowed pixels

and hence acquire the shadow matte values. To achieve this

goal, pixels are sampled bidirectionally along the normal direc-

tions of the shadow edge as shown in Fig. 3(a). The width of

the sampled data for each side of the shadow boundary is the

width of the penumbra region. If the penumbra width is very

narrow, the sample width is set to a default value which is 20

pixels in our implementation. Then the sampling generates a

rectangle containing all the sampled pixels shown in Fig. 3(b).

We define the direction along the shadow edge as y axis and the

normal direction as x axis. The surface constructed using the

sampled pixels is shown in Fig. 3(c). As can be seen, the color

intensity drops from the lit area through the penumbra area to

the full shadow area.

To estimate the shadow matte value, thin plate model is

used by the method in [40]. But they only use the intensity of

the non-shadowed area to recover the entire intensity surface

without shadow, leaving the shadowed area governed by a

smooth term. We believe that only use the non-shadowed area

cannot wholly anticipate the shadowed intensity. Also thin

plate model requires the solution of a linear system consisting

of a linear equation for each sampled pixel, which is both

memory consuming and computationally intensive. Instead,

we utilize both the shadowed and non-shadowed regions and

develop a approximation to the thin plate model that require

much less variables. Instead of reconstructing a single intensity

surface without shadow, we recover two intensity surfaces,

shadowed surface that reflects the intensities of the

sampled pixels with full shadow on them and non-shadowed

surface that reflects the intensities of the sampled

pixels without shadow on them. Then, the substraction of the

intensities of the corresponding pixels between the non-shad-

owed and shadowed surface gives the shadow matte value.

The non-shadowed surface should fit the intensities of the

sampled pixels in the lit area, while the shadowed surface should

fit the intensities in the fully shadowed region. So we define an

energy function that fits the sampled pixels as

(5)

where and denote the non-shadowed and fully shadowed

sampled regions. Also, the two surfaces should be smooth. So

an energy function measuring the smoothness of the surfaces is

defined as

(6)

where is the entire sampled region. In addition, since we as-

sume a uniform shadow matte value, the variation of the sub-

straction between the two surfaces should be limited. So the

third energy function is defined as

(7)

The total energy can then be defined as

(8)

Minimizing over and needs first to discretize and

on a regular grid, resulting in two variables for each pixel,

which is both time and space consuming to solve. So we develop

a light weighted approximation by using a set of parameterized

quadratic splines along the x axis:

(9)

(10)

where are parameters

governing the splines. Since there are only three parameters for

each spline, the number of the variables is largely decreased.

Another benefit of using parameterized spline is that: the

energy function defined by L2 norm is sensitive to outliers.

Fortunately, since a spline needs only three parameters, we

only use the median half of the sorted intensities alone a spline

of the sampled pixels, which are sufficient to fit the spline

and have low probability to be outliers. The first and second

order derivatives along the y axis can be easily obtained by

finite element analysis. The first and second order derivatives

along the x axis are the first and second order derivative of the

quadratic function representing the spline:

(11)

(12)
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Fig. 4. Calculate in full shadow region on a simulated cylinder surface. (a)
A fully illuminated cylinder surface. (b) The left half of (a) is shaded by a full
shadow generated using in (4). (c) Constructed surface using inten-
sity of the sampled pixels. (d) Recovered non-shadowed surface and shadowed
surface. The estimated is 0.9944, which is 0.56% off the ground truth. (f)
Recovered one row of the shadowed image using the estimated .

where . If we define

, where is the number of the splines,

then the total energy can be rewritten as

(13)

where are some constant coefficients. Equation (14) can

be easily minimized by solving the following linear system of

equations:

(14)

Accordingly, and are obtained. Then the shadow matte

value can be estimated by

(15)

