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Identifying individuals with high risk of Alzheimer’s
disease using polygenic risk scores
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Julie Williams 1,5, Bart de Strooper 2,3,4 & Valentina Escott-Price 1,5✉

Polygenic Risk Scores (PRS) for AD offer unique possibilities for reliable identification of

individuals at high and low risk of AD. However, there is little agreement in the field as to

what approach should be used for genetic risk score calculations, how to model the effect of

APOE, what the optimal p-value threshold (pT) for SNP selection is and how to compare

scores between studies and methods. We show that the best prediction accuracy is achieved

with a model with two predictors (APOE and PRS excluding APOE region) with pT<0.1 for SNP

selection. Prediction accuracy in a sample across different PRS approaches is similar, but

individuals’ scores and their associated ranking differ. We show that standardising PRS

against the population mean, as opposed to the sample mean, makes the individuals’ scores

comparable between studies. Our work highlights the best strategies for polygenic profiling

when assessing individuals for AD risk.
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A lzheimer’s disease (AD) is the most common type of
dementia, and mainly affects the elderly population. AD is
a progressive condition, which means that clinical features

develop gradually over many years before diagnosis1. The ability
to predict AD risk before disease onset is of great importance for
stratifying people for clinical trials or the selection of candidates
for functional experimental studies. Given the time and labour
costs associated with these objectives, the selection of those
individuals at high or low risk of developing AD must be as
reliable as possible.

About 35% of life-time risk of dementia is modifiable by factors
such as education, nutrition, health care, and social deprivation2,
including a better management of vascular risk factors with their
prevalence decreasing over time. The effects of better manage-
ment of these risk factors manifests in a delay in age at onset of
the disease as noticed in many studies3–5. However, with
increased lifespan the prevalence of the disease still goes up6. If
controls are enrolled from the population and/or are younger
than cases, then a proportion of them will develop AD at a later
time7. Due to potential delay of the age at onset, even age-
matched control samples are likely to encompass future AD cases
who are yet to show symptoms. Therefore, genes with small effect
sizes associated with AD due to age-related pathological changes8

can be overlooked in such studies. For example, the APOE-ε4
allele is associated with earlier age at onset9 but ε4 allele fre-
quency in the population decreases from 0.18 to 0.09 with
increasing age10. In a number of genome-wide association studies
(GWAS), clinically defined AD cases are compared to cognitively
normal individuals that are not necessarily age matched11. A
recent study comparing AD cases with relatively young age at
onset to centenarian-controls12 observed that the effect sizes of
GWAS significant SNPs in this study were on average twice as
high as those calculated by the original GWAS studies, which
confirms the importance of controls being age-matched to, or
even older than, cases for prediction of AD risk.

Polygenic risk score (PRS) is used as a global term for a risk
score including any number of SNPs. With the exception of
APOE-ε413, the common genome-wide significant variants which
have been discovered though GWAS have only small individual
effects. Although it is clear that many genes are involved in dis-
ease development and progression, there is no agreement in the
field as to whether AD is a polygenic or oligogenic disorder.
Despite substantial evidence suggesting that the risk of AD is
polygenic14,15, more recent studies have argued in favour of an
oligogenic view of AD16,17. To date, there is no consensus in the
field about which PRS approach to use, how to model APOE
within PRS, which p-value threshold for SNP selection is optimal
or how to compare scores with other datasets when selecting
individuals based on PRS.

When choosing individuals with more than 2 standard devia-
tions (SD) from the PRS mean (i.e., PRS extremes)18, the accuracy
of distinguishing between individuals at high and low AD risk is
high18. The choice of PRS calculation methodology may lead to
identification of different sets of individuals even at the extreme
ends of the resulting PRS distributions. All methods for PRS

calculation attempt to reduce the signal to noise ratio by reducing
the number of overall SNPs while keeping the most informative
ones; of these methods, PRS with clumping and thresholding
(C+ T) is the simplest method19. Bayesian-based methods, by
contrast, use all SNPs and offer strategies to adjust the effect sizes
for LD instead of LD-clumping20–23. Functionally informed
Bayesian approaches vary the strength of LD-adjustment for each
SNP based on its functional annotations.

Thus, we sought to investigate the various methodologies and
SNP selection approaches for AD risk prediction, with the aim to
robustly predict at least those at very high or very low risk. First,
to explain the discrepant views about the disease architecture
(oligogenic vs polygenic), we investigated whether the disagree-
ment about the optimal p-value threshold may arise from the
unaccounted-for age-dependent frequency of APOE-ε4. This led
us to look into how best to include the effect of APOE in PRS
models, and what is the optimal p-value threshold (pT) for SNP
inclusion in the PRS. Next, we compared a range of PRS calcu-
lation approaches including PRS(C+ T) and Bayesian methods.
Finally, we compared two PRS standardisation approaches:
(a) standardisation of risk scores based on the cohort itself and
(b) standardising against a population. Our conclusions are based
upon examination of the number of and overlap between, indi-
viduals at high and low AD risk, identified by the different PRS
calculation approaches and prediction models. To summarise, we
provide recommendations about best practice for the robust
identification of individuals at risk for AD using PRS.

