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Abstract

Genomic copy number alterations are common in cancer. Finding the genes causally implicated in oncogenesis is
challenging because the gain or loss of a chromosomal region may affect a few key driver genes and many passengers.
Integrative analyses have opened new vistas for addressing this issue. One approach is to identify genes with frequent copy
number alterations and corresponding changes in expression. Several methods also analyse effects of transcriptional
changes on known pathways. Here, we propose a method that analyses in-cis correlated genes for evidence of in-trans
association to biological processes, with no bias towards processes of a particular type or function. The method aims to
identify cis-regulated genes for which the expression correlation to other genes provides further evidence of a network-
perturbing role in cancer. The proposed unsupervised approach involves a sequence of statistical tests to systematically
narrow down the list of relevant genes, based on integrative analysis of copy number and gene expression data. A novel
adjustment method handles confounding effects of co-occurring copy number aberrations, potentially a large source of
false positives in such studies. Applying the method to whole-genome copy number and expression data from 100 primary
breast carcinomas, 6373 genes were identified as commonly aberrant, 578 were highly in-cis correlated, and 56 were in
addition associated in-trans to biological processes. Among these in-trans process associated and cis-correlated (iPAC) genes,
28% have previously been reported as breast cancer associated, and 64% as cancer associated. By combining statistical
evidence from three separate subanalyses that focus respectively on copy number, gene expression and the combination of
the two, the proposed method identifies several known and novel cancer driver candidates. Validation in an independent
data set supports the conclusion that the method identifies genes implicated in cancer.
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Introduction

Genomic copy number alterations resulting from genomic

instability are commonly observed in cancer [1,2]. Substantial

effort has been invested in identifying aberration events playing a

critical role in the disease development. In breast carcinomas, the

genomic architectural changes are diverse and involve various

events such as loss and gain of whole chromosome arms,

inversions, translocations, and more focal gains and losses [3,4].

Several array comparative genomic hybridization (aCGH) studies

of breast tumors and breast cancer cell lines point to commonly

observed gains and losses on regions of chromosome 8, 13 and 17

– regions known to contain breast cancer associated genes such as

BRCA2, ERBB2 and MYC [5,6,7,8,9].

Recurring aberrations in tumors may be indications of selection

driven by changes in the expression of key genes in the affected

regions. Since recurrent segmental gains and losses frequently

involve several genes, their relative contribution to increased or

decreased cell viability and proliferation cannot be inferred from

copy number alone. This problem, often portrayed as distinguish-

ing between ‘drivers’ and ‘passengers’, is a key challenge in the task

of linking copy number alterations to genes and processes involved

in cancer development and progression. One way to proceed

would be to focus on genes for which copy number variation
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substantially affects gene expression. Integrated analyses of copy

number and gene expression data have revealed that the strength

of the in-cis correlation between copy number and expression

varies extensively between genes [10], and subsets of genes with

high correlation have been identified and proposed as candidate

driver genes [10,11,12,13,14,15].

It has been suggested that the oncogenic effect of molecular

alterations is to cause perturbations at the network level, leading

cells to malignant phenotypic states (see, e.g. [16]). Several studies

have aimed at identifying pathways and networks perturbed by

copy number aberrations, thus establishing associations between

genomic profiles and aberrant pathways in cancer [17,18,19],

clinical outcome and survival [13,20,21,22,23]. One may ask

whether a particular gene through its genomic aberrations has an

effect on higher-order phenotypes such as processes, pathways and

networks. A natural way to approach this would be to first

investigate how other genes are affected by the aberration, and

second to study whether any biological processes are overrepre-

sented in the list of affected genes. Following this idea, we propose

a workflow for integration of copy number and gene expression

data based on the stepwise application of a series of gene selection

criteria. The method combines correlation analysis, regression

analysis, and gene set enrichment, and to avoid confounding

effects, the method adjusts for co-occurring copy number

aberrations. A key element of the approach is the direct

integration of a statistical enrichment step enabling the assignment

of statistical confidence to in-trans associations between genes and

biological processes. The resulting genes are referred to as in-trans

process associated and cis-correlated (iPAC) genes.

The purpose of combining in-cis and in-trans analyses is here to

identify genes that are cis-regulated and for which the correlation

structure in the gene expression data provides further support for a

role in the alteration of cell phenotype in cancer. The method was

applied to a matched data set of aCGH and mRNA expression

from 100 well-characterized human primary breast tumors

[24,25,26,27], and subsequent application to a second, indepen-

dent breast cancer cohort showed consistent behavior of the iPAC

genes found in the first data set. A small selection of iPAC genes

were further studied using siRNA knockdown experiments.

Materials and Methods

Ethics statement
The study was approved by the Norwegian regional committee

for medical research ethics, Health region II (reference number S-

97103), and patients have given written consent for the use of

material for research purposes.

Patient samples and array experiments
Primary breast carcinoma samples from 100 patients previously

described as part of the MicMa cohort were used [24]. All samples

were fresh frozen and contained at least 40% tumor cells. The

majority of the tumor specimens represent tumor size T1/T2,

node status N0/N1 (9/11), and histological grade 2 or 3. Tumor

DNA was extracted using an ABI 341 Nucleic Acid Purification

System (Applied Biosystems, CA, USA) according to the

manufacturer’s protocol. Tumor RNA was isolated using TRIzol

reagent (Invitrogen, CA, USA) as previously described [28]. The

subtype classification deriving from mRNA expression has

previously been presented [29]. The aCGH and the mRNA

expression data sets have previously been published [26,30]. The

expression data (measured using Agilent 4 by 44K one-color

oligonucleotide arrays) are available in Gene Expression Omnibus

(GEO) with accession number GSE19783 [26], and the copy

number data (measured using Illumina Human-1 109K BeadChip

SNP arrays) are available on request to OCL. A breast cancer data

set from the University of North Carolina, Chapel Hill (UNC),

including 73 samples profiled on the same array platforms as

described above, was used for validation (see [25,31] for details).