To better illustrate this idea, we generate a scene of a fully

illuminated cylinder [Fig. 4(a)] and cast an artificial shadow

with on it [Fig. 4(b)]. Fig. 4(c) shows the surface

constructed using intensities of the sampled pixels in the black

rectangle in Fig. 4(b). By performing the proposed method, we

obtain the non-shadowed surface [higher surface in Fig. 4(d)]

and the shadowed surface [lower surface in Fig. 4(d)]. Fig. 4(e)

gives the distribution of in R channel. By

averaging the distribution, we obtain the shadow matte as

0.9944, which is 0.56% off the ground truth. The red curve in

Fig. 4(f) is the sampled intensities of a row [red line in (a)] in the

original image and the blue curve is the sampled intensities of

the row in the shadowed image accordingly. With the calcu-

lated and added to the shadowed half of the row [left part of the

blue curve in Fig. 4(f)], the recovered intensity curve showed

with black color approximately coincides with the red one. This

demonstrates the accuracy of our method.

Zhang et al. [36] extract the shadow matte value on non-tex-

tured surface by calculating the color intensity medians of two

regions laid in and out sides of the shadow, respectively, and

then calculating the ratio between them. Such simple estimation

Fig. 5. Effectiveness comparison in estimating the shadow matte value . The
first column shows the original shadowed images. The middle column row gives
recovered images using estimated by the method in [36]. The last column
shows the recovered images after removing the shadows using estimated by
our method.

cannot work effectively on textured shadow receiving surface.

As shown in Fig. 5, we obtain the shadow matte values of the

shadows of the images in the first column applying our method

and the method proposed by [36] and then remove the shadows

using the obtained shadow matte values, respectively. As can

be seen, the resulting images (last column in Fig. 5) obtained

by our are visually shadow free, while the shadows in the

images (middle column in Fig. 5) generated using the shadow

matte values estimated by [36] are still visible, which demon-

strates the better efficiency of our approach.

The method in [40] calculates nonuniform shadow matte

values for pixels in the full shadow region, while we estimate

a uniform shadow matte value. Images in the first and third

columns of Fig. 6 give two shadowed images and the shadow

removed images using method in [40] (second row) and our

method (last row), respectively. The second and last columns

shows the distribution of the shadow matte value estimated

using theirs method in three channels. The x coordinate of the

magenta line with a circle on the top of the line indicates the

shadow matte value estimated by our method. As can be seen,

the distribution of their shadow matte value is centered around

our value. Therefore, though giving nonuniform shadow matte

value may be more accurate for shadow removing, for image

forgery detection, the uniform shadow matte value is sufficient

to reflect the illumination condition in the shadow.

B. Performance Under Different Lighting Conditions

To verify the applicability of the proposed approach, we apply

the method in different cases where shadows exist: under the

street lamp at night with a simple textured shadow receiving

surface (Fig. 7 Upper), in the sunlight in the day with simple

(Fig. 7 Middle), and complex (Fig. 7 Bottom) textured shadow

receiving surfaces. In all the cases, we first capture an image

(Fig. 7, first column) of a scene with a shadow in it using a

camera shown in the first column of Fig. 7. With the camera

standing still, we move the shadow casting object out of the

view. Then we capture an image of the same scene as shown

in the second column of Fig. 7. The interval between the time

when the two images are taken is very short. Therefore, they

are assumed to share the same lighting condition. Then, the pro-

posed method is applied to the shadowed image to estimate the
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Fig. 6. Compare of the nonuniform [40] and uniform shadow matte value. The
distribution of nonuniform shadow matte value is centered around our uniform
shadow matte value.

Fig. 7. Effectiveness evaluation of the proposed method under different con-
ditions. The images in the first column capture scenes with shadows in them,
and the images in the second column capture the same scenes with the shadows
moving out of the scenes. The interval of the time between the two images are
taken with the camera standing stationary is very short. The third column shows
images after we remove the shadows in the first column using the proposed
method.

shadow matte value based on which the shadow is removed, re-

sulting in the third column in Fig. 7.

