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�e use of point detectors to measure properties of rainfall is ubiquitous in the hydrological sciences. An early step in most rainfall
analysis includes the partitioning of the data record into “rain events.” �is work utilizes data from a dense network of optical
disdrometers to explore the e�ects of instrument sampling on this partitioning. It is shown that sampling variability may result in
event identi	cations that can statistically magnify the di�erences between two similar data records.�e data presented here suggest
that these magni	cation e�ects are not equally impactful for all common de	nitions of a rain event.

1. Introduction

�e term “rain event” seems—on its surface—rather unam-
biguous. At some physical location of interest, rain starts to
accumulate; some time later, it stops.�is process constitutes
a rain event.

However, rain is made out of discrete drops.�ough even
small detectors are exposed to raindrop arrivals many times
each second during an event, the rain is not strictly continu-
ous in time.�ere is a 	nite (and, for detectors with su
cient
temporal resolution, a measurable) time interval between the
arrivals of individual drops in any measurement area. �is
fact is problematic for the de	nition of “rain event” proposed
above; there is little utility in de	ning each separate raindrop
as a separate “rain event,” but—if we formally apply the
proposed de	nition—each raindropmaking up a data record
would constitute a separate rain event.

�e reader might argue that this observation is rather
pedantic. A�er all, the use of the word “storm” seems to have
clear enough meaning in many contexts, and certainly the
term seems unambiguous in nonscienti	c settings. �e most
common way of solidifying the proposed de	nition above
is to argue that a rain event is de	ned by its boundaries.
As stated in [1], “Rain events are commonly delimited by
nominating the required length of rainless intervals that
precede and follow a rain event.” �ere is a sizeable amount
of literature on the topic, which is reviewed very well in [1, 2].

A wide variety of investigators have interest in dividing
precipitation records into rain events, and—depending on the
context of the study and the nature of the investigation—a
number of di�erent de	nitions of rainfallmay be appropriate.
Di�erent de	nitions for rain events are used for studies
associated with erosion or runo� (e.g., [3–5]), studies charac-
terizing the long time-scale climatological or meteorological
behavior in a region (e.g., [6–8]), higher resolution studies
characterizing rainfall over more modest time intervals (e.g.,
[9, 10]), or studies where even individual drop arrivals may
be of physical signi	cance (e.g., [11]). Trying to force investi-
gators to choose a common de	nition for all of these appli-
cations would be impractical, given the varying temporal
resolution of equipment used in other studies (see, e.g., [12]).

Because di�erent de	nitions are used for “rain event”
in di�erent communities, it naturally follows that the exact
same data record could consequently be partitioned into a
di�erent number of rain events for di�erent studies. �ese
issues, however, have already been discussed fairly extensively
in the literature and a recommendation has been put forth
that investigators should clearly state the de	nition of “rain
event” used in each study to keep the situation as unambigu-
ous as possible [2].

�ere is another potential source of ambiguity that has
not yet been addressed. Point detectors are imperfect; they are
subject to sampling �uctuations due to their 	nite temporal
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resolution and sampling area. Due to these limitations, it
seems reasonable to ask whether a single point detector really
gives an accurate, unambiguous account of the true number
of rain events.

�e use of the term “true” number of rain events above
merits some clari	cation. Much like everyone has a general
understanding of what a “rain event” is, most precipitation
scientists certainly feel like the idea of a raindrop size
distribution is well established. Yet, when the question was
carefully explored [13], it was found that the idea of a raindrop
size distribution is intricately linked to the spatiotemporal
scale used to conduct the measurement. �ere is a subtle
distinction that needs to be considered between what is the
“true” raindrop size distribution and how it relates to the
raindrop size distribution as it is measured. Ultimately, the
message of this previous work requires careful interpretation;
the authors concluded “[a raindrop size distribution] is just
what you measure, but these are statistical distributions
of mean concentrations that should be interpreted in a
statistically appropriate manner, not as steady distributions
having intrinsic, deterministic meanings independent of
the measurement process.” �is paper involves a similar
investigationwithin the realmof the de	nition of a rain event;
once a de	nition is chosen, howmuch does themeasurement
process in�uence the number of rain events reported?