Genomic locus annotation for all analyzed data is based on the

human genome build hg17.

Figure 1. Workflow of the proposed method to identify iPAC genes. (1) Starting with all genes, the commonly aberrant genes are selected as
those that have more than 10% gains or losses; (2) Next, those genes which in addition have an in-cis Pearson correlation above 0.6 are selected and
referred to as in-cis genes; (3) Finally, statistical enrichment analysis is performed to assess in-trans functionality, leading to identification of the 56
iPAC genes.
doi:10.1371/journal.pone.0053014.g001
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Overview of analysis
The proposed method is based on the stepwise application of a

series of gene selection criteria, and a core element is the use of a

rigorous statistical enrichment technique to reveal significant

associations in trans between the selected genes and biological

processes (see Figure 1). This enrichment step is combined with a

novel correction method designed to alleviate the problem of co-

occurring copy number alterations across the genome.

Segmentation
Copy number data were log2-transformed, and each sample

was segmented by fitting a piecewise constant regression function

to the data using the piecewise constant fitting (PCF) algorithm in

the R package copynumber [3,32,33,34]. A fitted value (‘‘PCF

value’’) was then obtained for each segment (and was inherited by

each probe in the segment) by averaging the log-transformed copy

number values for all probes located in that segment. The user

controls the trade-off between sensitivity and specificity with a

penalty parameter (c) and the minimal number of probes per

segment (kmin). We chose c~70 which is fairly conservative and

thus provides robustness against the presence of potential local

(spurious) trends which are common in aCGH data due to varying

GC-content and other reasons (see [34] for details), and use the

default valuekmin~3.

Matching copy number and expression values
In order to obtain matching copy number and expression data

sets, we first identified all expression probes annotated with a gene

symbol in the data set. For each such probe, the copy number

probe mapping to the nearest location in the genome was

identified. Copy number and gene expression data were then

averaged over the corresponding probe values for each gene

symbol, resulting in a unique copy number value and expression

value for each patient and each gene. The corresponding pair of

values was assigned a genomic position by averaging over the

locations of the expression probes associated with the gene symbol.

Analogous methods are also used in other studies [12,35,36]. This

procedure yielded two 25,6886100 matrices of copy numbers and

corresponding gene expressions, where each row represents a gene

and each column a patient sample.

Aberration calling
To call aberrations, a parameter hw0 determining the

sensitivity of the aberration calling (and hence what is considered

a significant aberration) was introduced. Probes with a PCF value

larger than h were called as gains, and probes with a PCF value

less than {h were called as losses. Following the recommended

practice for threshold selection in the R package copynumber [34],

we concluded that h~0:2 was an appropriate threshold, which is

very similar to the threshold used in [33] where a subset of the

copy number data considered in this paper was analyzed.

Identification of common gains and losses
To identify genomic loci where the copy number events are

skewed towards either gain or loss, a sign test was applied. Let n

denote the total number of samples with an aberration in a

particular locus, and suppose G of these aberrations are gains and

L are losses (so that n~GzL). Modeling the number of gains as a

binomial distribution with n draws and success probability p,

G~BBin(n,p), we may formally infer whether gains are overrepre-

sented by testing the null hypothesis H0 : p~0:5 against the

alternativeH1 : pw0:5. Using the difference D~G{L as the test

Figure 2. Copy number aberrations and in-cis correlations. The frequency of samples with gains (red) and losses (green) is shown at the top.
Each gray point shows the level of in-cis correlation between copy number and expression for a particular gene. The chromosomal positions of the
genes selected in our workflow are shown at the bottom. This includes commonly aberrant genes (n = 6373; upper band), in-cis genes (n = 578;
middle band), and the iPAC genes (n = 56; lower band). Colors indicate whether the gene is most frequently amplified (red) or deleted (green).
doi:10.1371/journal.pone.0053014.g002
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statistic, we want to determine the rejection region D§d where

dw0 is a given threshold. Since D~G{(n{G)~2G{n, we

have that

Pr (D§d)~Pr G§
nzd

2

� �

~

X

n

k~r(n)

n

k

� �

pk (1{p)n{k

where r(n)~q(nzd)=2r. Assuming a significance level of a~0:05,
we seek the least integer dw0 for which we have Pr (D§d)ƒ0:05
for all n under the null hypothesis of p~0:5. In practice (see

Results) the number of aberrations never exceeds 38 in any given

locus, and n may be restrained correspondingly above. A simple

calculation then shows that the appropriate threshold is D§11,

and this value was used in the analyses. Thus, all genes for which

G{Lw10 were defined as being commonly gained.

By an analogous argument, all genes for which L{Gw10 were

defined as being commonly lost. Whenever DG{LD w10, the gene

was referred to as being commonly aberrant. Note that the

purpose of this step was to filter out the bulk of aberrant genes with

no indication of skewness towards either gain or loss, and hence

the above significance criterion was designed to be very mild and

did not take into account multiple comparisons.

Identification of in-cis correlated genes
To seek the genes for which the expression is significantly

influenced by the copy number, we identified in-cis correlated

genes. To identify significant in-cis correlations between log copy

number and log gene expression, the in-cis correlations of all the

commonly aberrant genes were compared to a background

distribution of in-cis correlations. The background distribution

was generated by performing 2000 shuffling simulations where in

each, only the gene order in the aCGH data set was shuffled and

the in-cis correlations were recalculated. By selecting the genes

with (Pearson) in-cis correlation rw0:6 we achieved a false

discovery rate (FDR) of less than 2%. This cut-off corresponds

to a coefficient of determination of (0:6)2~0:36, meaning that at

least 36% of the variation in log-expression is accounted for by the

in-cis variation of log-copy number.