Results
Optimal p-value threshold. Table 1 details the description for
each of the PRS models used throughout this manuscript. In our
earlier work on PRS in AD14,24 we have observed that using the
directly genotyped APOE isoforms ε2 and ε4 as separate terms in
the regression model in addition to the PRS excluding the APOE
region (PRS.AD) provides higher prediction accuracy than
modelling the APOE region as part of a full PRS. For this study
we combine and harmonise ADNI, ROSMAP, MSBB, and MAYO
datasets and use it as one case-control dataset (271 AD cases and
278 controls) in the manuscript, see details in Supplementary
Tables 1 and 2). In the case-control dataset presented here, we
observed that the optimal p-value threshold for the PRS depends
upon how the APOE effect is accounted for. Table 2 presents the
Area Under the Curve (AUC) and the variance explained (R2) in
the case-control dataset in three scenarios with four SNP p-value
thresholds (pT ≤ 5e-8, 1e-5, 0.1, 0.5). The first section of the table
shows the model with PRS calculated using the whole genome
(PRS.full). In the second section the PRS was calculated excluding
the APOE region (PRS.no.APOE). The third section shows the
model with two independent variables i.e., PRS.no.APOE and
APOE(ε2+ ε4) (PRS.AD).

The best prediction accuracy for the PRS.full model is achieved
using genome-wide significant SNPs, pT ≤ 5e-8, (AUC= 69.8%),
but this is not better than APOE(ε2+ ε4) alone (AUC= 70.0%).
When more risk genes are included by relaxing the p-value

Table 1 Model description for the PRS models presented in the manuscript.

Model Name Model description

ORS.full PRS including SNPs with a pT≤ 1e-5
ORS.no.APOE PRS including SNPs with a pT≤ 1e-5 and excluding SNPs in the APOE region (chr19:44.4-46.5Mb)
PRS.full PRS including SNPs with a pT≤ 0.1 (unless otherwise specified)
PRS.no.APOE PRS including SNPs with a pT≤ 0.1 and excluding SNPs in the APOE region (chr19:44.4-46.5Mb) (unless otherwise specified)
PRS.AD PRS calculated as a weighted sum of PRS.no.APOE (including SNPs with a pT≤ 0.1, unless otherwise specified) and APOE(ε2+ ε4),

where APOE effects were weighted with effect sizes (B(ε2)=−0.47 and B(ε4)= 1.12) as in Kunkle et al. 2019
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threshold the AUC decreases to 62.6% (first section of Table 2).
The lowest prediction accuracy is observed with the PRS.no.APOE
model excluding the APOE locus. The prediction accuracy does,
however, increase from AUC= 55.7% for pT ≤ 5e-8 to 61.3% for
pT ≤ 0.1. Note that the results do not change much between pT ≤
0.1 and pT ≤ 0.5, despite the inclusion of 3 times as many SNPs at
pT ≤ 0.5. The best prediction accuracy (AUC= 74.1%) and the
highest variance explained (R2= 0.24) is achieved by the PRS.AD
model where PRS.no.APOE is combined with APOE(ε2+ ε4) (last
section of Table 2), using pT ≤ 0.1. The results of the PRS.full
model, conversely, show a rather paradoxical trend that the
prediction accuracy decreases when including more risk SNPs, i.e.,
by relaxing the pT threshold. The results above are based on PRS
with LD-clumping parameter r2 > 0.1. Similar patterns were
observed when we used r2 > 0.01 and r2 > 0.001, however, the
total prediction accuracy was slightly reduced (Supplementary
Table 3). These opposing results with different p-value thresholds
reflect very well the current controversies in the field. To
investigate why such contradictory conclusions may be drawn
from the same data, we set up a simulation study.

We make the assumption that the population controls are
younger than cases for our simulations, as this is often observed
in real studies. This implies that some of the control population
have not reached the age of disease onset yet. Based upon ε4
frequency and studies of ε4 dependent age at onset9, we estimate
that 28% of them will develop AD. Accounting for the prevalence
of cases13 (34%), using reported APOE-ε4 allele frequency in the
whole sample of 0.216 and OR= 3.326, we calculate the allele
frequencies in cases and controls as 0.356 and 0.142, respectively.
Then we simulated 67 SNPs with effect sizes and allele
frequencies13 corresponding to SNPs with pT ≤ 1e-5, along with
10,000 SNPs with a range of allele frequencies (0.01 to 0.45) and
effect sizes decreasing from OR= 1.005 to 1. We calculated the
Oligogenic Risk Score (ORS.full) based on 68 SNPs (including
APOE-ε4) with pT ≤ 1e-5, PRS.full based upon 10,068 SNPs, and
PRS.AD as PRS.no.APOE combined with a separate variable
APOE-ε4 (see Table 1 and Methods section for details). The
comparison of the prediction accuracy by the ORS.full, PRS.full,
PRS.AD has shown the contradictory pattern of AD risk
prediction, similar to that observed in other AD PRS studies16,17

(Supplementary Fig. 1). In particular, ORS.full has an advantage
over PRS.full, however when APOE is accounted for separately in
addition to PRS.no.APOE, PRS.AD has the best prediction
accuracy (AUC) and variance explained (R2).

Informed by the simulation results, we explored the APOE-ε4
allele frequencies in the case-control dataset with age (see
Fig. 1A). As reported in other studies, the ε4 allele frequency in
this data set decreases with age, the ε3 frequency increases and ε2