The similarity in the shadow region between recovered image

after removing the shadow using the proposed method and the

originally non-shadowed image indicates the effectiveness of

the method. The similarity can be identified by three statistical

indicators: the mean and the standard deviation of the pixel wise

difference rate (MDR and SDR) between the intensities of the

two images in the shadow region, the normalized cross corre-

lation (NCC) of the intensity between the two images in the

shadow region. MDR and SDR are defined by the following

equations:

(16)

(17)

where and represent the intensity of the recovered

shadow free image and the originally non-shadowed image,

respectively, denotes the index of the pixels in the shadow

TABLE I
PERFORMANCE EVALUATION UNDER DIFFERENT CONDITIONS

Fig. 8. Examples of shadow detection. The detected shadow boundaries are
marked by red pixels in the images.

region, and is the number of the pixels in the shadow region.

MDR and SDR are calculated in each channel separately.

Table I shows the statistical results of MDR, SDR, and NCC

for the three channels of each case shown in the images of Fig. 7.

Low value of MDR and SDR and high value of NCC indicate

low difference between the recovered shadow free image and

the originally non-textured image, which demonstrates the ef-

fectiveness of the proposed method in different conditions.

C. Shadow Boundary Detection and Penumbra

Shadow Identification

In the above subsections, we obtain the shadow matte value

utilizing pixels sampled near the shadow boundaries and

demonstrate the effectiveness of the proposed method using

both synthesized and real images. To implement the proposed

method, however, three problems have to be solved: 1) How do

we get the boundary of the shadows? 2) How can the normals

of the pixels on the boundaries be estimated? 3) How can we

identify the penumbra shadow region?

The shadow boundaries can be marked manually. However,

users are not always well trained and they should not be both-

ered to mark them themselves. So, automation in detecting

shadow boundaries is desired. Any shadow detection algorithm

that suits the scene of the image can be used, such as approaches

based on invariant color models [48] and methods utilizing

prior knowledge of the scene [49]. In our implementation, we

apply a probabilistic approach suggested in [47]. Fig. 8 shows

some results of the shadow detection. The detected shadow

boundaries are marked by red pixels in the images.

Detecting shadows automatically is a really tough task in

current research state [50], not only because the complex

layout of the nature images, but also due to many near black

objects that are similar to shadows. So, the whole boundary of

a shadow may not be successively extracted and some of the

boundaries of the near black objects may be falsely recognized
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Fig. 9. Calculating normals on the shadow boundary. (a) Detected non-smooth
shadow boundary. (b) Shadow boundary represented in binary image. (c) Use
many ten-pixel line segments to fit the shadow boundary in (b). (d) Calculated
normals of every line segment in (c).

as the boundaries of shadows. Automatically sampling shadows

of two boundaries and comparing them has a non-trivial pos-

sibility of comparing between shadows and dark objects. So

an interaction is introduced. After automatically obtaining the

shadow boundaries in an image, we select one point in the

suspected shadow and another outside the shadow. Then

points along the shadow boundary around the intersection point

between the line connecting the selected two points and the

shadow boundary are chosen for sampling.

The extracted shadow boundaries are not always smooth

[Fig. 9(a) and (b)]. To find the normal of the points on a shadow

boundary, simply using a polynomial to fit the curve of the

boundary cannot work well. A low degree polynomial cannot

capture the necessary detail of the curve, while a high degree

polynomial might lead to serious over-fitting problem. To find

the normals on the boundary with satisfying accuracy as well

as computation simplicity, we divide the shadow boundary into

many sub-curves with ten successive pixels, then fit each of

them with a line segment [Fig. 9(c)]. Because of the aliasing,

some of line segments do not look very straight. The normal of

every point on the line segments are set to be the normal of its

corresponding line segment [Fig. 9(d)].

