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Introduction 
 
The frequency of chronic kidney disease (CKD) 
has been progressively increasing over the last two 
decades (1) and has become a worldwide public 
health problem. The prevalence of CKD is esti-
mated to be 8–16% worldwide (2). Kidney trans-
plantation is the best alternative treatment for 
end-stage renal disease and health-related quality 

of life and survival of the patients are improved 
compared with dialysis (3, 4). Worldwide, more 
than 1.4 million patients with CKD receive renal 
replacement therapy with incidence growing by 
approximately 8% annually (5). Unfortunately, 
despite significant improvement in graft function, 
kidney transplants can still fail due to acute rejec-
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tion and chronic allograft nephropathy (1, 3) that 
can lead to three fold greater risk of death com-
pared to patients with functioning grafts (1, 6). 
Due to the increasing demand for renal trans-
plants, identifying potential risk factors implicated 
in graft failure is essential to improve patient sur-
vival and quality of life (1). 
To achieve this purpose, traditional statistical 
techniques such as Cox proportional hazards (PH) 
model has been widely used to analyze survival 
data and to determine potential risk factors. How-
ever, it relies on restrictive assumptions such as 
proportionality of hazards and linearity of effects 
on log hazard function (linearity assumption) (7). 
Besides, the performance of traditional methods 
like Cox regression is not reliable in the presence 
of high rate of censoring (8). Potential prognostic 
factors affecting renal graft have also been investi-
gated by several studies with Cox PH model (3, 9, 
10). However, there were inconsistencies among 
the results. Ideally, it would be important to im-
prove the predictive performance of the models 
identifying potential prognostic factors affecting 
renal graft via learning theory and data mining 
techniques for survival time that require no as-
sumptions. 
Machine learning methods such as tree-based ap-
proaches have recently been developed to handle 
right censored survival data and their effective 
performance has been confirmed in different ar-
eas (11). Random survival forests (RSF), is a non-
parametric tree-based ensemble learning method 
that can automatically handle the difficulties of 
Cox model and can also be used to select and rank 
variables (7, 11).  
Due to the limitations of the Cox model, using 
RSF to identify effective risk factors for survival 
has been suggested (7). Although, several studies 
have confirmed the promising performance of 
RSF compared to traditional Cox model (8, 12-14) 
in different disease, there is no attempt to use RSF 
in renal transplantation and compare its perfor-
mance with Cox model.  
This study aimed to identify prognostic factors af-
fecting renal graft by RSF and compare its perfor-
mance with Cox proportional hazard model.  
 

Material and Methods 
 
The present study utilized a data set corresponds 
to a retrospective cohort study which was con-
ducted in Hamadan, western Iran, from 1994 to 
2011. The number of 475 patients underwent kid-
ney transplantation in Ekbatan or Besaat hospitals 
and was eligible to enroll the study. To identify 
important risk factors, the patients who did not 
have any information about risk factors were elim-
inated from the analysis. In this regard, only 378 
out of 475 patients were considered in the present 
study because the information about potential risk 
factors was not observed for the rest of the pa-
tients.  
The risk factors were age, sex of donors and recip-
ients, type of donor (living-donor or deceased do-
nor), familial relationship, hemoglobin level, blood 
groups of donors and recipients, duration of dialy-
sis before transplantation (year), cold ischemic 
time (min), creatinine level at discharge, body 
mass index (BMI) of donor (kg/m2), left or right 
kidney, type of immunosuppressive drugs used 
(Imuran, prednisolone, cyclosporine vs. cellcept, 
prednisolone, cyclosporine), duration of hospitali-
zation (day), volume of urine excretion during the 
first 24 h after transplantation (ml/24 h), and oc-
currence of acute or hyperacute rejection. In this 
regard, acute rejection is related to formation of 
cellular immunity, which usually occurs to some 
degree in all grafts, except between identical twins 
and hyperacute rejection is initiated by preexisting 
humoral immunity and usually manifests within 
minutes after transplantation (3).  
The event of interest was chronic nonreversible 
graft rejection. The survival time was the time be-
tween kidney transplantation and episode of rejec-
tion (3).  
RSF is an extension of random forest RF to right-
censored survival data with the same principles 
underlying RF, which enjoys all its important 
properties (7, 15). Random forests consist of sev-
eral trees based on a random sample with replace-
ment. Each tree consists of nodes (variables) in 
which classification or split was implemented. In 
survival settings, tree node splits according to 
maximizing survival differences between daughter 
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nodes (new nodes). In this regard, in each tree, 
survival time and status of the patients were con-
sidered as response variables. Then, the ensemble 
estimate for the cumulative hazard function (CHF) 
is drawn by calculating the CHF for each sample 
in a data set, and summing this ensemble over the 
observed survival times yields the predicted out-
come referred to as ensemble mortality (a measure 
of mortality for a patient that has been shown to 
be an effective predictor of survival) (15). Each 
run of RSF was performed for the kidney trans-
plant data set based on 1000 trees under log-rank 
splitting rule.   
The importance of each model covariate was also 
determined by a rapidly computable internal meas-
ure of variable importance (VIMP) that can be 
used to rank variables. The larger VIMP, the more 
predictive the variable (the threshold value is 
0.002) (11). Moreover, multiple imputation strat-
egy based on RF was utilized for treating missing 

