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Abstract

The objective of this work is automatic detection and

identification of individuals in unconstrained consumer

video, given a minimal number of labelled faces as training

data. Whilst much work has been done on (mainly frontal)

face detection and recognition, current methods are not suf-

ficiently robust to deal with the wide variations in pose and

appearance found in such video. These include variations

in scale, illumination, expression, partial occlusion, motion

blur, etc.

We describe two areas of innovation: the first is to cap-

ture the 3-D appearance of the entire head, rather than just

the face region, so that visual features such as the hairline

can be exploited. The second is to combine discriminative

and ‘generative’ approaches for detection and recognition.

Images rendered using the head model are used to train a

discriminative tree-structured classifier giving efficient de-

tection and pose estimates over a very wide pose range with

three degrees of freedom. Subsequent verification of the

identity is obtained using the head model in a ‘generative’

framework. We demonstrate excellent performance in de-

tecting and identifying three characters and their poses in a

TV situation comedy.

1. Introduction

The objective of this paper is to annotate video with the

identities, location within the frame, and pose, of specific

people. This requires both detection and recognition of the

individuals. Our motivation for this is twofold: firstly, we

want to annotate video material, such as situation comedies

and feature films, with the principal characters as a first step

towards producing a visual description of shots suitable for

people with visual impairments, e.g. “character A looks at

character B and moves towards him”. Secondly, we want

to add index keys to each frame/shot so that the video is

searchable. This enables new functionality such as ‘intelli-

gent fast forwards’, where the video can be chosen to play

only shots containing a specific character; and character-

based search, where shots containing a set of characters (or

not containing certain characters) can easily be obtained.

The methods we are developing are applicable to any

video material, including news footage and home videos,

but here we present results on detecting characters in an

episode of the BBC situation comedy ‘Fawlty Towers’.

Since some shots are close-ups or contain only face and

upper body, we concentrate on detecting and recognizing

the face rather than the whole body. The problem is thus es-

sentially one of face detection and recognition. The task is a

staggeringly difficult one. We must cope with large changes

in scale: faces vary in size from 200 pixels to as little as

15 pixels (i.e. very low resolution), varying facial expres-

sion, partial occlusion, varying lighting, poor image quality,

and motion blur. In addition, we must deal with detection

and recognition of the face with arbitrary pose; in a typi-

cal episode the face of a principal character (Basil) appears

frontal in one third of the frames, in profile in one third,

and from behind in the other third. These imaging condi-

tions are in distinct contrast to the classical domain of face

recognition where factors including the camera placement,

lighting, and facial expression, are typically controlled.

The approach we propose consists of three parts: (i) a

3-D model of an individual’s face and head is built. This

allows approximate images of the head to be rendered in

novel views, giving extrapolation from the few training im-

ages provided. (ii) A tree-structured classifier is trained to

detect the individual and estimate the pose over a very wide

range of scale and pose. (iii) Initial estimates of pose are re-

fined, and the identity verified using a generative approach

and employing edge features and chamfer matching to give

robustness to lighting and expression change.

1.1. Previous work

There has been much reported work on the problem of

frontal face detection in still images [19, 23], with meth-

ods based on machine learning algorithms such as Ad-

aBoost [23] giving reasonable accuracy with high compu-

tational efficiency. Such methods have also been applied

to profiles [15, 19] and multiple views [13]. Li et al. [13]

report experiments using a boosted pyramid of detectors

trained to detect different out-of-plane rotations about the

vertical axis (but not the horizontal axis), and exhaustive
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Figure 1. Modelling the face and head. A statistical

deformable 3-D model is used to model the face,

and a simple spherical deformable model is used

to model the head. The pose and shape parame-

ters are fitted to reference points and silhouettes

in a few training images for a character to be iden-

tified.

search over in-plane rotation. Osadchy et al. train a convo-

lutional neural network to simultaneously detect faces and

estimate pose [16]. Detection of non-frontal views has not

yet reached the same level of accuracy as the frontal case,

principally because of the lack of rich visual features in non-

frontal views of the face. In such views, visual features such

as the hairline and occluding contour of the head are impor-

tant for both detection and recognition.