The above procedure corresponds to keeping only the genes g

for which the following log-linear model provides a good fit to the

observed copy number and gene expression levels:

Figure 3. Association between expression and copy number. Linear regression of log-expression as a function of log-copy number for four
selected iPAC genes.
doi:10.1371/journal.pone.0053014.g003
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logEg,i~agzbg logCg,izeg,i ð1Þ

where Eg,i and Cg,i denote respectively expression and copy

number of gene g in the ith sample, and eg,i are independent and

identically distributed noise terms. Equation (1) implies that log

expression is a linear function of log copy number (and noise).

Suppressing the gene subscript and ignoring the noise term,

equation (1) is equivalent to Ei~A:Cb
i (where A~2a, assuming

logarithms in base 2). Accordingly, model (1) is flexible enough to

allow both linear (b~1) and nonlinear (b=1) relations between

the expression and the copy number of a gene.

In-trans correlation analysis
The purpose of this step was to quantify the level of association

between the in-cis genes and other genes. To do this, we

considered the correlation between the in-cis gene and all other

genes. A potential problem in this context is that genes close to

each other on the same chromosome may be affected by the same

copy number alterations, with inflated correlation between the

expression levels of the two genes as a possible result. Thus, co-

occurring copy number aberrations can act as a confounding

factor, and this should be taken into account when assessing

potential expression-mediated effects of one gene on another. To

avoid this problem we calculated for each gene g the residual log

expression values Rg,i~ logEg,i{âag{b̂bg logCg,i over all the

samples, where the coefficients âag and b̂bg were found by fitting

the model in (1), and quantified the in-trans effect of an in-cis gene

G on gene g by the Pearson correlation between the observed log

expressions logEG,i of the in-cis gene and the residual log

expressions Rg,i of the gene in trans.

Identification of in-cis genes associated in-trans with
processes
In order to identify in-cis genes that were associated with

processes in trans, we considered 8284 gene sets defined by Gene

Ontology (GO) biological process terms [37]. Using each in-cis

gene G in turn as a pivot, all other genes g were ranked according

to the correlation between logEG,i and Rg,i(from high positive

correlation to high negative correlation), and an enrichment score

was calculated for each GO term in the ranked list of genes. This

was done separately for the genes in the top and the bottom of the

ranked list. The enrichment score was defined as the p-value from

the minimum hypergeometric (mHG) test (see [38,39] for details).

Such scores were calculated for each in-cis gene and each GO

biological process term. For further analysis, we only considered

associations between in-cis genes and GO terms with a p-value

score p,0.05 (after Bonferroni correction).

To obtain empirical p-values for the associations selected above,

100 random simulations were performed. In each simulation

instance, we shuffled the order of the samples in the residual

expression data set only and recalculated all enrichment scores.

This approach preserves existing expression dependencies between

genes. Let Pg,s be the enrichment score (mHG p-value) of the

association between in-cis gene g and gene set (GO term) s, and let

P�k
g,s be the enrichment score of this association in the kth simulation

instance (k~1, . . . ,100). We considered an in-cis gene g to be

significantly associated with a gene set s if Pg,svmint,k(P
�k
t,s),

where k~1, . . . ,100 and t ranges over all in-cis genes. That is, a

relation between an in-cis gene and a gene set was called significant

if the observed enrichment score (mHG p-value) was less than the

enrichment scores obtained for that gene set for all in-cis genes in

all the simulations. This step alleviates differences in attainable p-

Figure 4. Effect of using copy number-adjusted residual expression. (A) Comparison of in-trans correlations calculated with and without
adjustment for in-cis correlation, i.e. copy number-adjusted-residual expression. In each panel, the x-axis represents the in-trans correlation without
adjustment for in-cis correlation, and the y-axis represents the in-trans correlation with adjustment for in-cis correlation. The diagonal lines extend
from (21,21) to (1, 1). Each point represents one pair of genes among all the 578625,688 gene pairs (G, g) where G is an in-cis gene and g denotes
any gene; (I) All pairs for which G and g are either on different chromosomes or on the same chromosome but on different arms; (II) All pairs for which
G and g are within a distance of 30 Mb from each other; (III) All pairs for which G and g are within a distance of 5 Mb from each other; (IV) All pairs for
which G and g are within a distance of 1 Mb from each other. (B) The copy number-adjusted residual expression as a function of the non-adjusted
expression, in log space. Shown here are the expression levels for six genes with an in-cis correlation ranging from 0 to 0.9. Each dot represents one
breast cancer patient. The effect of copy number-adjusted-residual expression increases with increasing in-cis correlation level. The dotted line is the
diagonal, and the solid line is the regression line.
doi:10.1371/journal.pone.0053014.g004
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values due to correlated null hypotheses (the GO gene sets have

strong overlaps and genes within a set may be strongly dependent).

Enrichment analysis using GOrilla
GOrilla (http://cbl-gorilla.cs.technion.ac.il/) [38,39] was used

with default parameters to investigate and visualize the enrichment

of GO biological process in ranked lists of selected gene sets.

Results

We have presented a computational framework for identifica-

tion of aberrant genes potentially leading to a substantial shift in

transcriptional programs. The proposed method was applied to

matched copy number and expression data from a cohort of 100

breast carcinomas. The resulting iPAC genes were further

validated in a data set from another breast cancer cohort. The

workflow of our approach is depicted in Figure 1 and details are

provided in Materials and Methods.

Common aberrations
The first step of our workflow was the identification of genes

that were commonly aberrant between the patient samples.

Among the 25,688 genes profiled, a total of 6373 genes were

found to be commonly aberrant, of which 3499 were commonly

amplified and 2874 commonly deleted (notice that by the

definition of commonly aberrant genes given in Materials and

Methods, a gene cannot be both commonly amplified and

commonly deleted). These genes are scattered throughout the

genome with highest frequency on chromosomes 1, 8, 11, 13, 16,

and 17 (Figure 2; Figure S1A). For all genes combined, 7.5% of

the variance of the expression values was explained by copy

number alterations in cis. Considering only commonly aberrant

genes, this fraction increased to 11.5%.