data (7). Five imputed data set were provided and 
then combining rules (16, 17) were applied to cal-
culate evaluation criteria and VIMP. In order to 
compare the performance of RSF and traditional 
Cox PH, two criteria were used including inte-
grated Brier score (18) and C-index (19) using out-
of-bag (OOB) data. A perfect prediction rule 
would have a concordance of 1 (20). 
Analyses were performed by using "random-
ForestSRC", a freely available package from the 
Comprehensive R Archive Network (CRAN). 
 

Results 
 

The mean survival time for 378 patients was 
7.35±4.62 yr, the median survival time was 6.81 yr. 
Out of 378 transplantations, 37 (10%) episodes of 
rejection occurred, and the remaining 341 patients 
(90%) were censored. Table 1 shows the VIMP of 
the variables obtained from RSF. 

 
Table 1: Mean and standard deviation of variable importance (VIMP) for kidney transplant data over five imputed 

data set. Each run based on 1000 trees under log-rank splitting 
 

Variables VIMP  SD  

Cold ischemic time (min)    0.0153 0.0003 * 
Recipient's age (yr) 0.0139 0.0023 * 
Creatinine level at discharge (mg/dl) 0.0122 0.0018 * 
Donors’ age (yr) 0.0113 0.0002 * 
Duration of hospitalization (day) 0.0036 0.0003 ** 
Immunosuppressive drug usage 
Imuran, Prednisolone, Cyclosporinev.s.  
CellCept, Prednisolone, Cyclosporine 

0.0016 0.0013  

Hemoglobin level (mg/dl) 0.0015 0.0004  
Type of donors 
Living-donor  
Deceased-donor  

0.0008 0.0001  

Post-transplantation condition 
No complication, 
Acute rejection,  
Hyperacute rejection 

-0.0003 0.0003  

Recipient sex -0.0003 0.0003  
Familial relationship -0.0004 0.0002  
Donor sex -0.0005 0.0000  
Urine volume (ml/24 h) -0.0005 0.0006  
Donor blood group -0.0006 0.0000  
Side of the kidney -0.0007 0.0001  
Recipient blood group -0.0021 0.0001  
Duration of dialysis (yr) -0.0047 0.0014  
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The cold ischemic time, recipient's age, creatinine 
level at discharge and donors’ age are highly pre-
dictive, and duration of hospitalization is moder-
ately predictive. However, type of donors, hemo-
globin level, donor's sex, immunosuppressive drug 
usage, post-transplantation condition, recipient 
sex, familial relationship, donor and recipient 
blood group, side of the kidney, duration of dialy-
sis and urine volume are unlikely to be predictive. 
According to Cox PH model, three variables of 
recipient age, type of donor (living vs. deceased), 
and episode of post-transplantation acute and hy-
peracute rejection were identified as most im-
portant variables. Two criteria of evaluation were 
also computed for Cox PH model. RSF had lower 

prediction error based on integrated Brier score 
(0.081) compared to Cox model (0.088). In addi-
tion, the C-index of RSF was considerably higher 
(0.965) than that of the Cox model (0.766). 
The effect on survival of the most five influential 
covariates found in the RSF analysis was displayed 
with 5-yr partial survival plots in Fig. 1. The esti-
mated partial survival for a covariate indicates esti-
mated survival for different levels of the covariate 
when the effects of all other covariates are justi-
fied. It can be seen from figure that, as cold is-
chemic time increases up to about 35 minute, the 
five-year predicted survival increases as well and it 
tends to decline after 35 minute. 