�is question is not of mere academic interest. Rain
event start and stop times are needed to estimate the most
commonly reported statistics associated with a study, espe-
cially mean rain rate. One long event with a modest mean
rain rate will typically be treated distinctly from two shorter
events with disparate rain rates but resulting in the same total
accumulation as the longer event.

A natural way to investigate the degree to which the
measurement process (and associated measurement error)
in�uences the number and properties of detected rain rates is
to utilize several identical instruments to measure the same
rain. By exploring an ensemble of detectors, the e�ects (if
any) of sampling �uctuation should be evident. �e idea of
studying a detector array was mentioned in passing within
[2] but not explicitly addressed elsewhere in the literature;
most previous studies involved a single point detector. �e
few studies that involved an ensemble of point detectors had
spatial separations between detectors large enough that a
di�erent number of reported events between detectors could
have been physically justi	ed.

As discussed above, the de	nition of a rain event may
be context dependent. Under many conditions, however,
it seems desirable to set parameters de	ning a rain event
in such a way to ensure detectors less than 100 meters
apart identify the same number of rain events. A recent
study [14] revealed that raindrop size distribution spatial
variability over modest scales can be substantial and even
exceed interepisode variability; this suggests that it may be
reasonable to question whether small-scale spatial variability
is substantial enough to in�uence event identi	cation using
standard methods. To explore this possibility, this study uses
data from a very dense array of optical disdrometers to
explore the combined in�uence that instrumental sampling
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Figure 1: A schematic of the layout of the disdrometer array used
for this study. Detectors near the “origin” of the array are shown
in the 	gure inset. �e one-minute summary data telegrams from
each detector are transmitted via serial cable to a computer located
approximately 80 meters west of detector A where they are stored
for later processing and analysis.

variability and natural small-scale spatial variabilitymay have
in rain event identi	cation.

2. Materials and Methods

2.1. Instrument Network and Data Utilized. �e data used
in this study come from an array of 21 �ies Laser Precip-
itation Monitors (herea�er LPMs). �ese LPMs are optical
disdrometers that measure drops via occlusion of an infrared
laser beam. �e sampling area of each LPM is nominally

4560mm2. Each drop detected by the LPM is assigned into
one of 22 nonoverlapping size bins (ranging from 0.125mm
diameter to 8+ mm diameter in nonuniform steps) and one
of 20 nonoverlapping velocity bins (ranging from 0m/s to
10+m/s in nonuniform steps). Once per minute, each LPM
transmits a data telegram indicating the number of drops
detected in each of the 440 (22 × 20) di�erent classi	cations
possible. (A more thorough characterization of these instru-
ments can be found in [15].)

�ese 21 LPMs have been distributed in a very dense
network as shown in Figure 1. �e design of the network is
optimized to study small-scale spatial variability of raindrop
size distributions. (e.g., see [16]. Note that other similar, but
less dense, disdrometer networks have recently been con-
structed and utilized for the study of precipitation variability
on small scales; see [12, 14, 17].)

�e 3 “arms” of the array have logarithmically spaced
instruments. �e pairs of detectors with the smallest separa-
tion (e.g., A-B, A–H, and A–Q) are separated by a distance
of only 1.93 meters. �e largest distance between any two
detectors in the whole array (e.g., G–W) is 112.62 meters.
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(a) (b)

Figure 2: Pictures of the disdrometer array. (a) shows an overhead view of the site (as of March 1, 2014). �e shadows of the LPMs can be
identi	ed by looking closely. �e picture is aligned to replicate the general geometrical alignment shown in Figure 1; detector “A” is in the
upper-le�. �e white object in the center of the box formed by detectors K, L, S, and T is a 2-dimensional video disdrometer (not used in
this study). (b) displays part of the array from ground level. �e 	rst detector in the foreground is detector “A,” with the 2-dimensional video
disdrometer visible in the background. All detectors are mounted nominally 1.75 meters o� of the ground.

