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Abstract—Opportunistic networks exploit human mobility and 
consequent device-to-device contacts to opportunistically create 
data paths over time. Identifying influential nodes as relay is a 
crucial problem for efficient routing in opportunistic networks. 
The degree centrality method is very simple but of little 
relevance. Although closeness centrality and betweenness 
centrality can effectively identify influential nodes, they are 
incapable to be applied in large-scale networks due to the high 
computational complexity. In this paper, we focus on designing 
an effective centrality ranking metric with low computational 
complexity in opportunistic networks. We propose the semi 
locally evaluated centrality metric to identify influential nodes 
for message forwarding in opportunistic networks. We also 
present a simple message forwarding algorithm, and employ 
real world mobility traces and synthetic mobility traces to 
evaluate the benefits of the proposed semi locally evaluated 
centrality metric. Results demonstrate the efficiency of the 
proposed metric in opportunistic networks. 
 
Index Terms—Opportunistic networks, semi locally evaluated 
centrality metric, efficient routing. 
 

I. INTRODUCTION 

Technological advances are leading to a world replete 
with small wireless devices with a variety of sensing and 
computing functions, thus paving the way for a multitude 
of opportunities for pairwise device contacts. 
Opportunistic networks which rely on the store-carry and 
forward paradigm use human mobility and consequent 
wireless contacts between mobile devices, to propagate 
information in a peer-to-peer manner [1], [2].  

Designing and analyzing efficient protocols in 
opportunistic networks is challenging [3], forwarding 
schemes should balance the overhead from redundant 
copies with successful delivery and minimal delay. The 
consideration of social characteristics has opened new 
horizons in design of opportunistic routing strategies in 
recent years [4], [5]. This approach constructs a social 
graph based on the contacts of all nodes. One of the main 
objectives of social-based opportunistic routing is to 
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select the nodes with high centrality as bridge nodes for 
message delivery [6]. 

The measurements of node centrality in common use 
are degree centrality (DC), betweenness centrality (BC), 
and closeness centrality (CC) [7], [8]. But, there are some 
limitations and disadvantages of these metrics on 
influential nodes identification in opportunistic networks. 
Degree centrality is a straightforward and efficient metric 
but less relevant due to the metric does not take into 
consideration the global structure of the network. BC and 
CC are based on the shortest paths which depend literally 
on the number of intermediary nodes and are found by 
minimizing the number of intermediary nodes. They are 
difficult to apply in large-scale networks due to their 
computational complexity. Thus, how to effectively and 
efficiently identify influential nodes is of theoretical and 
practical significance to enable nodes to make right 
decisions while spreading or forwarding messages in 
opportunistic networks.  

In this paper, we propose the semi locally evaluated 
centrality to identify influential nodes for message 
delivery in opportunistic networks. Comparing with 
closeness centrality and betweenness centrality, our semi 
locally evaluated centrality metric performs much lower 
computational complexity. We also present a simple 
message forwarding algorithm to evaluate the benefits of 
the proposed semi locally evaluated centrality metric on 
message forwarding in opportunistic networks. The 
experiments on real-world mobility traces and synthetic 
mobility traces show that semi locally evaluated 
centrality metric can well identify influential nodes in 
opportunistic networks. 

II. RELATED WORK 

Opportunistic networks employ store-carry-and-
forward paradigm to carry messages between the network 
nodes. Data forwarding becomes a challenging issue in 
this paradigm. 

Some literatures exploit node’s contact history to 
predict node's future steps as data forwarding decisions to 
improve the routing algorithm performances. Fresh [9] 
forwarded a message to the encountered node only if it 
had encountered the destination more recently than did 
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the source node itself. PRoPHET [10] made use of 
delivery predictability metric to calculate how likely a 
node would be able to deliver a message to the 
destination. 