Face recognition has similarly met with success in the

case of frontal faces but performance lags behind for the

case of variable pose. Recognition methods based on linear

projections of the raw input image are typical, for example

the ‘eigenface’ [22] or ‘Fisherface’ [1] methods. These re-

quire that the input images to be compared are registered to

reasonably high precision, which cannot be achieved across

pose variations. Methods proposed for dealing with vari-

able pose can be categorized as view-based [5, 17], where

the face is represented by a separate model for each of a

finite set of poses, or 3-D model based [4, 18], where align-

ment of the 3-D model with the input image is used to factor

out pose variation. Most work has used standardized face

databases of high quality images, with little reported work

on less constrained image data such as TV or movies. Sev-

eral researchers have investigated clustering frontal faces in

video [8, 11], leaving the task of naming the clusters to the

user. Berg et al.[2] cluster frontal faces from news web sites

and assign names to the clusters using the co-occurrence of

a proper name in the accompanying web page text.

Figure 2. Novel views of a character rendered us-

ing the 3-D head and face models in different poses

and with different lighting. The images are ren-

dered at the scale used by the detector.

2. Approach

Instead of a paradigm of generic face detection followed

by recognition, we build specific detectors for each person

of interest to be found in the video. The aims of this ap-

proach are to be able to exploit visual features such as the

outline of the head, which are distinctive for a particular per-

son, making their use in generic face detectors problematic.

From a few annotated training images we build a 3-D model

of the person’s face and head which can then be used to ren-

der novel images with different pose and lighting. Images

rendered in this way are then used to train a discriminative

tree-structured detector for the individual.

Because the detector operates on low resolution image

patches and is trained to discriminate the head from back-

ground, rather than from other people, it lacks some speci-

ficity to an individual. We therefore apply a second refine-

ment and verification stage which improves the pose esti-

mate from the detector and gives a measure for assignment

of identity to the detection.

2.1. Face and head model

The first stage of training in our approach consists of

building a 3-D head model for each of the individuals to

be identified. For the results reported here the video used is

an episode of the 1975 BBC sitcom “Fawlty Towers” – be-

cause we are working with such archive footage, we have no

opportunity to collect images of the characters in calibrated

conditions, but must build the model from images available

in the video.

Face model. The 3-D shape of the face is modelled us-

ing a statistical deformable model [4]. This model con-
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Figure 3. Detection and pose estimation using a

tree-structured classifier. The classifier at each

node detects a range of poses which is a subset

of the parent.

sists of a mean 3-D shape and a set of linear deforma-

tions of the shape derived by principal component analy-

sis of laser-scanned faces and a corresponding linear model

of appearance. Given hand-marked anchor-points, suc-

cess has been obtained in fitting this model to single face

images by stochastic gradient descent using an image-

based error [4] or to multiple images using correspondence-

based structure-from-motion methods [7]. We found these

methods unsuccessful in this domain, primarily because of

strong lighting effects and poor image quality. We therefore

use a moderate amount of user supervision to fit the model.

Three images are used for model fitting, corresponding

roughly to frontal, 3/4 and profile views. Two sources of in-

formation are used to fit the shape of the 3-D model: (i) ref-

erence points with known correspondence to points on the

3-D model are marked in each image, and (ii) the occlud-

ing contour of the face is marked in each image. The 3-D

pose and shape parameters of the model are then estimated

by minimizing the distance between the marked points and

occluding contour and the projection of the corresponding

model features in the image, subject to a Gaussian prior on

the shape parameters [4]. We assume a weak-perspective

camera, parameterizing the pose by 3-D rotation, 2-D trans-

lation and scale. The Levenberg-Marquardt with line-search

optimization algorithm is used.

Figure 1a shows the marked points and silhouettes used

to fit the model for one of the characters, and figure 1b the

final fitted face model. Ninety principal components were

used to represent the shape, and the triangle geometry of

the model was decimated to 1,000 triangles (from the origi-

nal 150,000 triangle model [4]) to reduce the computational

expense of rendering.

Head model. For detection and recognition in non-frontal

views, visual features including the hairline and shape of the

head are important. These features cannot be captured by

the face model since it extends vertically only to some part

of the forehead, and in depth only to the ears. Equivalent

a) Input b) Edges

Figure 4. Edge features used as weak classifiers.

The edge representation is shown at the pyramid

level at which the character on the left (Basil) is

detected. White pixels are non-edges and colors

represent different orientations.

deformable models of the entire head are not common, and

limited to the shape of the skull, because of the problems of

capturing 360◦ range data, and the difficulty in modelling

general hair. We assume that the hair can be considered

reasonably rigid, which is valid for individuals with shorter

hair, and that the shape of the head can be assumed reason-

ably smooth. These assumptions allow a generic 3-D shape

model to be used without requiring a statistical model of the

head derived from training data.