Consequently, the array used here is well suited for this study
due to the very small distance between detectors, especially
near the “origin” of the array.

�e LPM array was constructed between May and
November 2013, and came online in late December 2013. All
of the data were acquired with a single acquisition computer
in a remote site near Hollywood, SC. �e array is located at
32∘ 44� 26��N, 80∘ 10� 36��W. An overhead view of the array
(as of March 2014) and a photograph at ground level (as of
December 2013) are shown in Figure 2.

Data acquisition was sporadic during the array installa-
tion and testing phase. Due to some power outages, computer
failures, and the periodic accumulation of frozen precipita-
tion in January of 2014 (which is poorly characterized by
LPMs), the data set here is limited to all data taken by detec-
tors A, B, C, E, F, G, H, J, S, andWbetween February 23, 2014,
16:04 UTC and April 19, 2014, 12:43 UTC (when all observed
precipitation is believed to be in liquid form). �ese 10
detectors measured total accumulations of between 0.17 and
0.22meters for the time period studied.�e detectors used in
this study are shown in Figure 3.

2.2. De�nitions of Rain Event. As implied by the de	nition
given in the introduction, the most common way of de	ning
a rain event is through the so-called “minimum interevent
time method” (see, e.g., [1]). According to this classi	cation
method, a rain event is identi	ed by a continuous time
interval of detected rain during which there are no rainless
gaps of a duration exceeding the minimum interevent time
(herea�er MIT). Sometimes—depending on the study—this
basic method is augmented with the additional criterion
that any rain event must have a speci	ed minimum total
accumulation. (�is latter criterion is o�en dependent on the
instrumentation utilized in the study; see [1].)

�eMITmethod of identifying rain events is widely used
in a variety of di�erent subdisciplines; most of the sources
cited in the introduction that explicitly counted rain events
used thismethod. Depending on the particular scienti	c sub-
	eld, the values of theMIT andminimum accumulations uti-
lized can vary greatly. An excellent literature review including
many parameters chosen in other 	elds is presented in [1, 2];
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Figure 3: A schematic of only the equipment utilized in the study.

values reported for the MIT ranged from 3 minutes [18] to
24 hours [19, 20] and values for the minimum total accu-
mulation range from small fractions of a millimeter [9] to
over a centimeter [21].

More recently, there has also been some attention given
to the question of de	ning a rain event in the scale-
invariant/self-organized criticality literature (see, e.g., [22–
25]). �e perspective in this literature changes a bit from the
MIT method. Rather than characterize events by the gaps
that separate them, this community o�en opts to de	ne a
rain event through the “adjacentwet interval” (AWI)method.
�ough this involves a shi� in perspective, the method was
argued to be essentially equivalent to theMITmethod in [11];
thus the focus in this manuscript will be on characterizing
rain events via the MIT method.
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3. Results

3.1. Analysis of CoarsenedData. Sincemost rain event studies
cited earlier involved analysis of tipping-bucket disdrometers
and/or pluviographs, the network disdrometer data was
computationally coarsened to represent data that would
have been obtained if 10 tipping-bucket rain gauges with
0.1mm accumulation per tip had been utilized instead of
each of the 10 disdrometers. To do this, each one-minute
disdrometer record was inspected to infer the total volume
of accumulation. (Each drop was assumed to have a volume
equal to a spherical drop with a diameter equal to the
minimum size of its associated bin.)�e accumulated volume
was continuously aggregated from minute to minute and a
“tip” was identi	ed every time the total accumulated volume
exceeded an integermultiple of 0.456mL (whichwould be the
accumulation volume needed to tip a 0.1mm tipping-bucket

gauge with surface area 4560mm2). In 60-second intervals
where more than one tip of the tipping-bucket would have
occurred, the total number of tips occurring over that time
interval was recorded.

At this point, each of the 10 equal-duration data sets (one
from each detector) was used to count the number of detected
rain events. Following the standardMITmethod, a rain event
was de	ned as an interval of time that met the following
criteria.