frequency remains approximately the same. Figure 1B, C shows
that ε4 frequency reduces faster in cases than in controls (red
line). The oligogenic risk score, ORS.no.APOE (based on SNPs
with pT ≤ 10−5), also decreases with age in cases but is on average
higher than in controls, with the highest being in ORS.no.APOE
for ε44 cases as reported in17. Contrary to ORS.no.APOE, the
mean of PRS.no.APOE (blue line) is higher in older cases and
lower in older controls25. Thus, because of the changing allelic
frequencies of APOE genotypes over age, it is clear that both the
APOE genotype by itself and ORS.no.APOE become much less
accurate predictors in older cases, while the reverse is seen with
PRS.no.APOE. Clearly, APOE and ORS will serve as better
predictors of AD risk at younger ages. Here we find that PRS
increases with age, but whether this is a true effect or is due to
random variation requires further investigation and replication.
Figure 1 shows that the net age effect for the sum of ORS and PRS
is smaller than the separate score changes with age. Since these
changes are in opposite directions, they cancel each other out if
taken as a sum. Moreover, the net effect is approximately the
same in cases and in controls. This net effect corresponds to the
model that is referred to as polygenic in the field and leads
to conclusions in favour of an oligogenic model. However, the
differential age effect, leveraging the polygenic disease architec-
ture, can only be discovered when considering APOE (and/or
ORS) and PRS.no.APOE separately. Adjusting the combined
score for age only corrects for the small net effect. Thus, these
sample and simulation data demonstrate that even though the
ORS is a good predictor for AD at younger ages, it is mainly
driven by the age-specific APOE allele frequency distribution.

Comparison of PRS calculation approaches. Until now, we have
solely used the PRS(C+ T) method for the calculation of PRS.
Calculation methods of PRS are based on different assumptions,
and an important consideration is what are the most reliable
methods to predict the right patients versus controls with max-
imal accuracy. PRSice26 is a software which implements the PRS
(C+ T) method automatically and so the same LD-clumping
parameters were specified for this approach. LDAK20 does not
require LD-clumping and calculates PRS adjusting SNP effect
sizes for LD by reducing the contribution of SNPs in regions of
high LD. LDpred-inf21, PRS-CS22 and SBayesR23 are all Bayesian
approaches which use estimates of SNP effect sizes based on SNP-
based heritability and also account for regional LD structure.
Figure 2 shows the results of prediction accuracy of ORS and PRS
for six different methods of PRS calculation, namely PRS(C+ T),
PRSice, LDpred-inf, PRS-CS, LDAK and SBayesR. The highest
prediction accuracy was found in our case-control sample for
both ORS.full and PRS.full using PRS(C+ T) with AUC =

Table 2 PRS prediction accuracy for the AD case-control dataset using different p-value thresholds and methods to model APOE.

pT PRS.full PRS.no.APOE PRS.AD

N SNPs AUC (%) R2 OR
(95% CI)

N SNPs AUC (%) R2 OR
(95% CI)

AUC
(%)

R2 OR
(95% CI)

APOE
(ε2+ ε4)

2 70.0 0.18 2.2 (1.8,2.7) – – – – 70.0 0.18 2.2 (1.8, 2.7)

5e-8 65 69.8 0.16 2.2 (1.8, 2.7) 17 55.7 0.02 1.2 (1.0, 1.5) 71.4 0.19 2.4 (2.0, 3.0)
1e-5 (ORS) 126 69.4 0.16 2.2 (1.8, 2.7) 66 56.7 0.02 1.2 (1.1, 1.5) 72.0 0.20 2.4 (2.0, 3.0)
0.1 68,681 64.9 0.09 1.8 (1.5, 2.2) 68,516 61.3 0.06 1.6 (1.3, 1.9) 74.1 0.24 2.8 (2.2, 3.4)
0.5 203,950 62.6 0.07 1.7 (1.4, 2.0) 203,710 60.5 0.05 1.5 (1.3, 1.8) 73.7 0.23 2.7 (2.2, 3.4)

Legend: PRSs were calculated on a case-control cohort (271 clinically defined AD cases and 278 cognitively normal controls) using Kunkle et al. (2019) summary statistics for pT≤ 5e-8, 1e-5, 0.1, 0.5 LD-
pruned SNPs and APOE(ε2+ ε4). The number of SNPs (NSNPs) in each risk score are reported. Three PRS models were considered: PRS.full calculated on the full summary statistics; PRS.no.APOE
where the APOE region was excluded (chr19:44.4–46.5Mb); PRS.AD which is calculated as a weighted sum of PRS.no.APOE and APOE(ε2+ ε4), where APOE effects were weighted with effect sizes (B
(ε2)=−0.47 and B(ε4)= 1.12) as in Kunkle et al (2019). The number of SNPs for PRS.AD models is always two more than for PRS.no.APOE. Prediction was estimated in terms of AUC, R2 and OR with
95% Confidence Intervals (CI).
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65–70% (R2= 0.09–0.016), and lowest for SBayesR with AUC=
54–61% (R2= 0.01–0.05). It should be noted that LDpred-inf,
PRS-CS, LDAK and SBayesR do not require p-value thresholding.
Therefore, we computed PRS in the full SNP set for LDpred-inf,
PRS-CS and LDAK (SBayesR would not run for all chromosomes
for all SNPs), and results were similar to those from PRS using
thresholded SNPs with pT ≤ 0.1 (AUC= 59.3%, 69.6% and 59.7%
respectively).

PRS(C+ T) and PRSice showed very similar results across all
prediction metrics, which is anticipated as both methods use the
same approach, with PRSice performing an automatic filtering of
SNPs that may differ from PRS(C+ T). We also computed the
PRS.AD model using each method. In line with the earlier
conclusions, both prediction metrics (AUC, R2) are better when
APOE is modelled separately and subsequently added to the PRS.
no.APOE for all methods (AUC= 73–74%, R2= 0.22–0.24). The
detailed results can be seen in Supplementary Table 4.