The head model is fitted using a shape-from-silhouette

approach to recover the visual hull. We parameterize the

shape of the head in a spherical coordinate system by the

length of a ray from the origin to the surface of the model

for a given azimuth and elevation. The pose of the model

in each image has previously been estimated by fitting the

face model, and the length of each ray is estimated by min-

imizing the distance between marked points on the bound-

ary of the head in the image, and the silhouette cast by the

model in the corresponding view. To regularize the solution,

a prior penalizing high surface curvature is applied, using a

discrete estimate of Mean curvature.

Figure 1c shows the final fitted head model. The model

captures the overall shape of the head well, providing ad-

equate accuracy to render the non-face region, but cannot

capture features of the face, such as the nose, whose shape

is under-constrained by the visual hull of the head.

Appearance model. To obtain more accurate rendering

of the face region, including the correct prediction of self-

occlusion, for example by the nose, the face and head mod-

els are combined. To render a novel view of the person, the

image is first rendered using the head model, then the image

rendered by the more-detailed face model is overlaid.

The appearance of the face is captured by back-

projecting all three training images onto the 3-D model.

New views of the model can then be rendered in different

poses and with an approximation of different lighting – we

assume a Lambertian lighting model, a single directed light



Figure 5. Example detections and initial pose esti-

mates for three main characters in ‘Fawlty Towers’.

Note the wide range of scale and 3-D pose. Scale

and pose estimates are approximate due in part

to the granularity of scale and translation in the

image pyramid and granularity of pose in the leaf

nodes of the detector tree.

at infinity, and an ambient light source. Figure 2 shows ex-

amples of novel images of the model for one character ren-

dered at the scale used by the detector (section 2.2).

In order to render examples of the face in different facial

expressions, one might capture additional texture maps [9]

or use a deformable 3-D model encompassing facial expres-

sion [3]. We take a different approach here. For detection,

images of low resolution are used so that the effects due to

changes in facial expression are small; for recognition, not-

ing that the shape of the head is approximately invariant to

facial expression, and that the overall location of features

such as the eyes and mouth varies little with changes in ex-

pression, we instead use a measure for recognition which

(a) exploits the shape of the head and hairline, and (b) has

robustness to lighting and small deformations (section 2.3).

2.2. Detection

The 3-D model provides a reasonable representation of

the appearance of the head over a wide range of poses. Pre-

vious work has applied the deformable face model directly

to face recognition [4] by using the vector of shape and ap-

pearance parameters obtained by fitting as features for clas-

sification. This approach is infeasible for video applications

because of the need to provide a good initialization for the

appearance-based model fitting, typically by hand-marked

points [4], due to the susceptibility to local minima. Sev-

eral authors have proposed to solve the initialization prob-

lem by using detectors for local features of the face such as

the eyes and corners of the mouth [6]. This approach is not

easily applied to the low resolution images encountered in

TV footage, in which the eye may be represented by just a

few pixels, and for poses such as profile in which such local

features are hard to detect.

The approach taken here is to build a discriminative de-

tector for a particular individual using machine learning

methods. Images rendered using the 3-D model provide

the required training data, with backgrounds and negative

examples taken as random patches from a large database

of non-face images. This approach has several advantages:

(a) features which are particular to an individual, for ex-

ample the shape of the head, can be exploited to aid detec-

tion, and (b) the approach simultaneously provides detec-

tions and an estimate of the head pose.

Architecture. The detector is built using a tree-structured

architecture exemplified in figure 3. The space of 3-D rota-

tions is divided into successively smaller partitions using

an octree structure (a binary tree is shown here for clar-

ity). The root node corresponds to the full range of poses

considered, being +/-90◦ azimuth and +/-30◦ elevation and

in-plane rotation, and children represent a binary partition

of each dimension of the parent range. The tree has 1,024

leaves corresponding to different poses. The additional pose

dimensions of scale and translation are handled by scanning

the detector over an image pyramid (a scale factor of
√

1.5
is used).