In-cis associations
The in-cis correlation is shown for all genes in Figure 2 and

Figure S1B. Ranking the 6373 commonly aberrant genes accord-

ing to their in-cis correlation reveals that the genes with highest

correlation are enriched with the GO terms of DNA repair, cell

cycle, DNA recombination, and chromatin modification and

organization (see Figure S2 and Table S1 for a full list of results).

Genes with high in-cis correlation (Pearson’s r.0.6) were selected

among the commonly aberrant genes, resulting in 578 in-cis genes

(see Figure 2 and 3, and Table S2). These genes were predom-

inantly found on chromosomes 1, 8, 16, and 17. Of these, 423

genes were commonly amplified and 155 commonly deleted

(Figure 2).

The in-cis genes included known cancer-associated genes such

as ERBB2, MAP3K7, MDM4, FGFR1, CCND1 and FADD. Further

annotation of the 578 genes showed that 19% code for enzymes,

8% regulators of transcription, 7% transporters, 4% kinases, 2%

peptidases, and 2% phosphatases (Figure S3A). The remaining

genes encode various sorts of proteins, e.g. zinc finger proteins,

ribosomal proteins, RNA binding proteins, and mitochondrial

proteins (see Table S2 for description). The fraction of the

variance in expression explained by copy number alterations

increased to 46.6% when considering only the in-cis genes.

Although the in-cis genes exhibit strong correlation between copy

number and expression, a substantial proportion of the variability

in these genes across samples is also related to other influences.

Thus, their expression reflects copy number as well as various

other factors.

In-trans associations to biological processes
The final step of the workflow led to the identification of in-cis

genes significantly associated with at least one biological process in

trans. For this purpose, the copy number-adjusted residual

expression was calculated for all 25,688 genes. Each in-cis gene

was taken separately as a pivot and all 25,688 genes were ranked

according to the in-trans correlation between their copy number-

adjusted residual expression and the non-adjusted expression of

the pivot gene. The importance of adjusting for copy number is

Figure 5. Effect of residual expression. Correlation plots showing how the level of high-level in-trans correlations change across the genome
with and without copy number-adjusted residual expression correlation. Red dots signify positive in-trans Pearson correlation above 0.6, and green
dots signify negative in-trans Pearson correlation below 20.6. The x-axis shows the genomic positions of all 25,688 genes and the y-axis represents
the genomic position of the 578 in-cis genes. (A) High in-trans correlations between expression of in-cis genes to expression of all genes. (B) High in-
trans correlations between expression of in-cis genes to residual expression of all genes. (C) High in-trans correlations between copy number of in-cis
genes to the expression of all genes.
doi:10.1371/journal.pone.0053014.g005

Figure 6. Enrichment of the Cell Cycle Process GO term in
ATAD2 correlated genes. All genes were ranked according to the
level of correlation between their copy number-adjusted-residual
expression profile and the expression levels of ATAD2 (pivot for this
analysis). The heatmap represents the expression levels of all 25,688
genes after ranking them according to the criteria mentioned above
and after sorting the samples according to ATAD2 expression levels. Top
panel in blue and red presents the expression and copy number levels
of ATAD2 across the 100 samples, respectively. The graph shows the
significance level in –log(hypergeometric p-value) of cell cycle process
genes in the ranked list of genes. Optimal enrichment is attained at the
top 189 genes, with 14 times more cell cycle process genes than would
be expected by chance (mHG pv4|10{83).
doi:10.1371/journal.pone.0053014.g006
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Table 1. Description and properties of the 56 iPAC genes.

Gene Full gene name Cytoband Highest associated GO term (trait) Score Annot

DARS2 aspartyl-tRNA synthetase 2, mitochondrial 1q25.1 nucleic acid metabolic proc. 94.31

ATAD2 ATPase family, AAA domain containing 2 8q24.13 cell cycle 91.53 BC

SMC4 structural maintenance of chromosomes 4 3q25.33 cell cycle 90.42 BC

ACTL6A actin-like 6A 3q26.33 cell cycle 87.78 C

RECQL4 RecQ protein-like 4 8q24.3 cell cycle 86.78 BC

ECT2 epithelial cell transforming sequence 2 oncogene 3q26.31 cell cycle 82.84 C

POGK pogo transposable element with KRAB domain 1q24.1 nucleic acid metabolic proc. 82.62

MTBP Mdm2, transformed 3T3 cell double minute 2, p53 binding protein 8q24.12 cell cycle 80.67 C

VPS72 vacuolar protein sorting 72 homolog (S. cerevisiae) 1q21.2 nucleic acid metabolic proc. 80.29

NUDCD1 NudC domain containing 1 8q23.1 nucleic acid metabolic proc. 80.27 C

MTERFD1 MTERF domain containing 1 8q22.1 nucleic acid metabolic proc. 78.77

WDSOF1 DDB1 and CUL4 associated factor 13 8q22.3 nucleic acid metabolic proc. 78.14 BC

NUP85 nucleoporin 85kDa 17q25.1 cell cycle 75.28

RAD21 RAD21 homolog (S. pombe) 8q24.11 cell cycle 74.77 BC

KPNA2 karyopherin alpha 2 (RAG cohort 1, importin alpha 1) 17q24.2 cell cycle proc. 74.09 BC

C8orf76 chromosome 8 open reading frame 76 8q24.13 cell cycle proc. 69.94

POP1 processing of precursor 1, ribonuclease P/MRP subunit 8q22.2 cell division 64.40 C

TATDN1 TatD DNase domain containing 1 8q24.13 cellular macromol. metabolic proc. 61.06 BC

PDCD10 programmed cell death 10 3q26.1 cellular macromol. metabolic proc. 58.81 C

THRAP6 mediator complex subunit 30 8q24.11 cellular nitrogen compound metab. proc. 55.46 BC