In recent years, several research works consider the 
problem of designing opportunistic routing schemes that 
are aware of social properties. One of the primary 
analysis methods of social properties is node centrality 
measures. Degree centrality, closeness centrality and 
betweenness centrality have been widely used in network 
analysis. Some existing opportunistic routing solutions 
utilize these centrality metrics to identify influential 
nodes for routing decision. Bubble Rap [11] used degree 
centrality as its centrality index to find a node which had 
a higher ranking than the current node as relay. Socio-
Aware Overlay [12] used closeness centrality to find a 
node which had the best visibility in the network as 
messaging brokers to effectively disseminate message in 
delay tolerant networks. SAMPhO [13] and SimBet [14] 
based on the identification of the betweenness centrality 
to use potential nodes to forward messages to the 
destination. 

In this paper, we extend their work to propose a novel 
centrality metric with low computation complexity. Our 
central idea is to consider the nearest and the next nearest 
neighbors and exploits node’s semi local centrality to 
identify influential nodes for message forwarding in 
opportunistic networks. We will show the detail of our 
metric in the next section.  

III. INFLUENTIAL NODE EXPLORATION 

A. Semi Locally Evaluated Centrality 

In order to decrease the computational complexity, we 
propose semi locally evaluated centrality metric to 
identify influential nodes in opportunistic networks.  

We first study node’s local centrality. To measure a 
node's local centrality, we should consider the following 
three behavioral features: a large number of neighbors, a 
large number of times as bridge node to enable message 
delivery between its neighbors, even distributions of 
times as bridge node to enable message delivery for its 
neighbors. We assume that the observed time T is finite, 

from the start time startt  until the end time endt . Define a 

set of entities T
V  (nodes) and a set of connections T

E  

(edges) between these entities during time interval T. We 

denote that ( ) T

ie j E ( ( )j i  ) represents the number 

of times of node i as bridge node to enable message 

delivery between node j and node i ’s other neighbors 

where ( )i is the set of the neighbors of node i. Thus we 

propose the local centrality metric taking into account 
these features, as: 

              
( )

( ) ( )i

j i

LC i e j


               (1) 

where   is the tuning parameter which determines the 

relative importance of the number of neighbors compared 
to the number of times as bridge node to combine both 
adjacent nodes and times as bridge node for measuring 
node’s local centrality.   is defined as follows: 

 

1
2 2

2

( ) ( )

( ) ( )i i
j i j i

e j e j
 

  
      
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We use ( )ip j  to represent the ratio of times of node i 

as bridge node for node j connecting with node i’s 
neighbors to total times of node i as bridge node for node 

i’s neighbors connecting with each other. ( )ip j  is 

denoted as follows: 

( )

( ) ( ) ( )i i i
k i

p j e j e k


              (3) 

Semi locally evaluated centrality which considers both 
the nearest and the next nearest neighbors’ local 
centrality is proposed as follows: 

( )

( )

( ) ( ) ( ) ip j

j i

SLC i LC i LC j


         (4) 

B. Computation Complexity Analysis 

Closeness centrality and betweenness centrality are 
based on the all-pairs shortest-paths. Using Floyd's 
algorithm, the complexity of the shortest paths between 

all pairs of nodes in a network is 3( )O n [15]. Brandes [16] 

presents a fast technique to compute betweenness 

centrality that in ( )O mn  and 2( log( ))O mn n n  time on 

un-weighted and weighted networks, respectively, where 
m is the number of links. Even if the full network 
topology is known, closeness centrality is too costly-

2( log( ))O mn n n where m is the number of links [17]. 

Intuitively, semi locally evaluated centrality metric which 
only explores the nearest and the next nearest neighbors’ 
mobility patterns saves complexity, it has lower 
computational complexity than global centrality metrics. 
The computational complexity of semi locally evaluated 

centrality metrics is 3( )O k  where k is the average degree 

of the network. 

IV. MESSAGE FORWARDING STRATEGY 

In this section, we will present a simple message 
forwarding algorithm to evaluate the effectiveness of 
semi locally evaluated centrality on message forwarding.  