(1) �e interval contains at least L “rainy minutes.” A
minute is considered rainy if at least 1 tip is tallied by
the detector.

(2) Preceding and following the interval in question,
there was a gap devoid of any tips of duration
exceeding the MIT.

Although most studies rely on 	xed values of MIT and
L, a few other studies explicitly focus on studying the e�ects
of varying these parameters (e.g., [8, 22]). In this study, MIT
values ranging from 1 minute to 12 hours were used and L

was allowed to vary from 1 to 30 rainy minutes. Some of the
results from this analysis are shown in Figures 4 and 5.

Figure 4 shows how the number of detected events
strongly depends on the values of MIT and L utilized. �e
results are only shown for detector A, but the other detectors
show qualitatively similar behavior. Since the number of
detected events seems to remain constant for values of
MIT longer than about 4 hours and values of L ≥ 10,
this may suggest that the concept of a rain event may not
be overly sensitive to instrumental sampling issues when
accumulations total at least 1mm and at least half hour of dry
period (rainlessness) precedes and follows each rain event.
However, Figure 5 reveals that this line of reasoning may not
always be accurate.

Figure 5 shows that detectors mere meters apart and
running reliably can di�er on the number of detected rain
events, even when values of MIT exceed an hour. It is true
that agreement between detectors improves for larger MIT
and L, but there is still no array-wide agreement on the
number of rain events forL = 30 (indicating at least 3mm of
accumulation) and MIT equal to four hours (despite the fact
that the data set explored was less than two months long).
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Figure 4: A plot showing the number of events as a function of
MIT and L for detector A for data taken between February 23,
2014, 16:04 UTC and April 19, 2014 12:43 UTC. Clearly, increasing
eitherMIT orL can substantially decrease the number of identi	ed
rain events. Note that the decrease in event count is not strictly
monotonic with increasing MIT; even though merging “possible
events” may decrease the total number of events, it is also possible
that an increase in MIT will keep a potential event “alive” long
enough to obtain theminimumnumber ofminute observationswith
tips L. Increasing L while holding MIT 	xed does monotonically
decrease the number of observed events.

Some insight into how this can occur can be developed by
examining Figure 6. �is 	gure explores a subset of the data
lasting about 15 hours. In this subset, a rather intense period
of rain is followed by a very light drizzle. A�er this light
drizzle, a light rain began and persisted for a fewmore hours.
As noted on the 	gure, 3 of the 10 detectors reported this as a
single event (using a minimum interevent time of 1 hour and
requiring 15 minutes with recorded tips to de	ne an event);
the remaining 7 detectors went through at least an hour of no
detected rainfall and categorized this same subinterval into 2
di�erent events.

With less than two months of data during the drier
part of the South Carolina year, it is hard to estimate what
fraction of the time sampling �uctuations can in�uence event
identi	cation in lengthier data sets. However, the fact that
events like this can be found in such a short data record
suggests that further study may be warranted.

3.2. Analysis of Raw Disdrometer Data. �e above section
relied on using data from disdrometers in coarsened form to
simulate typical rain gauge data records. However, the one-
minute drop spectra for each of these detectors are available.
Here, we explore the possibility of using the full available data
record to search for a de	nition of rain event that may not be
as susceptible to disagreements between detectors similar to
the scenario outlined in Figure 6.

�e MIT method could be extended to disdrometer data
in a number of ways. Perhaps the most straightforward
method would be to apply the exact same principles used
for tipping-bucket gauges to the disdrometer data—though
the speci	c de	nition of a rainy minute could be modi	ed to
be based on the drop spectrum observed. Using disdrometer
data instead of rain gauge data does give the added advantage
of removing some of the uncertainty associated with the
initiation time of a weak event (see, e.g., [26]). Since no
consensus among di�erent sub	elds regarding an appropriate
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Figure 5: Some subsets of the rain event parameter space. Each panel uses a di�erent value for MIT duration. For each panel, 6 di�erent
values are displayed forL. Each of the ten detectors is displayed in a di�erent color. �e reader should take care to note the di�erent scales
on the �-axes from panel to panel. Although there is approximate agreement between the detectors, there is nonnegligible variability in the
total number of events detected for most combinations of MIT andL. Note also the very large number ofL = 1 events that do not qualify
as events onceL = 2+; these brief events are particularly numerous for brief MIT.