Population-based standardisation. We compared AD ORS and
PRS distributions, the latter with and without APOE calculated
with the PRS(C+ T) approach in two European populations;
UKBB (N= 364,236) and 1000 Genomes (N= 503). Both
populations are European, however they vary by sample size and
genotyping platform. When comparing PRS(C+ T) distributions
for 1000 Genomes and UKBB, it can be observed that the two
distributions are very similar at p-value thresholds of pT ≤ 5e-8,
1e-5 and 0.1, see Supplementary Fig. 2. More differences can be
observed though at pT ≤ 0.5, where the UKBB PRS distribution
has its mean slightly shifted to the left and a smaller standard
deviation than that of the 1000 Genomes. The shift of the mean
can be explained by the fact that UKBB participants report fewer
illnesses, higher education and occupation than the UK general
population27, which are known to modify life-time risk of AD2.
The smaller SD of the single-country UKBB-PRS (based on large
number of SNPs) is also expected when compared to a sample
comprising individuals from a number of European countries
(1000 Genomes). For SNPs with an AD risk association p-value
below the threshold (pT ≤ 0.1) the AD PRS distribution

parameters are sufficiently similar, and for ease-of-use reasons we
therefore decided to work with the 1000 Genomes hereafter.

When comparing the PRS.AD distributions of the case-control
dataset standardised (a) within the dataset and (b) against 1000
Genomes (Supplementary Fig. 3, Supplementary Table 5), it can
be clearly seen that, as expected, the PRS distribution of the
population lies between controls (shifted to the left) and cases
(shifted to the right). In addition, the population-based
standardisation increases the variation in the case-control sample,
leading to more cases and controls falling above and below a
predefined PRS cut-off (e.g., 2 SD), respectively.

Individuals at the extreme tails of the PRS distribution. We
next investigated to what extent the PRS score can be used to
identify, with good confidence, individuals with high and low risk
of AD. We define PRS extremes as individuals with a score
exceeding ±2 SD from the data mean or from the population
mean, depending on the method of standardisation. We assess the
effects of 1000G-based standardization on a human iPSC
resource, HipSci, which is population based, as well as on a case-
control dataset. For the PRS.AD model, when the HipSci sample
is standardised within the sample 11 positive and 2 negative
extremes are observed. When standardised against the 1000 G
population cohort there are 6 positive and 5 negative extremes. It
appears that standardisation of the HipSci data against the
population provides no advantage above considering them
internally as the PRS distributions in the population and in the
population based HipSci should be the same.

In a case-control dataset the number of positive and negative
extremes is greater when PRS is standardised against the
population than within the sample (see Table 3 and Supplemen-
tary Table 4). The highest OR and prediction accuracy is observed
with PRS.AD (OR= 124, AUC= 88.2) and the lowest with ORS.
full (OR= 10, AUC= 74.6). Often, when selecting individuals at
the extremes of risk for AD, researchers may want to understand
risk beyond APOE. Thus, in Table 3 we also present the results for
extremes selection in APOE-ε3 homozygotes using a score
excluding the APOE region. As expected, the number of extremes

Fig. 1 Effects of APOE allele frequencies and age on genetic risk scores. A Allele ε4, ε3, ε2 frequencies (red, orange and green lines respectively) in the
case-control dataset (271 cases and 278 controls), B, C the mean risk score for ε4 allele frequencies, ORS.no.APOE and PRS.no.APOE (red, green and blue
lines respectively) split by age groups. ORS.no.APOE includes SNPs with p-value≤ 1e-5, PRS.no.APOE includes SNPs with p-value≤ 0.1 and both exclude
the APOE region. A represents the full sample (B) represents cases only and (C) controls only. Age groups are specified as (55–65, 65–75, 75–85, 85+).
For comparability of the scores in (B, C) the e4 genotypes (originally coded as 0/1/2) were also standardised. ORS Oligogenic risk score, PRS Polygenic
risk score, SNP Single nucleotide polymorphism.
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is lower when APOE is excluded, but the accuracy remains high
using PRS.no.APOE (OR= 95, AUC= 95.7). The ORS.no.APOE
accuracy for ε33 carriers drops to AUC= 56.3 with an OR
smaller than 1, showing that the prediction is in the wrong
direction. Therefore, the oligogenic model is not useful for
discrimination between ε33 cases and controls in these data.

Finally, we examined whether the individuals in the extremes
are the same across all different PRS methods for both ORS and
PRS, with positive and negative extremes considered separately
(see pairwise visualisation plot in Supplementary Fig. 4). It can be
observed that the greatest number of shared extremes is between
PRS(C+ T) and PRSice, which was anticipated given the
methodological similarities of these approaches. The smallest
number of shared identifications is between SBayesR and other
methods. Overall, the individuals identified with LDpred-Inf, PRS
(C+ T), PRSice and PRS-CS overlap considerably, in contrast to
LDAK and SBayesR.

It can be seen that there are fewer negative extremes identified by
ORS than by PRS in all methods. This is explained by the fact that

ORS is predominantly driven by APOE-ε4, with the consequence that
ORS is not very good at identifying negative extremes. Additional
plots for mapping the top and bottom 5 PRS.no.APOE extremes in
ε3 homozygotes across different methods are presented in
Supplementary Fig. 5. The individuals with the most extreme PRS
in both the positive and negative tails are consistent between PRS(C
+T) and PRSice, while the identified extremes may differ
substantially across the other different PRS methods.

Discussion
Identifying individuals at high and low polygenic risk is very
important for further work to understand how genetic risk
translates into mechanisms of disease28. This might also become
very relevant for drug development efforts targeting precise
mechanisms of disease, as the PRS scores could be used to select
small samples of people in which proof of concept for the
treatment can be obtained before testing the drug in larger
cohorts. The accuracy of current models precludes the use of PRS
in the clinic (too many false positives and false negatives). Results

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

0.0

0.2

0.4

0.6

0.8

PRS(P
+T

)

PRSice

LD
pr

ed
−I

nf

PRS−C
S

LD
AK

SBay
es

R

ORS: AUC

P
R

S
.fu

ll
P

R
S

.n
o.

