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Abstract

Background: Dilated cardiomyopathy (DCM) is a non-ischemic heart disease that poses a substantial global health 
burden, but its underlying molecular mechanisms remain poorly understood.
Methods: Weighted gene co-expression network analysis, differential expression analysis of genes, enriched analysis 
and LASSO model construction were performed in R software. miRWalk 2.0 and StarBase v2.0 were used to predict 
the target miRNAs and circRNAs of hub genes, respectively.
Results: Four hub genes (COL3A1, COL1A2, LUM and THBS4) were identified, which were significantly enriched 
in fibrosis pathways, including extracellular matrix, biological process, and the TGF beta signaling and focal adhesion 
pathways. The LASSO model accurately predicted the occurrence of DCM. Additionally, three miRNAs (hsa-let-7b-
5p, hsa-let-7c-5p and hsa-miR-29b-3p) and 30 circRNAs (including GIT2_hsa_circRNA10114, ANKRD52_hsa_cir-
cRNA9983 and JARID2_hsa_circRNA6618) were found to be associated with DCM.
Conclusion: Bioinformatics analysis identified hub genes and related molecules that may be highly associated with 
DCM. These findings provide insights into potential targets for improving diagnosis and pharmacological therapies to 
prevent DCM progression.
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Introduction

Dilated cardiomyopathy (DCM) is a non-ischemic 
heart disease characterized by unexplained dilata-
tion and systolic dysfunction of the left ventricle 
[1]. DCM is the second most common cause of heart 

failure, with a prevalence of approximately 1:2500 
in the general population, and which has increased 
in recent years [2, 3]. Similarly, the prevalence of 
heart failure, a costly and severe condition, has also 
significantly increased [4]. Symptom-based thera-
pies, such as angiotensin converting enzyme inhibi-
tors/angiotensin receptor antagonists, aldosterone 
antagonists and β-blockers, are common treatments 
for symptomatic patients with DCM. For patients 
with end-stage heart failure with DCM, implanta-
tion of left ventricular assist devices and orthotopic 
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heart transplantation are options for improving 
patient prognosis [5].

Although many studies have explored the mech-
anism of DCM, its exact pathological mechanism 
remains unclear. DCM is known to have multi-
ple genetic or acquired causes. The most common 
acquired causes are inflammation, nutritive-toxic 
influences and metabolic disorders [6]. However, 
approximately 35% of patients with DCM have 
a positive family history, thus indicating that 
genetic mutations are important causes of DCM. 
Most affected genes associated with DCM encode 
cytoskeletal, sarcomere or nuclear envelope pro-
teins, such as LMNA, MYH7, TNNT2, TTN, RBM 
and SCN5A [1]. These mutated genes ultimately 
lead to abnormal structure and function of the heart 
muscle in patients with DCM. Additionally,  fibrosis 
and the renin-angiotensin-aldosterone system play 
important roles in the pathogenesis of DCM [7]. 
Cardiac fibrosis can increase cardiac rigidity, con-
tractile impairment and the occurrence of dias-
tolic dysfunction and malignant arrhythmias [8, 
9]. However, the exact pathological mechanism 
of DCM remains unclear. Given the consistently 
high morbidity and mortality of DCM, more stud-
ies are necessary to investigate the molecular basis 
of DCM development, discover new biomarkers for 
diagnosis and identify novel molecular targets for 
treatment.

In recent years, bioinformatics analyses using 
microarray and high-throughput sequencing 
technologies have been widely used to explore 

disease-associated genes, biological processes and 
biomarkers for diagnosis and prognosis. Previous 
studies have investigated hub genes and long non-
coding RNAs in patients with DCM and heart failure 
with bioinformatics methods; however, these stud-
ies are limited by small sample sizes [10–12]. The 
present study used high-throughput sequencing and 
microarray profiles with a larger sample size than 
those in prior studies to identify target genes in DCM 
patients with heart failure. Additionally, enrichment 
analysis, construction of a logistic regression model, 
and prediction of  miRNA-circular RNA (circRNA) 
and small molecular compounds were performed 
to explore the pathogenesis of DCM. The current 
study provides a comprehensive understanding of 
the genetic etiology of DCM, as well as valuable 
information for the clinical diagnosis and treatment 
of the disease.