MIT value has been reached for tipping-bucket data, it
seems reasonable that the same types of challenges may still
exist when expanding the notion of an MIT-de	ned-event
to disdrometric data. Nevertheless, the added information
associated with disdrometer data may be bene	cial to inves-
tigators in disparate subdisciplines; thus, an extension of the
MIT method to disdrometer data may be useful.

Consider the following extension of theMITmethod for a
rain disdrometer; for disdrometer data, a rain event is de	ned
as an interval of time that meets the following criteria.

(1) �e interval contains at least L “rainy minutes.” A
minute in the data record is considered rainy if at least
N drops are detected in the reported drop spectrum
in size bins meeting or exceeding diameterD.

(2) Preceding and following the interval in question,
there is a gap devoid of any one-minute spectra that
meet the criteria to be considered a “rainy minute” as
de	ned above; this gap with no “rainy minutes” must
last for a duration exceeding the MIT.

�us, the parameter space has expandedwith the addition
of N and D. (Note that this de	nition is consistent with the
perspective put forth in [22] when settingL = 1, MIT equal

to the minimum instrument resolving time, N = 1, and D

equal to the minimum resolvable drop size; see also [11]. �is
choice of parameters was not the only one explored in this
study, but it is an interesting case; it is the only parameter set
that ensures that every detected raindrop is part of some rain
event.)

Reporting the results of the exploration of this parameter
space is challenging; since this particular de	nition of a rain
event is new, there is an unconstrained four-dimensional
parameter space to compare among the ten detectors utilized.

Figure 7 explores just a very small part of the parameter
space that was investigated for this study. A more compre-
hensive overview focusing on points in the parameter space
where all instruments agree on the number of rain events is
presented in the Appendix Section.

It is interesting to utilize the modi	ed de	nition of a
rain event to reexplore the time interval analyzed earlier in
Figure 6. Figure 8 clearly demonstrates that rawdata acquired
by detectors A and B is extremely similar. (�is is not surpris-
ing; the detectors are spatially separated by less than 2meters.
Any disagreement in the observed drop size distribution is
likely due to sampling variability.)

Figure 9 displays the number of identi	ed events in the
subset examined in Figure 6 for detectors A and B.�ese two



6 Advances in Meteorology

Detector A (2 events)

0

5

10

0 300 600 900

Elapsed time (min)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

Detector C (1 event)

0

5

10

0 300 600 900

Elapsed time (min)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

Detector F (1 event)

0

5

10

0 300 600 900

Elapsed time (min)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

Detector H (2 events)

0

5

10

0 300 600 900

Elapsed time (min)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

0 300 600 900
0

5

10

Elapsed time (min)

Detector S (2 events)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

(a)

Detector B (1 event)

0

5

10

0 300 600 900

Elapsed time (min)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

Detector E (2 events)

0

5

10

0 300 600 900

Elapsed time (min)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

Detector G (2 events)

0

5

10

0 300 600 900

Elapsed time (min)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

Detector J (2 events)

0

5

10

0 300 600 900

Elapsed time (min)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

0

5

10

0 300 600 900

Elapsed time (min)

Detector W (2 events)

T
ip

s 
re

co
rd

ed
 

in
 1

-m
in

u
te

 i
n

te
rv

al

(b)

Figure 6: An illustration showing how extremely similar data records can sometimes be partitioned into events di�erently. Here, an intense
rain event trails o� to a drizzle. However, this slight drizzle is just enough to 	nish a single tip (over a one-hour period) in detectors B, C, and
F. Other detectors less than 5 meters away did not accumulate exactly the same amount of rainfall and thus did not have this tip occurring
during the mostly quiescent period. Consequently, 3 of the 10 detectors see one long (but highly variable) event while the other 7 detectors
see 2 separate events—even though realistic values for MIT (1 hour) andL (15 minutes with detection) are used.

detectors saw di�erent numbers of events when simulating
a tipping-bucket gauge, but here the graphs of the number
of detected events as a function of MIT and L (using the
modi	ed de	nition of L proposed above) are remarkably
similar.