RPL30 ribosomal protein L30 8q22.2 cellular macromolecule biosynth. proc. 46.14 C

PRCC papillary renal cell carcinoma (translocation-associated) 1q23.1 organelle organization 38.66 C

C1orf35 chromosome 1 open reading frame 35 1q42.13 chromosome organization 34.69 C

PARP1 poly (ADP-ribose) polymerase 1 1q42.12 chromosome organization 34.10 BC

MRPS23 mitochondrial ribosomal protein S23 17q23.2 positive regulation of ligase activity 28.47 C

PSMD4 proteasome (prosome, macropain) 26S subunit, non-ATPase, 4 1q21.2 response to DNA damage stimulus 27.44

SETDB1 SET domain, bifurcated 1 1q21.2 chromatin modification 23.51 C

HNRPU heterogeneous nuclear ribonucleoprotein U 1q44 chromatin modification 20.52 C

BOP1 block of proliferation 1 8q24.3 DNA conformation change 17.27 C

SIAHBP1 poly-U binding splicing factor 60KDa 8q24.3 mitotic sister chromatid segregation 16.14 C

PRPF3 PRP3 pre-mRNA processing factor 3 homolog (S. cerevisiae) 1q21.2 mRNA transport 15.77 C

PPM1D protein phosphatase, Mg2+/Mn2+ dependent, 1D 17q23.2 mitotic cell cycle checkpoint 14.29 BC

FAM33A spindle and kinetochore associated complex subunit 2 17q23.2 mitotic cell cycle checkpoint 14.12 BC

MRPL9 mitochondrial ribosomal protein L9 1q21.3 establishment of organelle localization 13.74

C22orf28 chromosome 22 open reading frame 28 22q12.3 cellular protein metabolic proc. 13.41

SLMO2 slowmo homolog 2 (Drosophila) 20q13.32 spindle checkpoint 11.92

CHRAC1 chromatin accessibility complex 1 8q24.3 mitotic metaphase plate congression 11.91 C

C16orf61 chromosome 16 open reading frame 61 16q23.2 spindle checkpoint 11.28 BC

ISG20L2 interferon stimulated exonuclease gene 20kDa-like 2 1q23.1 DNA-dependent DNA replication init. 11.07

CSNK1E casein kinase 1, epsilon 22q13.1 neural tube development 10.25 BC

FAM91A1 family with sequence similarity 91, member A1 8q24.13 establishment of mitotic spindle loc. 10.08

TOMM20 translocase of outer mitochondrial membrane 20 homolog (yeast) 1q42.3 transcription 10.03

C20orf20 chromosome 20 open reading frame 20 20q13.33 mitotic cell cycle spindle checkpoint 9.67 C

GALNS galactosamine (N-acetyl)-6-sulfate sulfatase 16q24.3 carbohydrate catabolic proc. 9.05 BC

AZIN1 antizyme inhibitor 1 8q22.3 histone mRNA metabolic proc. 8.19 C

MTL5 metallothionein-like 5, testis-specific (tesmin) 11q13.2 water-soluble vitamin biosynthetic proc. 28.37

TPD52 tumor protein D52 8q21.13 regeneration 28.57 BC

ARID4B AT rich interactive domain 4B (RBP1-like) 1q42.3 organ regeneration 28.80 C

THC2340878 NA 8q13.2 programmed cell death 29.06
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most pronounced for genes in close proximity (see Figure 4A), and

the effect of using copy number-adjusted residual expression

increases with the in-cis correlation (see Figure 4B and Figure 5).

Overrepresentation of Gene Ontology (GO) biological process

terms in the above ranked list of genes was statistically assessed

(Figure 6). Out of the 578|8284~4:7|106 potential associations

(for every in-cis gene and every GO term tested), we first selected

those with enrichment score pv1:04|10{8 (corresponding to

pv0:05 after Bonferroni correction). This resulted in 19,606

associations covering 467 GO terms and all 578 in-cis genes.

Finally, simulations were used to call significant gene-process

associations (see Materials and Methods). This yielded a total of

Table 1. Cont.

Gene Full gene name Cytoband Highest associated GO term (trait) Score Annot

CHTOP chromatin target of PRMT1 1q21.3 activation of plasma proteins 211.73

TMEM70 transmembrane protein 70 8q21.11 regulation of Rho protein signal transd. 213.02 BC

DPM1 dolichyl-phosphatemannosyltransferase polypeptide 1, cat. subunit 20q13.13 negative regulation of gene expression 213.36 C

PYCRL pyrroline-5-carboxylate reductase-like 8q24.3 membrane invagination 215.15

IMPAD1 inositol monophosphatase domain containing 1 8q12.1 positive regulation of cell death 215.88

STX16 syntaxin 16 20q13.32 cellular protein metabolic process 215.88

PIGM phosphatidylinositol glycan anchor biosynthesis, class M 1q23.2 response to external stimulus 222.09

Scores in the table are the negative logarithms of the enrichment scores, the sign indicating whether the association of the trait to the genes is positively or negatively
correlated with the iPAC gene. The annotation column indicates genes previously linked with breast cancer (BC) and among those that are not, genes linked to cancer in
general (C), based on annotation of the genes obtained with IPA (IngenuityH Systems, www.ingenuity.com).
doi:10.1371/journal.pone.0053014.t001

Figure 7. Associations between iPAC genes and traits (biological processes). A hierarchical clustered heatmap representation of traits
associated with at least four iPAC genes. A red entry indicates a significant association between an iPAC gene and the corresponding trait (see
Figure S4 for all the significant associations). The Expander suite [66] using average Euclidian distance was used to calculate and visualize the
hierarchical clustering analysis.
doi:10.1371/journal.pone.0053014.g007
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Figure 8. Distribution of in-cis correlation levels between copy number and expression in the MicMa and UNC cohorts. Green bins in
the histogram show distribution of in-cis correlation levels of all genes in the data set, while red bins show the distribution for only the identified iPAC
genes. The left-hand y-axes in each histogram show the count in each bin among all genes, and the right-hand axes show the count for iPAC genes in
each bin. (A) Distribution of the in-cis correlation levels in the MicMa cohort. (B) Distribution of the in-cis correlation levels in the UNC cohort. The
iPAC genes were inferred from the MicMa cohort.
doi:10.1371/journal.pone.0053014.g008