Results

Construction of a Weighted Gene  
Co-expression Network

The workflow of the analysis is shown in Figure 1. 
To investigate genes strongly associated with 
DCM with heart failure, we constructed gene co-
expression networks with the GSE141910 and 
GSE5406 datasets in R. A soft power β  =  3 was 
selected in GSE141910 (Figure 2A) and β  =  11 
chosen in GSE5406 (Figure 3A), to construct a 
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Figure 1 Study Design and Workflow of this Study.
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scale-free weighted gene co-expression network. 
A total of 11 co-expression modules in GSE141910 
(Figure 2B) and 12 co-expression modules in 
GSE5406 (Figure 3B) were identified in the pre-
sent analysis.

Identification of Co-expression Modules 
and Functional Annotations

To investigate the association between clinical 
traits and co-expression modules, we generated 
heatmaps in the present analysis. The black mod-
ule was found to be most positively correlated with 
DCM (gene number  =  1466, r  =  0.89, P  =  6e-80), 
whereas the blue module was most negatively cor-
related with DCM (gene number  =  1476, r  =  0.67, 
P  =  3e-31), in GSE141910 (Figure 2C). The scat-
terplots of gene significance (GS) and module 
membership (MM) were calculated for both the 
black module (R  =  0.9, P  <  1e-200) and blue 
module (R  =  0.7, P  <  1e-200) (Figure 2D), and 

suggested a strong correlation between the genes 
in these two modules and DCM. Gene Ontology 
(GO) analysis revealed that genes in the black 
module were enriched mainly in extracellular 
matrix-associated biological process, such as extra-
cellular matrix organization, extracellular structure 
organization and collagen-containing extracellular 
matrix (Supplementary Figure S1A). In contrast, 
genes in the blue module were enriched primarily 
in carboxylic acid transport, cardiac muscle con-
traction and ion channel complex (Supplementary 
Figure S1C). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis indicated that genes in 
the black module were enriched mainly in ECM 
receptor interaction and the renin angiotensin sys-
tem (Supplementary Figure S1B), whereas genes 
in the blue module were enriched mainly in the 
TNF signaling pathway and NF kappa B signaling 
pathway (Supplementary Figure S1D).

In the analysis of GSE5406, the salmon module 
displayed the highest positive correlation with DCM 
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Figure 2 Identification of Gene Co-expression Networks by WGCNA in the GSE141910 Dataset.
(A) Effects of power values on the scale independence and mean connectivity of gene co-expression modules of DCM. 
(B) Cluster dendrogram of gene co-expression modules, with 11 different modules indicated in different colors. (C) Correlation 
heat map of gene modules and clinical traits, with the corresponding correlation and P-value displayed in each cell. (D) Gene 
significance for DCM in the black and blue modules.
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(gene number  =  116, r  =  0.6, P  =  3e-10), whereas 
the tan module exhibited the most negative cor-
relation with DCM (gene number  =  116, r  =  0.65, 
P  =  2e-12) (Figure 3C). Scatterplots of GS and MM 
were calculated in the salmon module (R  =  0.54, 
P  <  4e-10) and tan module (R  =  0.5, P  =  1.1e-08) 
(Figure 3D). Additionally, the GO analysis revealed 
that genes in the salmon module were enriched in 
biological processes associated with the extracel-
lular matrix (Supplementary Figure S2A), whereas 
genes in the tan module were enriched in detoxifi-
cation of copper ion, contractile actin filament bun-
dle and G protein coupled peptide receptor activity 
(Supplementary Figure S2C). Moreover, KEGG 
analysis indicated that genes in the salmon mod-
ule were enriched in focal adhesion, ECM recep-
tor interaction and protein digestion and absorption 
(Supplementary Figure S2B), whereas genes in the 
tan module were enriched in mineral absorption 
and the FoxO signaling pathway (Supplementary 
Figure S2D).

Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was per-
formed on the basis of the GO and KEGG analy-
ses for all expressed genes in the GSE141910 and 
GSE5406 datasets. The results for GSE141910 indi-
cated upregulation of molecular carrier activity and 
the transforming growth factor (TGF) beta signal-
ing pathway, and downregulation of mitochondrial 
RNA processing, glycolysis and gluconeogenesis 
in DCM (Figure 4A, B). The results for GSE5406 
indicated upregulation of calcium activated cation 
channel activity and beta alanine metabolism, and 
downregulation of regulation of telomerase activ-
ity and the MAPK signaling pathway in DCM 
(Figure 4C, D).

Identification of Differential Expression of 
Genes in DCM

Differentially expressed genes (DEGs) between 
patients with DCM and healthy donors were 
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Figure 3 Identification of Gene Co-expression Networks by WGCNA in the GSE5406 Dataset.
(A) Effects of power values on the scale independence and mean connectivity of gene co-expression modules of DCM. 
(B) Cluster dendrogram of gene co-expression modules, with 12 different modules indicated in different colors. (C) Correlation 
heat map of gene modules and clinical traits, with the corresponding correlation and P-value displayed in each cell. (D) Gene 
significance for DCM in the salmon and tan modules.



Y. Li et al., Identifying Key Genes and Related Molecules in Dilated Cardiomyopathy 5

screened with the limma R package, with  cut-off 
criteria of |log fold change| > 0.6 and adj. P  <  0.05. A 
total of 2073 DEGs were identified in GSE141910 
(Figure 5A), and 151 DEGs were identified in 
GSE5406 (Figure 5B). Subsequently, 26 overlap-
ping genes among the DEGs and positively cor-
related modules in both datasets were obtained 
(Figure 5C), along with four overlapping genes 
among the DEGs and negatively correlated mod-
ules in both datasets (Figure 5D).

Construction of the Protein–Protein 
Interaction (PPI) Network and Identification 
of Hub Genes

The PPI network, constructed with the STRING 
database with the 30 overlapping genes, con-
sisted of 20 nodes and 48 edges (Supplementary 
Figure S3). The hub genes were identified with the 
CytoHubba plugin in Cytoscape. On the basis of the 
maximal clique centrality (MCC) sores, the top ten 

highest-scoring genes were COL15A1, OGN, ASPN, 
COL1A2, COL3A1, LUM, THBS4, FMOD, DPT 
and ISLR (Figure 5E). Subsequently, the Genecards 
database and comparative toxicogenomics database 
(CTD) were used to further screen the hub genes. 
From these databases, five overlapping genes were 
obtained: COL1A2, COL3A1, LUM, THBS4 and 
ASPN (Figure 5F). However, owing to the low score 
of ASPN in both databases, COL1A2, COL3A1, 
LUM and THBS4 were selected for further analysis.

Validation of Expression of Hub Genes

In the GSE141910 (Supplementary Figure S4A–D)  
and GSE5406 datasets (Supplementary Figure S4E–H),  
COL1A2, COL3A1, LUM and THBS4 showed sig-
nificant upregulation in patients with DCM (all 
P  <  0.001). These four hub genes also had elevated 
expression in patients with DCM in another expres-
sion profile dataset, GSE116250 (Supplementary 
Figure S4I–L).
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Identification of Enriched Biological 
Processes and Pathways for Hub Genes

GSEA revealed that four genes (COL1A2, COL3A1, 
LUM and THBS4) were significantly enriched in 
the ECM receptor interaction pathway, TGF beta 
signaling pathway, extracellular matrix and colla-
gen biological process in GSE141910 (P  <  0.05) 
(Figure 6, Supplementary Figure S5). GSEA of the 
same genes in GSE5406 showed similar results, 
with significant enrichment in extracellular matrix 

biological process, and the TGF beta signaling 
pathway and focal adhesion pathway (P  <  0.05) 
(Figure 7, Supplementary Figure S6).