The identification of the penumbra shadow region is cru-

cial in our method. In our implementation, the width of the

penumbra shadow along the boundary of the shadow is as-

sumed to be constant. So the penumbra shadow region is ob-

tained by extending pixels bidirectionally in the normal di-

rections of pixels on the shadow boundary. The blue curve in

Fig. 10(a) shows a typical log domain intensity distribution near

the shadow boundary along a single spline. The pixel index indi-

cates the offset between each pixel on the spline and the shadow

boundary pixel. By averaging the intensity of all the splines, we

get a smoother curve shown by the red curve in Fig. 10(a). It is

observed that the average log domain intensity in both the full

shadow and lit regions do not oscillate largely, while it changes

gradually from lower values in full shadow region to higher

values in lit region. Noticing that the shape of the red curve is

similar to that of rescaled and shifted logistic sigmoid function

defined in (18), we fit the red curve using this function:

(18)

where and are coefficients governing the expansion and

shift of the standard logistic sigmoid function on the horizontal

axis. Since the domain of the logistic sigmoid function is ,

Fig. 10. Penumbra shadow identification. (a) A typical curve of the log do-
main intensity of a single spline (blue curve) and the curve of the average log
domain intensity over all the splines (red curve). (b) The normalized average
log domain intensity curve (red curve) and the fitted curve of logistic sigmoid
function (green curve). The interval between the two magenta dashed lines rep-
resents the position of the penumbra shadow region.

to fit the red curve in Fig. 10(a), the average log domain intensity

should be normalized first shown using the following equation:

(19)

where denotes the average log domain intensity over all the

splines on a shadow, indicates the normalized intensity, and

is the intensity index. The curves of and are shown by the

red curve in Fig. 10(a) and the red curve in Fig. 10(b), respec-

tively. and can be evaluated after fitting the normalized av-

erage log domain intensity curve using the logistic sigmoid

function.

Our goal is to find the width of the penumbra shadow region,

which can be obtained by estimating the width of the gradually

changing region of the logistic sigmoid function approximating

the curve of normalized average log domain intensity. By anal-

ysis, the width of the penumbra shadow region can be identified

as . Taking the offset into consideration, the in-

terval of the index of the penumbra shadow region should be

, which is shown by

the interval between the two red dashed lines in the case shown

in Fig. 10(b). More results can be found in Figs. 1, 11–13, and

17.

D. Forgery Detection Using the Shadow Matte Value

In our work, we apply the shadow matte value as the cue

for forgery detection. We sample shadows in an image and ex-

tract their shadow matte values, respectively. By comparing the

difference between the values of two shadows, we can find if

there exists an inconsistency and suspect whether the image is

tampered.

Estimating the shadow matte value of a shadow is performed

on all the three channels of an image separately, hence forming

a three-dimensional vector referred to as

shadow matte vector. We define the inconsistency vector

between according element of two shadow matte

vectors and as follows:

(20)

where . We omit and denote as in the rest

of this paper. The exponential functions in (20) are utilized to

draw back the nonlinear distortion of the difference caused by
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Fig. 11. Experimental results on forged images with simply textured shadow receiving surfaces. The first column shows the image to be detected. The child in the
first row, the front car in the second row, and the woman in the third row are forged. The shadows sampled in each image are marked by magenta and cyan boxes.
The second column shows the detected shadows. The following two columns show the penumbra width. The last three columns are the distributions of
for the marked shadows of red, green, and blue channels, respectively.

the log domain. is an scale factor, which is 2.7 obtained by

experiments. We identify the inconsistency due to measurement

error to satisfy a Gaussian distribution with the density function

:

(21)

The inconsistency due to measurement error that fall out of the

interval has a very low probability to happen. So

we define the tolerance interval as and any image

having inconsistency fall out of the tolerance interval is consid-

ered to be forged.