A
P

O
E P
R

S
.A

D

P
R

S
.fu

ll
P

R
S

.n
o.

A
P

O
E P
R

S
.A

D

P
R

S
.fu

ll
P

R
S

.n
o.

A
P

O
E P
R

S
.A

D

P
R

S
.fu

ll
P

R
S

.n
o.

A
P

O
E P
R

S
.A

D

P
R

S
.fu

ll
P

R
S

.n
o.

A
P

O
E P
R

S
.A

D

P
R

S
.fu

ll
P

R
S

.n
o.

A
P

O
E P
R

S
.A

D

0.0

0.2

0.4

0.6

0.8

PRS(P
+T

)

PRSice

LD
pr

ed
−I

nf

PRS−C
S

LD
AK

SBay
es

R

PRS: AUC

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

O
R

S
.fu

ll

O
R

S
.n

o.
A

P
O

E

0.00

0.05

0.10

0.15

0.20

0.25

PRS(P
+T

)

PRSice

LD
pr

ed
−I

nf

PRS−C
S

LD
AK

SBay
es

R

ORS: R2

P
R

S
.fu

ll P
R

S
.n

o.
A

P
O

E
P

R
S

.A
D

P
R

S
.fu

ll P
R

S
.n

o.
A

P
O

E
P

R
S

.A
D

P
R

S
.fu

ll P
R

S
.n

o.
A

P
O

E
P

R
S

.A
D

P
R

S
.fu

ll
P

R
S

.n
o.

A
P

O
E

P
R

S
.A

D

P
R

S
.fu

ll
P

R
S

.n
o.

A
P

O
E P

R
S

.A
D

P
R

S
.fu

ll
P

R
S

.n
o.

A
P

O
E

P
R

S
.A

D

0.00

0.05

0.10

0.15

0.20

0.25

PRS(P
+T

)

PRSice

LD
pr

ed
−I

nf

PRS−C
S

LD
AK

SBay
es

R

PRS: R2

Fig. 2 Prediction accuracy across different PRS methods (PRS(C+ T), PRSice, LDpred-Inf, PRS-CS, LDAK and SBayesR) for ORS.full, ORS.no.APOE,
PRS.full, PRS.no.APOE and PRS.AD. Bar plot for prediction accuracy (AUC and R2) across 6 PRS approaches: PRS(C+ T), PRSice, LDpred-Inf, PRS-CS,
LDAK and SBayesR (red, yellow, green, teal, blue, pink bars respectively). The colour of each PRS method is consistent across all plots. Upper figures
represent ORS and lower figures represent PRS and PRS.AD models in the case-control dataset (271 cases and 278 controls). ORS.full includes SNPs with
pT≤ 1e-5 and PRS.full includes SNPs with pT ≤ 0.1, ORS.no.APOE and PRS.no.APOE exclude SNPs in the APOE region and PRS.AD models APOE separately
and subsequently adds this to PRS.no.APOE. AUC Area Under the Curve, ORS Oligogenic risk score, PRS Polygenic risk score, AD Alzheimer’s Disease,
SNP Single nucleotide polymorphism.
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of this and other studies18 confirm that identification based on
having a PRS above/below a certain threshold provides much
better prediction accuracy than attempting to classify all indivi-
duals in a dataset. However, there is no agreement in the field
about the best way to model risk and to generate risk scores for
reliable and accurate identification of high and low-risk indivi-
duals. We examined the major factors that need to be considered
when calculating PRS for AD and provide recommendations to
aid individual selection.

Firstly, we provide ample evidence that AD should be modelled
as a polygenic disease. We advocate that risk of AD is not dif-
ferent from other diseases where liability to disease is continuous,
and that disease becomes evident after a threshold has been
passed (the liability threshold model). In the threshold model
liability for a genetic disorder is normally distributed across the
population, and polygenic risk scores are a measure of disease
liability29. While common alleles of small risk identified by
genome-wide association study arrays capture between a third
and a half of the genetic variance in liability to AD, APOE-ε4
alone substantially increases risk for the disorder28. Here we show
that AD cases with APOE-ε4 alleles have a lower burden of
common AD risk alleles of small effect than AD cases without ε4
alleles. This implies that APOE risk is substantial for the devel-
opment of the disease with a lesser burden of common risk alleles
with small effects (the genetic liability threshold model30).

Secondly, a major problem with AD when using PRS to cate-
gorise people at risk is the age of the study participants. Allelic
variation at the APOE locus impacts survival by both altering the
age at onset of AD and by increasing risk of other conditions
(hyperlipidaemia, atherosclerosis, cardiovascular disease31–36),
and the frequency of APOE-ε4 in the population correspondingly
goes down with age11. Furthermore, it has been shown that PRS’s
contribution to dementia (where AD is the most common form of
dementia) risk differs with age and APOE-ε4 allele status37. The
effect of PRS (pT ≤ 0.5) is more pronounced in older people25,
and the effect of oligogenic risk scores constructed using SNPs
with an association pT ≤ 1e-5 is greater in ε4 homozygotes17. In
this study, comparing the means of the oligogenic and polygenic
risk scores across age groups, we found that following the pattern
of APOE-ε4 frequency, the ORS decreased with age in cases but
was on average higher than in controls (conversely, PRS increases
with age in cases, but decreases in controls). A potential

explanation is that APOE and most of the GWAS significant
SNPs point to genes which are in the same or overlapping
pathways38–42. This also explains why including the oligogenic
scores does not improve the prediction very much compared to
APOE genotype alone. In addition, since APOE is associated with
earlier age at onset, these shared pathway genes are likely to be
detectable in younger and/or mixed age samples.