Each node consists of a classifier trained to detect im-

ages of the head in the corresponding range of poses. If

the classifier responds to the input image, the children of

the node are explored, else the entire branch of the tree

is pruned. The tree architecture has two desirable conse-

quences: (i) detection and pose estimation over a very wide

range of poses is computationally efficient because of early

pruning of the search; (ii) the accuracy of the detector is

improved greatly by using a sequence of classifiers instead

of a single classifier (each path through the tree can be con-

sidered a ‘cascade’ [23] with constrained structure). The

tree architecture was inspired by the work of Stenger et al.

on variable-pose hand detection [20], although in that case

the training procedure and form of classifier differs signifi-

cantly. It differs significantly from the pyramid architecture

used by Li et al. [13] for multi-view face detection, in which

nodes on a given level are arranged as a single cascade.

Classifiers and feature extraction. The classifier for

each node is a linear combination of weak classifiers (re-



(a) Initial pose estimate from detector

(b) Refined pose estimate

Figure 6. Pose refinement. The initial pose es-

timate (a) from the detector tree is refined by

chamfer matching to give the final estimate (b).

Columns show respectively the head model, ren-

dered edges overlaid on the input image, and ren-

dered edges overlaid on the edge image.

ferred to here as ‘features’ for clarity) trained using the Ad-

aBoost algorithm [12]. The input to the classifier is a 45×45

image window; this is larger than the 20×20 windows typ-

ically used by frontal face detectors [23] but encloses the

whole head rather than the face region alone (in the case

of the ‘Sybil’ character, the hair occupies a large image

area!). To minimize the execution time at both the train-

ing and testing stages, a relatively small and simple set of

features is used [15] compared to the ‘Haar-like’ features

often used in face detection [23]. The gradient of the image

〈δx, δy〉 is computed using symmetric finite differences, and

the gradient magnitude (δ2
x + δ2

y)
1

2 is thresholded; pixels

with strong gradients are represented by the signed orienta-

tion of the gradient arctan(δy, δx) which is quantized into

octants. Figure 4 shows an example of this input represen-

tation, in which each pixel takes on one of nine values: ‘no

edge’ or orientation 1–8. This edge representation aims to

capture the salient features of the image while diminishing

the effects of lighting variation: it is invariant to additive

changes in intensity (by removal of the DC component), and

somewhat invariant to contrast variation (by thresholding),

and gradual intensity gradients (because of the band-pass

nature of the derivative).

Having computed the edge representation, the feature

set {h+(x, y, e), h−(x, y, e)} available to the boosting al-

gorithm is simply the presence or absence of a particular

edge type e at a given pixel (x, y) in the input window I:

h+(x, y, e) =

{

+1 : I(x, y) = e

−1 : I(x, y) �= e
(1)

where h−(x, y, e) is defined simply as −h+(x, y, e). This

feature set is small (there are 18,225 possible features) and

very fast to compute; similar ‘single pixel’ features have

successfully been applied to face detection by other au-

thors [24].

The classifier Cl
i(I) for each node of the tree is a linear

combination of these single pixel features. If the output ex-

ceeds a threshold τ l
i then the input window is passed to all

eight children of a node, else the branch of the tree is pruned

and produces no output. Classifiers at leaf nodes Cn
i (I) for

which the classifier output is above threshold output the sum

of all classifiers along the path from the root to that node:

Cn
i (I) =

n
∑

l=1

Cl
anc(i,l)(I) (2)

where anc(i, l) denotes the ancestor of node i at level l of

the tree.

Figure 5 shows example detections for the three main

characters in ‘Fawlty Towers’. Note that the character is

detected, and the pose approximately estimated, over wide

ranges of scale (observe the image resolution in the original

image) and pose, including profile views and rotation about

three axes.

2.3. Pose refinement

The position, scale, and pose estimates produced by the

detector tree are approximate for two reasons: (i) granu-

larity of scale and translation due to the use of an image

pyramid in the detector, and (ii) granularity of poses in the

leaf nodes of the tree (around +/-5◦). These pose estimates

are refined by using the 3-D head model in a ‘generative’

mode.