Since communication in opportunistic networks is 
challenging as it must handle time-varying links, long 
delay, and dynamic topology, social relations and 
behaviors among mobile users are usually long term 
characteristics and less volatile than node mobility. Thus, 
we extend jaccard similarity index [18] to propose a 
social relation exploring method. If two nodes contact 
with each other very frequently, they may have some 
knowledge between them. If two nodes have more other 
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acquaintances in common, they may have a higher 
probability of two people being acquainted. The social 
relation exploring method is defined as follows: 

 
 

, ,
| ( ) ( )|

,

, ,
| ( ) ( )|

( )
i k j k

k i j

i j

i k j k

k i j

w w

S t
w w

 

 









      (5) 

where ( )i  is the set of the neighbors of node i . ,i kw  is 

the contact times between nodes i  and k  till time t.  
In order to compare the effectiveness of semi locally 

evaluated centrality metric with three traditional 
centrality metrics (degree centrality, betweenness 
centrality and closeness centrality) on message delivery, 
we denote ( )iCentrality t  as the value of node i’s 

centrality at time t based on one of the four centrality 
metrics. Thus the algorithm describes as follows. If a 
node i having a message destined to d meets with node j, 

node i first compares , ( )
i d

S t  with , ( )
j d

S t . If node j has 

higher social relation strength to encounter d than node i  

does and , ( )
j d

S t  is not less than threshold  , the 

message will be forwarded. Noting that   here is a 

threshold ensuring that the social relations between node j 
and destination node d is strong enough. At last, if the 
social relation strength between node i and destination d 
is lower than  and the node j also has lower social 

relation strength than  to destination d but has higher 

centrality value, message will be forwarded to it as well. 
The pseudo-code for message forwarding algorithm is 
shown in Algorithm 1. 

 

 

V. SIMULATION AND EVALUATION 

A. Simulation Scenarios and Parameter Settings 

TABLE I: MIT DATA SET DESCRIPTION 

Items MIT data set  

participants  84 

Duration 12 days 

Av. Contacts per day  110 

Scanning rate  5 minutes 

Scanning distance  5 meters 

 
 Real world mobility trace: we use MIT real world 

data set to evaluate the effectiveness of proposed 
centrality metric in reality. It was conducted from 
2004-2005 at the MIT Media Laboratory [19]. We use 
the Bluetooth trace over 12 days in 2004 November 

and note that the only 84 nodes rather than the full 
100 nodes appeared during this period. We define a 
connection as the period of time during which two 
devices are in mutual radio transmission range and 

can exchange data. Table I describes some 
characteristics of the data set. 

 Synthetic mobility traces: we use Opportunistic 
Network Environment simulator (ONE) [20] which is 
a typical opportunistic networking evaluation system 

to generate synthetic mobility traces for routing 
performance evaluation. In the simulation, we 
generated 15 randomly located non-overlapping 
community regions (home, work, buildings, etc.) and 

we allocated 100 nodes (i.e., people) to these 
community regions. Then, for each node, we 
randomly assigned 5 different communities to visit 
regularly. The activity area of some nodes was limited; 
they could only access regular communities and even 
moved in a single community. For other nodes, their 
activity areas could be very wide; they could access 
more communities. The above activity patterns were 
also common in human real social life. Nodes moved

 

according to Random Waypoint model within a 
community and moved according to Map Route 
movement model among communities. Related 
simulation parameters are shown in Table II. 

TABLE II:
 
SIMULATION PARAMETERS

 

Items
 

MIT data set 
 

Network area
  

21000 1000 ( )m
  

Community
 
area

 
2100 100 ( )m

  

Transmit speed
 

250 /KB s
  

Communication range
  

10 m
  

Message size
 

50 100 KB
  

Message
 
TTL

  
24 h

  

Node buffer size
 

1000MB
  

Node speed
  

0.5 1.0 /m s
  

Simulation time
 

260,000 s
  

B.

 

Effectiveness Analysis of Semi Locally Evaluated 

Centrality Metric on Influential Nodes Identification 

In this section, we will use Kendall’s tau (rank) 
correlation coefficients [21], [22] to evaluate the 

effectiveness of the proposed centrality metric on 
influential nodes

 

identification in reality.