3.3. Examining the Utility of the MIT Method. �e principle
goal of this paper is to examine data from an array of
identical detectors in close proximity to each other in order
to determine whether common schemes for determining rain
events do so reliably and unambiguously. Since a very wide
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Figure 7: Part of the parameter space explored in the search for combinations of MIT,L,N, andD that report the same number of events
across the whole array. For these 	gures,L (the minimum number of rainy minutes required to constitute an event) is constrained to be 10.
�e �-axis on all plots shows di�erent possible values for MIT (in minutes). �ere are 10 curves in each plot indicating the 10 detectors. �e
values ofN andD are speci	ed in the title for each panel. It appears that none of the values shown on this 	gure give completely unambiguous
de	nitions for the number of events that hold for all detectors in the array.

range ofMIT values are found in the literature, the parameter
space tested was reasonably expansive. Data were analyzed
in the two separate formats described above: (1) coarsened
(tipping-bucket-like) and (2) raw disdrometer returns. For
each detector in each format, an ensemble of vectors in
parameter space was explored. For the coarsened data, this
included exploring two parameters: MIT and L. For the

raw disdrometer data, parameters MIT, L, N, and D were
explored.

To adhere to the published literature, values of MIT
from 1 minute to 12 hours were explored. (MIT values
between 1 minute and 90 minutes were explored in 1-minute
increments; the values between 90minutes and 12 hours were
explored in 5-minute increments). Values of L between 1
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Figure 8: One-minute drop spectra for the interval discussed in Figure 6. �e �-axis displays elapsed time through the subinterval in hours;
the �-axis indicates the size bin of the associated drops. Color indicates the number of drops measured in the associated time interval
(red corresponds to high concentrations; blue corresponds to low). �e spectra for detectors A and B are shown, which—when analyzed
in Figure 6—saw di�erent numbers of events. Given the striking similarity of the underlying data, it seems reasonable to conclude that the
spurious “tip” in detector B that prevented two separate events from being identi	ed as one event was likely due to chance.
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Figure 9:�e 	gure shows the number of events as a function ofMIT andL for A and B and associated with the data in the subset depicted in
Figure 6. For simplicity, this plot de	nes a rainy minute as any one-minute spectra that contained at least 128 drops of at least 1mm diameter.
Note that despite the fact that these detectors disagreed on the number of events in this interval when simulating a tipping-bucket (see
Figure 5), there is great agreement in this parameter space. (�e agreement between the two detector event identi	cation is especially striking
when MIT andL are not close to the instrument’s resolution).

rainy minute and 30 rainy minutes were used (in increments
of 1 rainy minute). For the disdrometer data, values of D
corresponding to the smallest 11 bins of the disdrometer
were used. (�ese correspond to minimum drop diame-
ters of 0.125mm, 0.25mm, 0.375mm, 0.500mm, 0.750mm,
1.000mm, 1.250mm, 1.500mm, 1.750mm, 2.000mm, and
2.500mm. Only these 11 size bins were used due to the fact
that D speci	es the minimum size drop that is included in
establishing the existence of a rainy line. Drops larger than
2.5mm are rare in winter storms in South Carolina). �e
values ofN explored were 2� with � ∈ [0, 12]. Consequently,
the coarsened data was explored in a parameter space
including 216 (di�erentMIT values)× 30 (di�erentL values)
= 6480distinct di�erent possible de	nitions of rain event.�e

disdrometer data was similarly explored in a parameter space
including 216×30×11×13 = 926 ∼ 640 distinct combinations
of parameters that correspond to potential event de	nitions.