Figure 9. Association consistency of iPAC genes in the validation cohort. Blue dots represent associations between an iPAC gene and a GO
term. The blue dots are plotted according to the level of association, as signed –log(p-value), in the MicMa cohort (x-axis) and in the UNC cohort (y-
axis), where signed –log(p-value) refers to –log(mHG p-value) for positive associations and log(mHG p-value) for negative associations. A monotone
relation is observed, supporting the iPAC behavior of the MicMa inferred iPAC genes in the validation cohort. A bar with a red dot in the center is
plotted for each blue dot representing 1 standard deviation (SD) of the associations generated by associating 100 random genes from the UNC
cohort to the relevant GO term.
doi:10.1371/journal.pone.0053014.g009
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276 highly significant associations, covering 56 in-cis genes

(henceforth called iPAC genes) and 97 unique GO terms (called

traits) at a false discovery rate (FDR) of less than 1% (see Figure 2,

Table 1 and Table S3). Cell cycle related processes commonly

occurred as traits of the iPAC genes, consistent with an association

to tumor development and progression related processes (see

Figure 7 and Figure S4).

Properties of the identified iPAC genes
Four of the 56 iPAC genes were commonly deleted and 52

commonly amplified. The iPAC genes encode proteins with

various biological roles, including enzymes, regulators of tran-

scription and translation, and transporter molecules (Figure S3B).

Five of them were themselves members of the biological process(es)

they were found to be associated with (MTBP, RAD21, RECQL4,

SETDB1, and SMC4). Comparing the 56 iPAC genes against the

background of all other genes using GOrilla, the 56 genes were

found to be associated to four biological processes all commonly

disrupted in cancer: cell cycle, cell cycle process, nucleic acid

metabolic process, and chromosome organization (Table S4 and

Figure S5).

Among the iPAC genes, 38 mapped to chromosomes 1 (n= 16)

and 8 (n= 22), while the rest were located on chromosomes 3, 11,

16, 17, 20, and 22 (Figure 2 and Figure S6). There was a tendency

for iPAC genes to reside in blocks of commonly aberrant segments.

As would be expected by their mutual proximity and their high in-

cis correlation, the expression levels of iPAC genes residing in the

same block were highly correlated (Figure S7). Accordingly, the

scope for further narrowing down the list of candidates based on

copy number and expression data alone was limited. However, in

several cases, iPAC genes in close proximity were found to be

associated with different biological processes. For example, PRPF3

and SETDB1 are less than 1 Mb apart from each other and were

associated with mRNA transport and chromatin modification,

respectively.

Figure S8 shows how the patient samples clustered according to

the expression of the iPAC genes. Most of the luminal samples

clustered together, as did the basal-like samples, with the latter

having a tendency towards higher expression of the iPAC genes.

We note that the expression levels of the iPAC genes were not

found to be significantly associated with survival (data not shown).

Knockdown experiment with siRNA
To investigate the effect of the selected iPAC genes on cell

viability, siRNA knockdown was performed for three iPAC genes

(ECT2, PSMD4 and MTBP) in two breast cancer cell lines (MCF7

and MDA-MB-231; see the Supporting Information uploaded to

the file inventory: File S1.pdf). For one of the siRNAs tested

against ECT2 we observed a ,30% reduction in cell viability

(pv0:05, Figure S9) in the MCF7 cell line. ECT2 is a guanine

nucleotide exchange factor for Rho family GTPases and was most

strongly associated with the cell cycle GO term and amplified in

15% of the samples. The reduced cell viability after knockdown

emphasizes the importance of the iPAC gene ECT2 in the MCF7

cell line. A smaller reduction in cell viability was also observed for

PSMD4 (data not shown).

Robust iPAC signature in a validation cohort
In order to validate the robustness of the 56 identified genes, we

investigated their iPAC characteristics in an independent breast

cancer cohort (UNC), consisting of 73 patients [25]. Out of the 56

iPAC genes identified in our study, 51 were among the genes

measured in the UNC study. The five remaining genes (IMPAD1,

FAM33A, FAM91A1, PARP1 and THC2340878) had been

removed further upstream in the analysis and data preprocessing

in the UNC study.

The in-cis correlation between copy number and expression for

the iPAC genes ranged from 0.16 (SETDB1) to 0.69 (PPM1D) in

the validation cohort, with an average of 0.43 (Figure 8). To assess

the in-trans associations for the iPAC genes in the validation

cohort, all genes were ranked according to the level of correlation

between their copy number-adjusted residual expression and the

expression of each iPAC gene in the validation cohort. The

association between each iPAC gene and each of the 97 GO terms

identified in the original analysis was then assessed. The results

showed high level of consistency of enrichments between the two

cohorts (Figure 9). As a further confirmation of consistency, we

compared these results to the association levels (negative

logarithms of the enrichment scores) of 100 random genes to

each of the above GO terms. It was found that 95% of the iPAC

gene/trait pairs tested in the validation cohort had association

levels exceeding mzSD, where m is the average and SD is the

standard deviation of association levels obtained for the random

genes, and 80% of the pairs had association levels exceeding

mz2SD (Figure 9). This shows that the level of association of the

iPAC genes with their relevant biological process (represented by

the GO term) in the validation cohort is not random.