  

Let 1 1( , )x y , 2 2( , )x y , …

 

, ( , )n nx y  be a set of 

observations of the joint random variables X and Y

 

respectively, such

 

that all the

 

values of ix  and iy  are 

unique. Any pair of observations ( , )i ix y  and ( , )j jx y  are 

said to be concordant if the ranks for both elements agree: 

that is, if both i jx x  and i jy y  or if both i jx x and 

i jy y . They are said to be discordant, if i jx x  and 

i jy y  or if i jx x  and i jy y . If i jx x  or i jy y , 

the pair is neither concordant nor discordant. Then 
Kendall’s Tau   is defined as: 
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1
( 1)

2

c dN N

n n







                       (6) 

where 
cN  and 

dN  are the number of concordant and 

discordant pairs, respectively. 
Betweenness centrality and closeness centrality rely on 

the identification and length of the shortest paths among 
nodes in the network. Therefore, in an effort to generalize 
these measures for opportunistic networks, a first step is 
to generalize how shortest distances are identified and 
their length defined. Opsahl’s shortest path [23] uses 
tuning parameter   to incorporate both the number of 

ties and their tie weights when applied to weighted or un-
weighted networks. The tuning parameter   allows 

researchers to define the relative importance they want. 
When 0  , it calculates shortest distance in un-

weighted networks. When 1  , the outcome is the same 

as the path obtained with Dijkstra’s algorithm. For 
0 1  , a shorter path composed of weak ties is 

favored over a longer path with strong ties. Conversely, 
and when 1  , the impact of additional intermediary 

nodes is relatively unimportant compared to the strength 

of the ties and paths with more intermediaries are favored. 
The tie weights of Opsahl’s shortest path are contact 
times. We first analyze the correlation between node’s 
local centrality (degree centrality, weighted degree 
centrality [24]) and node’s global centrality (closeness 
centrality, betweenness centrality) with MIT real world 
data set. In Fig. 1 (a) and Fig. 1 (b), the curves of the 
correlation between weighted degree centrality and 
betweenness centrality fluctuate more slightly than those 
of degree centrality. The correlation of weighted degree 
centrality and betweenness centrality is higher than that 
of degree centrality in weighted network. Since 
opportunistic network is not a binary network and links 
are differentiated and not all links are equally conducive 
to forwarding information, thus a certain rough 
approximation the node with higher frequency of 
contacting other nodes may has more chances to forward 
message as relay in opportunistic networks. However, in 
Fig. 2 (a) and Fig. 2 (b), degree centrality is more 
relevant with closeness centrality than weighed degree 
centrality. We know that the node with more neighbors 
may have higher capability to disseminate information in 
weighted or un-weighted networks.  

  
Fig. 1. Illustration of the Kendall’s tau (rank) correlation coefficients of betweenness centrality with degree centrality and weighted degree centrality 
through temporal evolution. 

  
Fig. 2. Illustration of the Kendall’s tau (rank) correlation coefficients of closeness centrality with degree centrality and weighted degree centrality 
through temporal evolution. 

We then analyze the correlation between semi locally 
evaluated centrality metric and global centrality with 
various   of Opsahl’ shortest path and window time size. 
The results are shown in Fig. 3. The Kendall’s tau (rank) 
correlation coefficients are slightly fluctuated with tuning 
parameter   and window time increasing. Thus a certain 
rough approximation the global centrality ranking may be 

fluctuated by semi locally evaluated centrality. For 
betweenness centrality evaluating in Fig. 3 (a), the 
average Kendall’s tau (rank) correlation coefficients 
between semi locally evaluated centrality and 
betweenness centrality are close to 0.7 and lower than the 
correlations with closeness centrality. For closeness 
centrality evaluating in Fig. 3 (b), the average Kendall’s 
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tau (rank) correlation coefficients are more than 0.8, and 
the curve is slightly ascending with tuning parameter   
and window time increasing. Comparatively speaking, 
semi locally evaluated centrality has stronger correlation 
with closeness centrality than betweenness centrality. 