�e results from such an undertaking can be rather over-
whelming to interpret. To ease analysis, each point in parame-
ter space was evaluated based on only one parameter—did all
10 detectors agree on the total number of events for the data
presented? If all 10 detectors agreed on the number of events
seen, the associated spot in parameter space was marked as
“plausible.” (Note that it is possible for detectors to all report
the same number of total events observed but to assign those
events to vastly di�erent start and stop times. �ough this is
possible, this was neglected in the present study due to the
computational cost of investigating it).
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Table 1: Summary data associated with exploring the rain event
de	nition parameter space. Values shown indicate percentage of
parameters characterized as “plausible,” as described in the text.
MIT range 1 is associated with MIT values starting at 1 minute,
incrementing by 1 minute, and ending at 90 minutes. MIT range 2 is
associated with MIT values starting at 5 minutes, incrementing by 5
minutes, and ending at 12 hours.

Data set All data MIT range 1 MIT range 2

Coarsened 17.8% 0.3% 29.0%

Disdrometer 5.7% 0.5% 9.0%

Bulk statistical information is likely of limited utility
given the brief duration of the data set, but some summary
data is presented in Table 1.

An examination of the parameter space revealed the
following general trends.

(i) For tipping-bucket-like data:

(a) no plausible values were found for L < 7
minutes,

(b) plausible values are very rare for MIT <2 hours,
(c) for MIT >6 hours and L > 7 minutes, a

nonnegligible fraction of the parameter space
remains plausible. (It merits mentioning, how-
ever, that with MIT >6 hours and L > 7 min-
utes, the data set in question had only around 3
events. �erefore—if �uctuations are expected
to scale with event number —this study may
erroneously imply greater reliability for large
MIT and L values than future investigations
may reveal.)

(ii) For disdrometer data:

(a) generally, more plausible values are found when
L and MIT are large,

(b) low (<30 minute) MIT values are seldom classi-
	ed as plausible,

(c) for large values of MIT, intermediate values of
N andD are more likely to be plausible.

Other than these broad observations, it has proven di
-
cult to obtain any de	nitive trends from the data available. It
is expected that once a longer data record has been accumu-
lated, more comprehensive analysis can be communicated.
Recall this data set only included a total of about 20 cm
of accumulation and many of the results presented here
could potentially be limited to regional or seasonal utility. In
particular, the relative lack of large detected drops (typical for
winter South Carolina storms) could substantially in�uence
these basic observations. �e basic 	gures that led to the
general observations above are presented in the Appendix
Section.

3.4. In	uence of Event Identi�cation on Data Interpretation.
From the results above, it should be clear that—at least for
some values of MIT used in the literature—the partitioning
of rain into events may have been more ambiguous than the
record from the single point detector may suggest. But why
does thismatter? Perhaps an example from the data presented
in Figure 6 could help in illustration.

When reporting statistics for a rain event, the most
common variable reported is the mean rain rate. For the
interval shown in Figure 6 (and using MIT = 30 minutes and
L = 15 minutes), detector A sees two events: an event that
accumulates 68.3mm rainfall in 8.3 hours for amean rain rate
of 8.23mm/hr and—a bit over an hour later—a second event
that accumulates 4.5mm rainfall in 5.03 hours for a mean
rain rate of 0.89mm/hr. Categorizing an extremely similar
looking data set (see Figure 8) into a single event, however,
detector B reports a total of 67.5mm of rainfall in 14.96 hours
for a mean rain rate of 4.51mm/hr. �ese are substantially
di�erent accounts of similar data records, and this change
in categorization is created completely by a single tip of a
tipping-bucket rain gauge. (�e “o�ending” tip can be seen
clearly in Figure 6 by looking for the isolated tip about 60%
of the way through the time-series shown for detector B).

�e studies cited in [1, 2] utilized a single point-
instrument to identify rain events. If the results seen in the
data record presented here are representative, this suggests
that event identi	cation in other studiesmay be less de	nitive
than expected. (It should be emphasized that it is still an open
question as to whether the results seen in the data record
presented here are representative or not; further study at this
site and elsewhere could help determine this de	nitively.)