Given an initial pose estimate, an image of the model in

the corresponding pose is rendered and an edge detection

algorithm applied. Edges detected in the rendered image

are back-projected onto the 3-D model to obtain their 3-D

coordinates, corresponding both to the occluding contour of

the model and internal edges due to texture, for example the

hairline. The matching error to edges in the input image is

defined as a robust directed chamfer distance [10, 21, 18]:

d(U, V ) =
1

|U |
∑

ui∈U

min

(

min
vj∈V

||ui − vj ||, τ
)

(3)

where U is the set of model edge points and V is the set

of input image edge points. Ambiguity of matches between

edges is reduced by dividing each set of edges according

to quantized edge orientation and only allowing matches of

corresponding orientation. We allow matches with orienta-

tion error of around +/-22.5◦; edges detected on the occlud-

ing contour of the model are allowed to match with edges

of opposite orientation to account for the head appearing on

either a light or dark background. The threshold τ makes

the distance robust to some missing edges in the input im-

age, for example spurious edges due to specularities on the



Figure 7. Example detections and identifications. Frames from a video sequence of 15 shots of ‘Fawlty Towers’

are shown with the head model of the identified character overlaid in the estimated pose. The three main

characters are detected and identified over a wide range of scale and pose.

hair (see figure 6). Use of the chamfer distance rather than a

pixel-wise grey-level/color measure as in other work [4] is

advantageous for two reasons: (i) it is somewhat insensitive

to lighting, and (ii) the ‘slack’ in the measure gives some

robustness to changes in facial expression.

The initial pose estimate is refined by minimizing the

chamfer distance using the LM-ICP algorithm [10] which

uses the distance transform to make computing nearest

edges efficient and Levenberg-Marquardt optimization. As

the pose of the model is changed, three inaccuracies arise:

(i) the edges corresponding to the occluding contour be-

come inaccurate as this set is a function of pose, (ii) in-

ternal edges may be subject to self-occlusion, and (iii) the

predicted orientation of the edges becomes inaccurate. We

therefore run several passes of the algorithm, running to

convergence then recomputing the model edge set.

Figure 6 shows an example of pose refinement; in this

case the initial pose estimated by the detector (figure 6a) is

fairly far from the correct one. After refinement by min-

imizing the chamfer distance, the boundary of the head

model, hairline, and facial features match the input image

closely (figure 6b).

2.4. Recognition

We noted in section 2.2 that the detector lacks some

specificity to an individual due in part to the low resolu-

tion image patches used. As the final stage of the algorithm

therefore, we verify the identity of each detection. For each

detection, pose refinement is run using the 3D models for

each of the characters of interest. The confidence that a de-

tection is due to a particular character i is defined as:

C(i) =









d(Ui, V )

min

(

min
j �=i

d(Uj , V ), κ

)









−1

(4)

where d(Ui, V ) is the chamfer distance (3) after pose re-

finement. Using the ratio between the distance to the char-

acter of interest and the nearest of the other characters gives

a more informative score than the distance alone; use of

this ratio has been suggested for matching invariant fea-

tures [14]. The constant κ is introduced to reduce false pos-

itives on characters other than those modelled, and non-face

detections.

We have obtained promising recognition results using

this simple confidence measure. While we cannot claim that

the measure would prove successful on a database of many

people with very similar appearance, as might be encoun-

tered in classical face recognition, the TV domain consid-

ered here is somewhat different in that there are just a few

central characters of interest.

3. Experimental Results

The proposed approach was evaluated on 4,400 key-

frames (every tenth frame) of the episode ‘A Touch of Class’

of ‘Fawlty Towers’. Models were built for three characters:

Basil, Sybil and Manuel (see figure 5). Table 1 lists statis-

tics of the test set. For each of the main characters, and all

other people appearing in the video (‘Other’), the number

of faces are listed. For the main characters, the numbers of
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(a) Basil (b) Sybil (c) Manuel

Figure 8. Precision/recall curves for the three main characters in ‘Fawlty Towers’. A correct retrieval requires

both detection and identification of the character. For each character, curves are shown for all views, ‘frontal’

only, and ‘profile’ only.

‘frontal’ and ‘profile’ views are given. The ‘frontal’ view

was defined as both eyes being visible; there is therefore

considerable pose variation even within the ‘frontal’ cate-

gory. Frames for which a character is visible but not iden-

tifiable by their face i.e. facing away from the camera, are

not included here.

Character Frontal Profile Total

Basil 1,576 1,428 3,004

Sybil 415 416 831

Manuel 165 286 451

Other – – 3,023

Total 7309

Table 1. Statistics of faces in the test set. The num-

ber of faces for each character and view (‘frontal’

or ‘profile’) are listed.