As a consequence, the best predictive accuracy was achieved in
this and in our earlier study14 using the regression model with
two predictors: APOE and PRS.no.APOE (i.e., PRS at pT ≤ 0.1,
which excludes the APOE region). Our simulation study confirms
that if controls are drawn from a general population, and hence
are younger than cases, the model where PRS is included as one
variable suggests a lower optimal pT, similar to those observed in
other studies16,17,43. Notably, in this study, the prediction
accuracies of the PRS using p-value thresholds of 0.1 and 0.5 were
similar (the latter reported in earlier work by us and others14,15).
The reduction of the optimal pT from 0.5 to 0.1 is likely due to
the improved estimation of SNP effect sizes, imputation quality
and increased GWAS sample size in the latest GWAS13 in
comparison to the earlier GWAS study44. Similar findings have
been observed for other polygenic disorders, e.g., in the Schizo-
phrenia and Bipolar datasets of the Psychiatric Genetic
Consortium45. Note, however, that the optimal p-value threshold
may differ when predicting other endophenotypes, for example
CSF plasma, imaging biomarkers or other types of dementia46,47.

Thirdly, comparing six PRS calculation methods, we conclude that
the prediction accuracies are very similar, however the individuals’
scores differ. The choice of the individuals at the extremes of the PRS
distribution were concordant between PRSice, LDpred-inf, PRS-CS
and PRS(C+T). There were more differences shown between LDAK
and SBayesR. Due to the lack of transparency within the Bayesian
approaches, it is difficult to explain why certain individuals are at
high polygenic risk whereas others are not, compared to PRS(C+T)
where the SNP effect sizes and the LD clumping parameters are
traceable. While functionally informed methods may reach higher
prediction accuracy in a population, the posterior SNP effect sizes will
differ from the true effect sizes if they were obtained from, e.g.,
multivariate regression48.

Another interesting and important conclusion of our study is
that overlaying a relatively small case/control sample onto the
general population results in a much better representation of

Table 3 Number of ORS/PRS extremes in the case-control dataset standardised within the sample and against 1000 Genomes
European population.

Sample Risk
Score

Tail In-sample standardisation Population-based standardisation

N case
(%)

N controls
(%)

OR
(95% CI)

AUC N cases
(%)

N controls
(%)

OR
(95% CI)

AUC

All ORS.full Positive 18 (6.6) 2 (0.7) 9 (0.4, 207) 84.2 33 (12) 5 (1.8) 10 (1, 75) 74.6
Negative 1 (0.3) 1 (0.3) 2 (0.7) 3 (1.1)

PRS.full Positive 11 (4) 2 (0.7) 20 (3, 145) 81.3 19 (7) 3 (1.1) 32 (6, 180) 83.1
Negative 3 (1.1) 11 (3.9) 3 (1.1) 15 (5.3)

PRS.AD Positive 21 (7.7) 1 (0.3) 100 (3, 2989) 84.5 33 (12) 3 (1.1) 124 (6, 2707) 88.2
Negative 0 (0) 3 (1) 0 (0) 6 (2)

ε3ε3 ORS.no.
APOE

Positive 1 (1) 3 (1.8) 1.7 (0.1, 38) 43.8 1 (1) 2 (1.1) 0.6 (0.03, 14) 56.3
Negative 1 (1) 5 (3) 1 (1) 3 (1.8)

PRS.no.
APOE

Positive 4 (4) 1 (0.6) 39 (1, 1191) 99.9 7 (7) 2 (1.1) 95 (3, 2683) 95.7
Negative 0 (0) 6 (3.6) 0 (0) 10 (6)

Legend: In a case-control dataset the number of cases (N cases) and controls (N controls) at PRS extremes were identified with percentage from total of cases= 271 and total of controls= 278. The
prediction accuracy of these extremes was assessed with AUC and OR (95% Confidence Intervals) when standardised (a) using sample mean and SD (b) using mean and SD from 1000 Genomes data.
We define PRS extremes as individuals with a score exceeding ± 2 SD from the data mean or population mean. Three models were used for the whole dataset (549 individuals): ORS.full (pT≤ 1e-5), PRS.
full (pT≤ 0.1) and PRS.AD (pT≤ 0.1) and two models were used for ε3 homozygote individuals (N= 267 with 100 cases and 167 controls): ORS.no.APOE and PRS.no.APOE. ORS.no.APOE and PRS.no.
APOE exclude the APOE region and PRS.AD models APOE separately and subsequently adds this to PRS.no.APOE.
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risk in the sample. Since case-control samples are enriched for
cases as compared to the general population, the PRS distribu-
tion of the former is a mixture of two distributions (cases and
controls) with distinct means. The PRS distribution for a
population sample is likely to have a mean between the means of
cases and controls, and a smaller variance (and hence, standard
deviation) than that of the combined case-control sample.
Standardising the case-control sample to the population will
result in the shift of the individual scores in the case-control
sample to the positive or negative side of the population mean.
This makes the detection of more individuals at high or low risk
possible. Increasing the size of the population sample will pro-
vide better estimates of the population PRS mean and SD (since
the standard errors of these estimates will decrease as N
increases). Note that including a larger population sample will
proportionally increase the total number of people more than
2SDs from the mean in the joint (population plus case-control)
sample, but that this will not necessarily be enriched by the
individuals from the case-control sample. For example, the use
of the 1000G population is an easy and straight-forward way to
obtain this beneficial effect.