 

 
 

Fig.1: Partial 5-year predicted survival for five most influential covariates on survival in kidney transplant data. 
Dashed red lines are ± 2 standard error bars 

 

Discussion 
 
RSF identified cold ischemic time, recipient's age, 
creatinine level at discharge, donor's age and dura-
tion of hospitalization as the top five most im-

portant predictors of survival for graft failure pa-
tients in the present study.  
Several authors estimated the survival rate of kid-
ney transplantation and detected the risk factors 
of graft rejection (21-24). Our results showed that 
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the cold ischemic time variable was the most im-
portant factor in the risk of graft rejection, which 
is consistent with the results of some other studies 
(25, 26). Cold ischemic time is one of the risk fac-
tors that is involved in immediate anemia in renal 
transplant recipients (27). The second top risk fac-
tor was recipient's age. Based on the results, as 
recipient's age increases predicted five-year sur-
vival time increases as well. This may be a result 
of stronger and more efficient immune system in 
younger recipients (3). Previous studies confirm 
this finding (28-31). The third important variable 
was creatinine level at discharge. Previous studies 
have reported creatinine level at discharge as a risk 
factor in rejection of kidney transplantation (9, 10, 
32). Donor age was the fourth top risk factor, 
which had a negative correlation with graft rejec-
tion, i.e. kidney rejection is more likely among 
those recipients who receive kidney from older 
donors. This result is also similar to the result of 
other studies (3, 25, 26, 33, 34). The fifth top most 
important variable was duration of hospitalization, 
confirmed eralier (35, 36). 
This study focused on the performance of RSF 
method in identifying potential risk factors for 
survival of kidney graft failure patients compared 
to traditional Cox model. The results demon-
strated that the RSF model performed signifi-
cantly better than the conventional Cox-propor-
tional hazard model. Several studies also con-
firmed the promising performance of RSF com-
pared to Cox PH model in real data sets (8, 12, 
14). RSF had better performance compared to 
Cox PH model based on prediction error criterion 
(13). Therefore, it can be applied successfully for 
identifying risk factors of the kidney transplanta-
tion survival.  
RSF deals with the traditional Cox model issues 
such as proportionality assumption coherently and 
automatically (37) and analysts do not require 
knowing in advance the relationship (i.e. linear, 
nonlinear) of a variable over time (8). Besides, the 
performance of Cox regression is not reliable in 
the presence of high rate of censoring which was 
the case in the present study (about 90% censor 
rate). While, RSF is a robust extension of random 
forest a highly used machine learning method that 

has gained much interest in a variety of fields of 
application and generated a vast amount of compu-
tational literature in the last decade (8, 38). Howev-
er, the performance of different methods is data 
dependent and conducting additional studies is 
needed to compare RSF to Cox regression to doc-
ument further its performance in clinical settings (8).  
There were some limitations in the present study. 
Reliable sources of data obtained from prospec-
tive design were required for estimation of sur-
vival rate and associated prognostic factors, but 
the present study used a data set of a retrospective 
cohort study and medical records.  Quality and 
accuracy of estimates depends primarily on the 
quality of recorded data, but verifying the accuracy 
of data was not possible in the present study. Be-
sides, quality of the services and technology may 
vary over time, but we have no document to jus-
tify this issue. These issues might bias results. In 
addition, long-term follow-up duration results in 
losing some patients, which in turn may lead to 
biased results (3). 
 

Conclusion 
 
RSF identified a different subset of risk factors in 
chronic nonreversible renal graft rejection than 
the Cox PH model. Moreover, RSF model outper-
formed traditional Cox PH model. The RSF is a 
promising method for intuitive variable selection 
and is a way to eliminate the doubt in the “black 
box” approach to statistical analysis that should be 
further investigated in survival analysis of other 
diseases (8). 
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