All time-averaged statistical properties of a storm clearly
depend on the inferred start and stop time of a rain event. It
has been observed [1] that these start and stop times depend
on rain event de	nition and available instrumentation. �is
study 	nds that the start and stop times can also depend on
sampling �uctuations which can be di
cult to characterize.

4. Conclusions

Rain event identi	cation is of central importance in the
hydrological sciences and related 	elds. Despite being a
central concept in rain measurement, few studies have been
conducted investigating the degree towhich instrument 	nite
sampling e�ectsmay in�uence rain event identi	cation.Here,
a dense array of optical disdrometerswas used to demonstrate
that there may be more ambiguity in the de	nition of a
rain event when evaluated from a single point detector than
previously anticipated.

Using the minimum interevent time (MIT) model, it was
demonstrated that even considerable MIT values run the risk
of categorizing rain events inconsistently between adjacent
tipping-bucket rain gauges. A single tip of a rain gauge can
lead to a completely di�erent account of the detected rain,
with substantial di�erences in mean rain rate and event
duration.

�e MIT method can be simply modi	ed for application
to rain disdrometer data. However, the data set examined
suggests that despite the increase in quantity and quality of
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Figure 10: A plot of points in the MIT andL parameter space where all ten tipping-bucket detectors register the same number of observed
events over the approximately 2-month long interval of investigation. Marks indicate plausible points.

data acquired from this instrument, there is no less ambiguity
in rain event characterization. �e analysis presented here is
the result of a study conducted over a fraction of a single
season; the results should be veri	ed and extended in other
studies of longer duration, di�erent location, and di�erent
instrumentation. Once a more comprehensive data record is
compiled, more general conclusions and recommendations
regarding protocols of rain event de	nition can be estab-
lished.

Appendix

Investigation of the Rain Event
Parameter Space

A comprehensive investigation of the di�erent ways the data
record could be parsed was outlined in Section 3.3. �is
investigation involved the exploration of a parameter space
(containing 2 parameters for coarsened data and 4 parame-
ters for raw disdrometer data). All detector data records that
identi	ed the same number of rain events for a particular
point in parameter space have been classi	ed as “plausible”
sets of parameters for unambiguous rain event de	nition.

To justify the general conclusions drawn in Section 3.3,
plots of the locations of plausible points within parameter
space have been constructed.

Figure 10 shows the 2-dimensional parameter space used
for examining the coarsened “tipping-bucket” data. As noted
in the main text, the large concentration of plausible points
for MIT >6 hours and L > 7 minutes may be partially due
to the brevity of the analyzed data set. While these points in
parameter space did have agreement among all 10 detectors,
this o�enmeant agreeing on the presence of only a few events.
Note that most previous studies use the equivalent of L =
1 minute or L = 2 minutes to de	ne an event (minimum
0.1mm-0.2mm accumulations); there are no plausible points
in the presented parameter space withL < 7.

Figure 11 shows some summary data from the 4-
dimensional parameter space associated with the disdrom-
eter data. Since this parameter space is 4-dimensional and
has 926640 elements, traditional visualization methods are
impractical. Rather, the plot attempts to convey a general
sense of the density of plausible points within the parameter
space. Selection of a particular � and � coordinate on a plot
identi	es a unique 2-dimensional subspace of parameters.
�is subspace looks like that seen in Figure 10. �e color at
that coordinate is related to �, where

� =
	plausible
	subspace

, (A.1)

where 	plausible is the number of points in the subspace
classi	ed as plausible and 	subspace is the number of points
in the relevant parameter subspace. For example, let L = 4
minutes andN = 8 raindrops. �ere are 144 (MIT values) ×
11 (D values) = 1584 points in the associated parameter sub-
space. Since there were 64 plausible points in this subspace,
the value of � at this point is equal to 64/1584 ∼ 0.04. �us,
a random selection from all allowable values of D and MIT
has about a 4% chance of being a plausible point.

As can be seen from the 	gure, few trends are obvious. It
is hoped that any underlying trends will become evident if a
longer data set is analyzed.
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