Discussion

Copy number aberrations are common in breast cancer, but to

what extent such aberrations affect cancer cell phenotype through

alterations of the transcriptional program is not yet known. The

methods we propose here aim to identify genes subject to selection

in breast cancer by detecting commonly aberrant genes affected on

the gene expression level by genomic aberrations. Furthermore,

the method requires the identified genes to be correlated with

genes collectively enriched with respect to GO biological

processes. Thus, it is through the influence on other genes and

their associated processes that the iPAC genes are identified.

Integrative analysis as a tool for inferring causality
Numerous high-throughput profiling expression studies have

identified clusters of genes with expression varying in a coordi-

nated manner over time or across disease states. However, such

studies generally give no information about the directionality of

gene interactions unless additional information is available. Strong

association between the mRNA expression levels of two genes may

result from one gene regulating the other, both being regulated by

a common factor, or a combination of both. The combined use of

copy number and expression data allows the distinction between a

situation where the expression of one gene influences the

expression of another gene and a situation where the expression

levels of the two genes are merely correlated [17].

Relationship to other methods
Several strategies that aim to identify driver genes in cancer

exploit the integration of matched copy number and expression

data. Woo et al. [23] worked with an integrated copy number and

expression data set and used the prognostic significance of genes to

guide the selection process. Akavia et al. [17] also utilized this sort

of integration in their CONEXIC algorithm. Their study assumed

that a driver mutation would occur more often than by chance in

multiple tumors, that the mutation would be correlated with the

expression of a group of genes (a module), and that copy number

changes often had an effect on expression of the driver that thus

further influenced the expression of the module [17]. The

CONEXIC approach is founded on the notion that the expression
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levels of the driver, rather than the determinants of that expression

level, confers a fitness advantage to the tumor. Alteration of copy

number is only one way of achieving this, manifested by a high

frequency of aberrations in a patient cohort.

The iPAC approach has a similar rationale as CONEXIC.

However, our method differs from the approaches described

above in several aspects. First, we use residual expression for the

in-trans correlation analysis, thus bypassing the potential con-

founder effect of co-occurring copy numbers. Second, we use a

robust enrichment analysis approach to identify aberrations that

lead to a significant shift in cancer-related transcriptional

programs. Using the enrichment framework, we assign statistical

significance to gene-process associations. By taking advantage of

the residual expression, the modulator properties of the iPAC

genes are more robustly captured. Such modulator effects on

biological processes interrupted in cancer may go beyond the

direct effects on a pathway; transcriptional responses launched by

the cell after physiologic alterations may result from various

indirect influences and mechanisms [17], and in this respect, the

iPAC genes represent a diverse set of candidates.

Characteristics of the iPAC genes
The list of iPAC genes includes 16 genes previously associated

with breast cancer and 20 additional genes associated with cancer

in general (Table 1). For example, ATAD2 was highly associated to

the cell cycle process, indicating that the cell cycle module is

activated when ATAD2 is amplified and overexpressed. ATAD2 is

an ATPase and was recently reported to be a cofactor for the MYC

oncogene [40]. While copy number was a predominant determi-

nant of ATAD2 expression levels, other factors also probably

influence ATAD2 expression levels and through its expression

level, ATAD2 is proposed to affect its target process. Another

example is TPD52 which was highly associated to regeneration;

this gene has previously been suggested as a potential driver gene

and reported amplified and overexpressed in various cancer types,

including breast cancer [41,42,43,44]. Furthermore, PPM1D was

strongly associated to the mitotic cell cycle checkpoint; this gene

encodes a serine/threonine phosphatase, maps to the 17q23.2

amplicon and has been shown to be involved in the regulation of

several tumor suppressor pathways, including the p53 pathway

[45,46]. Amplification of this gene has previously been found to be

correlated with overexpression in breast cancer [47]. The iPAC

gene KPNA2 was associated with the trait of nuclear division, and

is a member of the importin family of proteins involved in nuclear

transport. KPNA2 has been proposed to be a prognostic marker in

breast cancer [48], and overexpression of this gene has been

associated with poor prognosis, expression signatures of high

proliferation, and tumor grade [49,50].

The iPAC genes also include several genes not previously

associated with cancer. One interesting example is the gene MTL5

which was negatively correlated with the water-soluble vitamin

biosynthetic process and encodes a protein with homology to the

metal-binding motif of the metallothionein (MT) family [51].

MTL5 is located on chromosome 11q13.2 and was found

amplified in 17% of our investigated breast cancer samples.

Through their ability to bind metal, MT proteins can affect the

activity of several proteins and enzymes dependent on metals as

co-factors. In this respect, MT proteins play important roles in

apoptosis and proliferation [52]. Furthermore, elevated expression

of MT proteins has been reported in various cancer types,

including breast cancer [52,53,54] and was also linked to

modulation of p53 activity through zinc exchange [55,56].

Dividing our samples according to p53 mutational status, MTL5

was one of the top 2% most down regulated genes in mutated p53

(pv10{5) (data not shown). As MTL5 was found to be amplified

in a significant proportion of the samples in our cohort, and

because of its iPAC properties, our results indicate that the gene

may have an important role in breast cancer, similar to the

homologus MT proteins. Many homologs of MTL5 exist both in

animals and plants, suggesting that the function of this gene is

conserved [57].

Proof-of-concept knockdown experiments
We selected three iPAC genes for siRNA knockdown experi-

ments. Out of these, silencing of ECT2 led to significant decrease

in cell viability. By using our approach, this gene was found to be

most highly associated with cell cycle related traits. The protein

ECT2 has been shown to regulate cytokinesis [58], which can

explain the effect on cell viability after knockdown. ECT2 has been

found to be up-regulated during transition to malignancy in a

mouse model [59], to be amplified and overexpressed in non-small

cell lung cancer [60], and to have an elevated expression in

colorectal cancer [61].

In another study, siRNA-mediated knockdown of the iPAC

gene RAD21 was found to decrease cell growth and enhance

cytotoxicity in MCF7 and T47D breast cancer cell lines [62].