IV. EXPERIMENTAL RESULTS

In this section, we utilize our method to image forgery detec-

tion and verify the effectiveness of our proposed method using

real photos. Fig. 11 shows examples of forgery detection on

forged images where shadows are casted onto shadow receiving

surfaces with simple texture. The first column in Fig. 11 shows

the images to be detected. Two shadows in each image are sam-

pled and marked by magenta and cyan boxes, respectively. The

second column shows the detected shadow boundaries in each

image. The following two columns give the fitted sigmoid func-

tions and the penumbra width for the two shadows. From the

results of Figs. 11–13, as well as Fig. 17, it is observed that the

logistic sigmoid function approximates the normalized log do-

main intensity pretty well. Then, our method is applied to the

sampled shadows to find their values. The last three columns

are plots of the distribution of in red, green, and blue

channels generated when performing our method. The two dis-

tributions of the sampled shadows of the same image in each

channel are drawn in one plot and colored with the same colors

marking the shadows. The difference between the two distribu-

tions intuitively describes the difference of the two shadows in

that channel.

TABLE II
FORGERY DETECTION ON IMAGES IN FIG. 11

Table II shows the possibility of the inconsistency for the

above experiments. The fifth column in the table shows the in-

consistency calculated by (20) using the third and forth columns.

If the inconsistency falls into the tolerance interval, the last

column will be “IN”. Otherwise, it will be “OUT”. If the last

column of either of the three channels of a image is “OUT”, the

image is considered to be fake.

Fig. 12 and Table III show examples of forgery detection on

forged images where shadows are casted onto shadow receiving

surfaces with complex texture. Fig. 12 and Table III are orga-

nized the same as Fig. 11 and Table II.

If an object from another image is copied and pasted onto a

target image together with an artificial shadow generated for it,

the shadow matte values of the artificial shadow and another

sampled shadow should indicate an inconsistency. However, if

the two sampled shadows are all real and originally exist in the

target image, our method should not detect an inconsistency.

To verify this, we sampled two shadows marked by cyan and

magenta boxes in each of the scenes in Fig. 13 which are known

as authentic. The results are shown in Fig. 13 and Table IV.

To obtain quantitative evaluation, we perform our method on

a database. The database is generated using ten source images

and ten target images. Both the source images and the target

images should have cast shadows in them. One object with its

shadow in each of the source image is extracted manually. Some
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Fig. 12. Experimental results on forged images with complexly textured shadow receiving surfaces. The human shadow, the motorcycle, and the camel riding by
a girl are all forged. The figure is organized the same to Fig. 11.

Fig. 13. Experimental results on images with two authentic shadows. The figure is organized the same as Fig. 11.

TABLE III
FORGERY DETECTION ON IMAGES IN FIG. 12

examples of the extracted objects with their shadows are shown

in the first column in Fig. 14. The target images are chosen with

different lighting conditions, textures on the ground, and scene

layout. Examples of them are shown in the second column of

Fig. 14. Then the objects with their shadows are copied from

the source images and pasted onto the target images, resulting

in 100 source and target image pairs. From each image pair, a

fake image is generated. Operations such as resizing, stretching,

TABLE IV
FORGERY DETECTION ON IMAGES IN FIG. 13

and turnover are used on the source objects to make the gener-

ated images more visually pleasing. The third column in Fig. 14

gives some examples of the generated images. Also, another 40

shadowed nature images under different illumination conditions

without forgery are added into the database, examples of which

are shown in the last column in Fig. 14.

After obtaining the image database, the proposed method is

performed on it. True Positives are measured as the number of
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Fig. 14. Fake photo database generated using ten source images and ten target
images. The first column shows examples of the source images. The second
column shows selected images in the target images. The third column is ex-
amples of images forged by copying and pasting the objects in the source im-
ages into the target images. The last column shows examples of images without
forgery added into the database.

Fig. 15. ROC curve generated given different values of in (20).

genuine images recognized as images without forgery and the

False Positives are measured as the number of forged images

recognized as genuine. The ROC curve obtain using our method

is shown by the blue curve in Fig. 15. The green curve is ob-

tained using the method in [38]. The adjusting parameter used

for generating the ROC curve is in (20) ranging from 2.0 to

5.0. We define the accuracy as

(22)

where is the number of True Positives and is the

number of True Negatives. Though the images in the database

are complex in illumination conditions, textures of the ground,

and scene layout, our method still obtains the very pleasing

accuracy as 87.0% when .