For all characters, no more than around half of the im-

ages are in a frontal view, showing the importance of tack-

ling detection and identification of non-frontal views in this

domain. Around 40% of the faces in the video do not belong

to one of the main characters, making this a very challeng-

ing test set.

Results on video. Figure 7 shows example output from

our algorithms running on a sequence of 15 shots from this

episode. The head model (excluding the face) is overlaid

and the identity of each character labelled. For the majority

of this sequence, two of the characters are in near-profile

poses, challenging for current face detectors and recogni-

tion schemes. On average, the character’s heads are around

60 pixels high in the image. Each character is detected and

recognized correctly over wide ranges of scale, pose, and

facial expressions.

The thresholds on the detector, chamfer distance (equa-

tion 3) and recognition measure (equation 4) were set em-

pirically to give zero false positives on this sequence after

detection and recognition (no non-faces or incorrect identi-

fications). At this level of performance, the detector is still

generating a few false positives per image but these are suc-

cessfully pruned from the output by using the recognition

measure; this is in contrast to the isolated problem of face

detection. Note that in the results reported here the algo-

rithms are run independently on each frame – no ‘tracking’

is used. In the 180 key-frames of this sequence, with zero

false positives or incorrect identifications, Basil is identified

in 97%, Sybil in 81%, and Manuel in 98% of the frames in

which they appear.

Quantitative results. Quantitative assessment of the pro-

posed methods was conducted by treating the problem as

one of retrieval, with the aim of retrieving all faces of a

particular character. A correct retrieval requires both cor-

rect detection and identification of the character. Figure 8

shows precision/recall curves for each of the main charac-

ters tested. Recall is defined as the proportion of face im-

ages of a character retrieved, and precision is the proportion

of the retrieved images which belong to the character of in-

terest. For each character, three curves are shown: (i) re-

trieval of all faces covering all poses from profile to frontal;

(ii) retrieval of all ‘frontal’ faces; (iii) retrieval of all ’pro-

file’ faces.

At a recall level of 50% the precision is around 80% for

all characters. Results at higher levels of recall differ some-

what for each character, in part due to the varying number

of images of each character (see table 1). For the characters

Manuel and Sybil, who appear much less frequently than

Basil, precision drops off above 50-60% recall, with confu-

sion between the central characters and other people in the

video increasing.

It is interesting to compare the precision/recall for re-

trieval of ‘frontal’ versus ‘profile’ views. As can be seen

in figure 8, for the characters Basil and Manuel there is no

clear preference for frontal views, with comparable curves

for both subsets of the data. Subjectively, we judge that the

head shape and hairline can provide strong cues to recogni-

tion in profile views. For the character Sybil however, there

is a clear preference for frontal views; again subjectively,



we observed that in profile views of this character, the face

region is poorly visible and the strong but unreliable texture

in the hair, which occupies a large image area, caused prob-

lems both with fitting the model to the image and scoring

matches.

4. Conclusions

We have proposed a method for detection and identifica-

tion of individuals in video combining a ‘generative’ model

with a discriminative detector, and utilizing an edge-based

measure for pose refinement and recognition. Modelling the

entire head, rather than just the face region allows our ap-

proach to exploit visual features such as the shape of the

head and the hairline which are valuable cues for detec-

tion and recognition, particularly when the pose is far from

frontal. Use of the chamfer distance for pose refinement

and recognition gives some robustness to lighting, deforma-

tions caused by expression change, and inaccuracies in the

model. Using these methods we have obtained very promis-

ing results on difficult unconstrained consumer video.

There are a number of ways in which this work may be

extended. To deal with long hair it will be necessary to in-

troduce more flexible hair models, which might be success-

fully done in the image domain rather than as a 3-D model.

The similarity measure used for pose refinement and recog-

nition could be extended with features beyond local edge

orientation. Training a discriminative detector for each in-

dividual has enabled us to detect the face over a wide vari-

ation of pose which is still challenging for state-of-the-art

face detectors, but this has associated computational expen-

sive and would not scale well to hundreds of individuals,

however the success of our approach suggests that training

generic discriminative detectors from rendered images is a

promising direction. In this work, we have not used tempo-

ral coherence either for model building, detection or identi-

fication, running independently on each frame. Exploiting

the video domain in all stages should improve our results.

Finally, incorporating other weak cues to identity such as

clothing should be investigated, for example to cover frames

where only the back of the head is visible.
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