RAD21 encodes a phosphoprotein and is a component of the

cohesin complex essential for chromosome segregation during

mitosis/meiosis and DNA repair [63,64]. In our breast cancer

cohort, RAD21 was found to be amplified in 36% of the tumor

samples and to be highly associated with the cell cycle trait. Strong

association to cell cycle has been shown to correlate with cell

proliferation for the same patient samples [26], and enhanced

expression of this protein has been associated with poor prognosis

and resistance to chemotherapy in breast cancers [65].

Conclusion
Whole-genome integrative analyses of copy number and gene

expression data is a useful tool in genome-wide searches for

candidate driver genes in cancer. The first phase of analysis is

typically to detect genes with frequent aberrations in copy number

and strong in-cis correlation to gene expression. For example, in

our study, the gene ERBB2 was ranked 7 out of 6373 genes with

respect to the in-cis correlation level, indicating a direct link

between copy number and expression. However, even among

those genes that satisfy these criteria there are potentially many

passengers with no direct oncogenic role. In the opposite direction,

there may be genes that manifest moderate in-cis expression but

still drive cancer-related processes through their expression level.

Regulation of these expression levels may be selected for in the

cancer through copy number changes as well as other mechanisms

(e.g. altered methylation). Our aim has been to detect genes for

which the gene-gene correlation structure of the expression data

reveals additional evidence to support a link to a phenotype. The

iPAC gene ATAD2, which was ranked only 450 in the in-cis

correlated genes and hence would easily have been missed by in-cis
focused methods, illustrates this point. Several similar examples

are described above, indicating that the iPAC procedure does

indeed capture biologically relevant genes not found on the top of

the list of in-cis correlated genes.

Validation in an independent cohort of the proposed methodology

and of the observation regarding the 56 iPAC genes found in our initial

analysis supports method robustness and justify focus on the identified

genes with respect to their tumorigenic role. In this study, we have

selected GO biological process terms as they represent a comprehen-

sive view of functional traits. It is clearly possible to select other

annotation approaches for this purpose. For example, one could assess

the enrichment of molecular pathways or transcription factor networks
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among the in-trans correlated genes. We provide cell line based

experimental data for the effect of ECT2 on cell viability; however,

further functional validation is still needed to firmly establish the role of

the 56 iPAC genes in breast cancer.

The framework for the identification of in-trans regulatory

mechanisms, as exemplified here in human breast cancer, is applicable

to any kind of data with existing comparable aCGH, expression

profiles and a collection of gene sets representing transcriptional

programs. We propose this method as an unbiased and robust

approach for the identification of genes of relevance to tumorigenesis.

Supporting Information

Figure S1 Copy number and expression correlations. (A)
Pearson correlation of copy number data for all the 25,688625,688

genes. (B) Pearson correlation of copy number and expression of all

25,688625,688 genes, with in-cis correlation along the diagonal.

Color map represents the Pearson correlation coefficient.

(TIF)

Figure S2 GO terms enriched among the in-cis corre-
lated genes. The GO biological process statistical enrichment

analysis was performed by GOrilla. The input for GOrilla in this

analysis was the list of 6373 commonly aberrant genes ranked

according to their in-cis correlation.
(TIF)

Figure S3 Functional annotation of genes. (A) The 578 in-

cis genes; (B) The 56 iPAC genes. The genes were annotated using

IPA (IngenuityH Systems, www.ingenuity.com).

(TIF)

Figure S4 Associations between iPAC genes and their
traits (GO terms). Extension of Figure 7. A hierarchical

clustered heatmap representation of all significant associations

between iPAC genes and biological processes. A red entry

indicates a significant association between an iPAC gene and the

corresponding traits. The Expander suite [66] using average

Euclidian distance was used to calculate and visualize the

hierarchical clustering analysis.

(TIF)

Figure S5 Statistical enrichment analysis of the 56 iPAC
genes for GO biological processes. Performed by GOrilla,

on the list of 56 iPAC genes, compared to a background gene list

consisting of all the remaining genes.

(TIF)

Figure S6 Sample-wise genomic copy number aberra-
tions. Copy number aberrations are shown for chromosomes

harboring at least one iPAC gene. The x-axis represents

chromosomal location and the y-axis represents sample no (1–

100). Green lines are regions of loss (hv{0:2), and red lines are

regions of gain (hw0:2). The vertical black lines indicate the

locations of the 56 iPAC genes.

(TIF)

Figure S7 Correlation plots. (A) Pairwise correlations of log

copy number of the 56 iPAC genes. (B) Pairwise correlations of log

expression levels of the 56 iPAC genes. Chromosomes are

indicated with numbers.

(TIF)

Figure S8 Hierarchical clustering of the expression

levels of the 56 iPAC genes. Samples are color-coded

according to gene expression subtype. The clustering was made

with Pearson correlation using Ward linkage. Three samples could

not be subtyped and were omitted from the analysis. Color map

represents log expression values.

(TIF)

Figure S9 siRNA knockdown of the iPAC gene ECT2. (A)

Effect of siRNA knockdown of ECT2 on cell viability in the MCF7

cell line. Four various siRNAs against ECT2 were tested in

addition to controls (bars show SD from eight replicates). The

ECT2_5 siRNA shows a statistically significant reduction in cell

viability compared to the non-transfected cells (asterisk; Student’s

t-test, p,0.05). (B) Relative quantification (RQ) of ECT2 mRNA

after siRNA transfections (9 replicates), showing the specificity of

the knockdown in the MCF7 cell line. The data were normalized

to the control (cells + transfection lipid).

(TIF)

Table S1 GOrilla results from ranking the 6373 com-

monly aberrant genes.

(XLSX)

Table S2 The 578 in-cis genes.

(XLSX)

Table S3 Description of the 56 iPAC genes.

(XLSX)

Table S4 GOrilla results from 56 iPAC genes versus

background gene set.

(XLSX)

File S1 Cell culture and siRNA transfection.

(PDF)
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