Utilizing the constructed database, we also perform statistics

on the shadow matte value of real shadows and forged shadows.

The distributions of the three channels for real shadows and

forged shadows in the database are shown in the first two

columns of Fig. 16, respectively. As can be seen, the shadow

matte values for both real shadows and forged shadows are

irregularly distributed. Therefore, one can hardly anticipate the

shadow matte value in an image by experience. As a result,

when forging images, it is hard to maintain the consistency of

shadows. Statistics is also performed on the shadow matte value

Fig. 16. Shadow matte value distribution for real and forged shadows and for
shadows on different grounds. The horizontal axis is the shadow matte value
and the vertical axis gives the distribution. The first two columns are the dis-
tributions for real shadows and forged shadows. The last three columns are the
distributions for shadows on earth, concrete ground, and grass, respectively.

of different ground plane. The last three columns of Fig. 16

give the shadow matte distributions on the ground of earth,

concrete, and grass. Shown in the figure, the shadow matte

values in each kind of the ground is irregularly distributed.

Note that in the object cut-and-paste operations, the target

texture under shadow might be different from the one under

shadow in the source image. Therefore, cut-and-paste may in-

troduce dissimilar textures or photometric profiles across the

shadow boundary. It is possible to resort to other shadow in-

variant features as cues for composite authentication. In the pro-

posed framework, the estimated C may not represent shadow

matte value specifically. However, the C value consistency re-

mains hard to be enforced for the forger. Instead of cut-and-

paste, the more recent solution to compose a shadow onto a

host image is through matting [51], [41]. Although it is get-

ting mature in the academic community, it might not be easy

for an average user to stick to the shadow consistency before an

easy-to-use commercial tool is available.

Failures of our method exist for both the doctored images

and authentic images. For the forged images, it is hard for our

method to work when the composite shadows are consistent

with the real target shadows. For example, see the upper row

in Fig. 17 and Table V. In the real world, our method would

also fail when a shadow is copied and pasted to another posi-

tion in the same image as shown in Fig. 18. Fortunately, this

forgery can be detected by other complementary detection, such

as identical objects recognition [52], [53]. For the authentic im-

ages, our method fails to work when the shadow matte consis-

tency assumption is not satisfied. Bottom rows in Fig. 17 and

Table V give a very challenging example. The shadows of trees

in this scene are very complex. The shadow is very blurry, and

many holes exist inside of the shadow boundaries. Our method

fails in this case.

V. CONCLUSION

In this paper, we have proposed a new framework for

detecting tampered digital images based on photometric con-

sistency of illumination in shadows. We detected the shadow

boundaries in an image and also the penumbra region width of

the shadow. Then we estimated the shadow matte values for

each of the sampled shadows in an image to be tested and used

the consistency of them to inform if the image is doctored. Both
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Fig. 17. Failed examples using our method. The figure is organized the same as Fig. 11.

Fig. 18. Our method cannot work in the situation that the shadow is copied and
pasted from the same image as the target image.

TABLE V
FORGERY DETECTION ON IMAGES IN FIG. 17

simulated images and visually plausible real images are used

to demonstrate our approach. Our method is computational

simple and effective. As has been discussed, many approaches

have been proposed for digital forgery detection. However, no

method can be perfect and solve all kinds of forgery. Though

our method can identify whether an image is tampered, one

limitation of our method is that it can not determine which

part of the image is doctored. What we need is to integrate

many different algorithms for this complicated problem and

draw a more cumulative and convincing conclusion. We argue

that shadows in the real world carry much more clues for

forgery identification that we have not noticed, especially in

the physical aspect. Our future work is to extract these features

and utilize them in digital image forgery detection.
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