Comparing with degree centrality and weighted degree 
centrality, semi locally evaluated centrality performs 
higher correlations with global centrality than degree 
centrality and weighted centrality in both un-weighted 
and weighted networks. 

   
Fig. 3. Illustration of the Kendall’s tau (rank) correlation coefficients between semi locally evaluated centrality and global centrality. 

  
Fig. 4. Comparing the delivery ratio by different centrality metrics.. 

  
Fig. 5. Comparing the average hops by different centrality metrics. 

  
Fig. 6. Comparing the average latency by different centrality metrics. 
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C. Performance Analysis of the Proposed Forwarding 

Strategy with Different Centrality Metrics 

In the simulation, we use real world mobility traces 
and synthetic mobility traces to compare the performance 
of the routing algorithm based on semi locally evaluated 
centrality metric with the routing algorithm based on the 
three traditional centrality metrics(betweenness centrality 
metric [8], closeness centrality metric [8] and degree 
centrality metric [8]) on message forwarding. 1/5 of the 
simulation time will be used as warm up period during 
which nodes build their initial contact history for getting 
preset nodes’ social relations and centrality values. Each 
message copy has a maximum hop count: 16, i.e. 
messages exceed 16 hops before reaching destinations 
will be discarded. The threshold   is empirically set to 

0.5. During the simulation period, each node has 
sufficiently large buffer space to store each message it 
receives. 

For the comparison of the algorithm with different 
centrality metrics, we use the following three metrics: 
message delivery ratio, average cost and average latency. 
Delivery ratio is the proportion of messages that are 
delivered to their destinations among the total messages 
generated. Average hops are the average number of hops 
per message during the simulation period. Finally, 
average latency is defined as the average time between 
creation of a message and its delivery to the target node. 

As it is seen in the Fig. 4, the message forwarding 
algorithm with closeness centrality metric achieves the 
highest delivery ratio. The delivery ratio of the algorithm 
with semi locally evaluated centrality metric is nearly to 
that with closeness centrality metric and achieves better 
performance than the algorithm with betweenness 
centrality metric or degree centrality metric. 

Fig. 5 compares the average hops by the message 
forwarding algorithms with different centrality metrics 
during the simulation. While betweenness centrality 
measures the number of times of a particular node which 
lies between the shortest paths in the network, the 
message forwarding algorithm with betweenness 
centrality metric achieves the lowest communication cost. 
The average hops of the message forwarding algorithm 
with semi locally evaluated centrality metric is very close 
to that with closeness centrality metric due to semi locally 
evaluated centrality ranking has strong correlation with 
closeness centrality ranking and performs better than that 
with degree centrality. 

In Fig. 6, the message forwarding algorithm with semi 
locally evaluated centrality metric achieves the lowest 
average latency. That is because the message forwarding 
algorithm with semi locally evaluated centrality metric 
employs more nodes as relay to deliver the message to 
the destination with lower latency than the algorithm with 
betweenness centrality metric or closeness centrality 
metric. Since degree centrality measures nodes’ local 
centrality and does not take into consideration the global 
structure of the network, the algorithm with semi locally 

evaluated centrality metric also performs better than that 
with degree centrality metric. 

The simulation results with different traces show that 
semi locally evaluated centrality metric with low 
computational complexity performs well on message 
forwarding in opportunistic networks. 

VI. CONCLUSION 

This paper was motivated by the need for identifying 
influential nodes with low computation complexity for 
message forwarding in opportunistic networks. We 
proposed the locally evaluated centrality metric which 
exploited the nearest and the next nearest neighbors’ 
mobility patterns to identify influential nodes for message 
forwarding in opportunistic networks. Our metric 
performs much lower computational complexity than 
those of betweenness and closeness centralities. 
Simulations results based on the real world mobility 
traces and synthetic mobility traces demonstrated that our 
metric which performed very close to closeness centrality 
can well identify influential nodes for message 
forwarding in opportunistic networks. 
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