Finally, we looked at individuals at the extremes of the PRS
distribution and found that both odds ratio and AUC were very
high in the whole sample (OR= 124, 95% CI= [6, 2707]) and for
the ε3-homozygous individuals (OR= 95, 95% CI= [3, 2683]).
The confidence intervals for the odds ratios were of course broad,
as the sample size is small when looking at the extremes, but the
accuracy remained high. The ORs for the extremes identified by
ORS were smaller (OR= 10, 95% CI= [1,75]) and the CIs nar-
rower, suggesting that this model identified a greater number of
extremes than the polygenic model, but with poorer accuracy.
The oligogenic score was not suitable to identify the extremes in
the ε33 individuals with OR= 0.6, misclassifying some high ORS
cases as controls and vice versa.

There are a number of limitations in this study. The size of the
case control sample used was small, which may have reduced the
power and decreased the precision of the accuracy measures used.
This can be seen in the broad CIs of the OR for PRS, for example.
Secondly, clinical definitions of AD varied across the cohorts
which were combined to generate our case-control sample, and
age was not recorded uniformly (e.g., age at interview vs age of
death). This would make our sample more heterogeneous,
thereby possibly also decreasing the power. Lastly, when
excluding APOE from the model, we removed the whole APOE
locus as this is a region of high LD. In doing so we may have
inadvertently excluded SNPs which are independently associated
with AD over and above APOE. To ensure generalisability, these
results require replication in independent datasets.

In conclusion, we show that for AD the optimal p-value threshold
is pT≤ 0.1, and the PRS calculation should account for the age-
related genetic differences in cases and controls either by modelling
APOE separately to the PRS or by matching cases and controls for
age and APOE status. This approach can be refined when we have a
better idea of which genes are contributing to the disease aetiology via
aging and which are directly on the pathology pathway. We
recommend the use of PRS(C+T) for the calculation of risk scores
as this led to the highest accuracy and variance explained in our
analyses. To ensure comparability between studies and samples,
researchers should standardise PRS against an appropriate popula-
tion, and use the extremes of the standardised PRS distribution to
select individuals at high/low risk of AD.

Methods
Data sets and quality control. The 1000 Genomes (1000 G) Project49 applied
whole genome sequencing to individuals from different populations in order to

compile a detailed resource of common human genetic variation. In this study we
only consider individuals from a European population, N= 503.

The UK Biobank (UKBB) is a large prospective cohort of approximately
500,000 individuals from the UK containing extensive phenotypic and genotypic
data which is still being collected50. Participants recruited were aged 39–73 years
with a mean age of 56.8. The data here were used under UKBB approval for
application (15175: Further defining the genetic architecture of Alzheimer’s
disease) and contain 443,018 individuals after Quality Control (QC) analysis.

HipSci (Human Induced Pluripotent Stem Cell Initiative)51 is an initiative
which is generating a large, high quality reference panel of human iPSC lines for
the research community. These are created from tissue donations from both
healthy volunteers and patients from particular rare disease communities. There
were 1,228 samples from healthy volunteers available from this study.

ADNI (Alzheimer’s Disease Neuroimaging Initiative) is a longitudinal study
that was developed for the early detection of AD with the use of clinical, genetic,
and imaging data52. The data was collected from 900 participants between ages 55
and 90. Initially, participants were followed for 2–3 years with repeated imaging
scans and psychometric measurements (ADNI1). The study was subsequently
extended with the addition of new participants (ADNI-GO and ADNI2).
Longitudinal data contained information on clinical assessments from the first,
baseline visit to the latest available visit with mean follow up time approximately 5
years. Genetic data was available for 770 participants who provided written
consent.

ROSMAP—Religious Orders Study (ROS) and the Rush Memory and Aging
Project (MAP) are both ongoing longitudinal clinical-pathologic cohort studies of
aging and AD. Older participants were recruited without dementia and multi-layer
data were collected that includes structural and functional neuroimaging,
quantitative clinical phenotypes, neuropathologic and neurobiological traits, multi-
level omics and genetics53–55. 1,196 samples were available to us with genetic
information.

MSBB (The Mount Sinai Brain Bank) study generated gene expression, genomic
variant, proteomic and neuropathological data from brain specimens. Clinical
dementia rating scale (CDR) was conducted for assessment of dementia and
cognitive status56. 349 samples were available to us with genetic information.

MAYO—Mayo Clinic Brain Bank is a post-mortem cohort that contains
neuropathological, genetic, biochemistry, cell biology data. The samples that are
used here are described in MAYO eGWAS57. 349 samples were available to us with
genetic information.

All standard Quality-Control (QC) steps were performed separately in each
dataset using PLINK58, see Supplementary Note 1. The 1000 Genomes Project and
UK Biobank were used as population cohorts for PRS standardisation. The HipSci
dataset was used as an example of a population cohort for the identification of
individuals with high and low AD risk. ADNI, ROSMAP, MSBB, and MAYO were
used as part of a combined case-control cohort. To gain more power we combined
and harmonised ADNI, ROSMAP, MSBB and MAYO studies, removed
overlapping samples that were used in the Kunkle et al GWAS study13, leaving 271
AD cases and 278 controls with 6,077,045 SNPs for the remaining analysis (see
details in Supplementary Table 1 and Supplementary Table 2).

Primary PRS calculation (C+ T). For the PRS calculation we used the summary
statistics from the largest available clinically assessed case-control GWAS study on
AD13 (N= 63,926) to generate genetic scores for all participants in the cohorts
described above as the weighted sum of the risk alleles. The most commonly used
approach for PRS calculation is clumping and thresholding (C+ T) where markers
most strongly associated with disease are preferentially retained. PRS were gen-
erated with the PLINK genetic data analysis toolset58 for pT ≤ 5e-8, 1e-5, 0.1, 0.5 on
LD-clumped SNPs by retaining the SNP with the smallest p-value excluding var-
iants with r2 > 0.1 in a 1000-kb window. Additional PRSs were computed with
more stringent r2 thresholds of 0.01 and 0.001 for all p-value thresholds. PRS.no.
APOE was calculated excluding the APOE region (chromosome 19:44.4–46.5 Mb)
due to the high LD in this region. PRS.AD was calculated as a weighted sum of
PRS.no.APOE and APOE(ε2+ ε4), where APOE effects were weighted with effect
sizes (B(ε2)=−0.47 and B(ε4)= 1.12) as in Kunkle et al. 201913. Prior to any
analyses, all derived scores were adjusted for principal components (PCs) and then
standardised (a) within the sample and (b) against population cohorts. For the
latter, the dataset was merged with the population data, PCs were derived on the
merged data, then the data was standardised using the mean and standard
deviation (SD) from the population subsample.

Other methods of PRS calculation. We computed PRS using a number of dif-
ferent methods, in particular PRSice, LDpred-inf, PRS-CS, LDAK and SBayesR
taking the effect sizes from the Kunkle summary statistics13. To maintain a fair
comparison, all PRS methods are applied to an identical dataset containing the
same set of thresholded SNPs, i.e., ORS (pT ≤ 1e-5) and PRS (pT ≤ 0.1). We also
computed PRS using the whole genome data without any prior clumping and
thresholding with LDpred-inf, PRS-CS and LDAK, but software issues prevented us
from being able to run this with SBayesR. LD was estimated using the case-control
dataset for all methods with the exception of PRS-CS, which used the 1000 Gen-
omes data (as this was the only option available in the PRS-CS software). All
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methods were otherwise implemented using default options. The PRS generated
were standardised against the 1000 Genomes population data.

Statistical analysis. The case-control association analysis was performed using
logistic regression with the glm() function in R. The prediction accuracy was
estimated in terms of (a) area under the receiver operating characteristic curve
(AUC) and (b) R2, the proportion of the variance explained by the regression
model. The extremes at ±2 SD were compared in terms of OR with 95% Confidence
Intervals (CI), AUC, cases and controls at each tail of the PRS distribution, and
pairwise overlap between the extremes for all methods. For the PRS extremes we
compare the results of ORS (pT ≤ 1e-5) and PRS (pT ≤ 0.1), including the PRS.AD
model. We used the Haldane correction59 in instances when cell counts were zero
in the 2 × 2 contingency table.

Simulation study. Independent genotypes were simulated in a sample of 10,000
cases and 10,000 controls. APOE-ε4 allele frequency was set at 0.142 in controls
and 0.356 in cases60. For simplicity, we assumed that the age of cases is above the
late onset (e.g., over 85) but the age of the controls is below the average early onset
(e.g., below 60 years). To estimate the number of controls who will develop the
disease at 84, we used results from9, which show a frequency of 91% of ε4ε4
homozygote donors having AD, and a mean age of onset of 68; for ε4 heterozygotes
this is 47% and 76 years, and 20% of ε4 non-carriers with onset at an average of 84
years of age. This suggests that there are about 28% hidden or putative cases among
the controls. Then we re-simulated ε4 genotypes with slightly reduced allele fre-
quency (f= 0.355) in cases and slightly elevated allele frequency (f= 0.36) for
putative controls, so that the joint allele frequency is ~0.356 for the true cases
(10,000+ 2,800) and for the 10,000 young population controls matching the dis-
tribution of ε4 frequency by age10. We set the frequency of ε4 to 0.142 for the
remaining controls13. ORS.full was calculated based upon 68 LD-clumped SNPs
with pT ≤ 1e-5, including one of the most significant APOE variants (rs429358),
with frequencies and effect sizes as reported in summary statistics from Kunkle
et al. 201913. PRS.full was calculated using 10,068 SNPs, where 68 SNPs had effect
sizes as described above and the other 10,000 SNPs were simulated with minor
allele frequencies uniformly distributed between 0.01 and 0.45 (70%/30% of SNPs
with minor/major risk allele) and effect sizes decreasing from OR= 1.005 to 1 and
from OR= 1.003 to 1 for the cases and putative controls, respectively; see R script
(code availability).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Kunkle et al. 2019 summary statistics for the Stage 1 can be obtained from The National
Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS)—a
NIA/NIH-sanctioned qualified-access data repository, under accession NG00075. UK
Biobank data used in this study were available under UK Biobank approval (https://www.
ukbiobank.ac.uk/, application 15175). Alzheimer’s Disease Neuroimaging Initiative
(ADNI) used in this study were available at the database (http://adni.loni.usc.edu/), upon
registration and compliance with the data usage agreement. ROSMAP, MSBB, MAYO
datasets were available via Synapse platform (https://www.synapse.org: syn3191087,
syn10901595, syn6101474, syn10901600, syn3817650, syn10901601) and https://www.
radc.rush.edu. 1000 Genomes data are publically available and can be found at http://
www.1000genomes.org. All HipSci data were accessed from http://www.hipsci.org
(HipSci data access agreement 8759).

Code availability
The code can be downloaded from https://github.com/DRI-Cardiff/APOE-modelling.
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