Least Absolute Shrinkage and Selection 
Operator (LASSO) Model Values are a 
Potential Predictive Marker for DCM

A LASSO model was constructed with the expres-
sion profiles of four genes—COL1A2, COL3A1, 
LUM and THBS4—from the GSE141910 

75

A B

C D

E F

50

25

0 0

5

10

15

20

–4 –2 0
logFC

GSE141910_diff

GSE5406_diff

GSE141910_diffGSE5406_salmon module GSE5406_tan module

The interaction of crucial genes and DCM

OGN Score in Genecards
Score in CTD

ISLR

FMOD

DPT

COL15A1

ASPN

THBS4

LUM

COL1A2

COL3A1

0 10 20 30
Score

40 50 60

GSE141910_black module GSE141910_blue moduleGSE5406_diff

–l
og

10
 (

ad
j.P

.V
al

)

–l
og

10
 (

ad
j.P

.V
al

)

2 –2 –1 0
logFC

1 2

Significant

Down
Not
Up

Significant

Down
Not
Up

Figure 5 Identification of Differentially Expressed Genes (DEGs) and Hub Genes.
(A) Volcano plot of DEGs in GSE141910. (B) Volcano plot of DEGs in GSE5406. (C) Venn diagram of genes among DEG 
lists and positively correlated co-expression modules, with a total of 26 overlapping genes in the intersection of DEG lists and 
two co-expression modules. (D) Venn diagram of genes among DEG lists and negatively correlated co-expression modules, 
with a total of four overlapping genes in the intersection of DEG lists and two co-expression modules. (E) Identification of hub 
genes from the PPI network by using the maximal clique centrality (MCC) algorithm. Red represents higher MCC scores, and 
yellow represents lower MCC scores. (F) Bar graph of genes among the top ten hub genes with higher MCC scores and two 
online databases (Genecards and CTD). The x axis represents the score obtained by the hub genes in the databases (relevance 
score in Genecards and inference score in CTD), and the y axis represents the gene symbols.



Y. Li et al., Identifying Key Genes and Related Molecules in Dilated Cardiomyopathy 7

dataset (Figure 8A). All four genes showed non-
zero regression coefficients, and the value of 
lambda.min was found to be 0.04013996. The 

model index was generated with the follow-
ing formula: index  =   −54.4056564479581 + 
COL3A1  ×  (−3.35510157525245) + COL1A2  ×   
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(A–D) Single-gene enrichment analysis of biological process.



Y. Li et al., Identifying Key Genes and Related Molecules in Dilated Cardiomyopathy8

2.99369800089778 + LUM  ×  2.73749080158362 +  
THBS4  ×  1.16297453349407. The area under the 
receiver operating characteristic curve (AUC) of 
the training set was 0.978, and that of the test set 
was 0.992 (Figure 8B), thus suggesting that val-
ues obtained from the model may be used as a bio-
marker for diagnosing DCM. The LASSO model 
was also validated in two independent datasets: 
validation set 1 (GSE5406) and validation set 2 
(GSE116250). Both datasets showed high AUC 
values (GSE5406: AUC  =  0.977; GSE116250: 
AUC  =  0.933, Figure 8C). Moreover, the model 
exhibited high sensitivity, specificity, positive pre-
dictive value, negative predictive value, and accu-
racy values (Supplementary Table S1), thereby 
indicating its potential for accurately distinguish-
ing patients with DCM.

Additionally, the calibration plot showed that this 
model was statistically indistinguishable from the 
ideal model (Supplementary Figure S7A). Decision 
curve analysis (DCA) revealed that this gene-based 
model provided more benefit than both the treating-
none curve and treating-all curve at any threshold 
probability, thus suggesting the efficacy of this 
model (Supplementary Figure S7B). Finally, a vis-
ual nomogram was constructed to help clinicians 
use this model (Supplementary Figure S8).

miRNA and circRNA Prediction

The target miRNAs of four hub genes were iden-
tified with miRWalk 2.0. A total of 15 miRNAs 
were detected, and three miRNAs (hsa-let-7b-5p, 
hsa-let-7c-5p and hsa-miR-29b-3p) were found 
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to target both COL3A1 and COL1A2 (Figure 8D). 
Corresponding circRNAs of the three overlapping 
miRNAs were predicted with StarBase 2.0, and 30 
circRNAs targeting the three key miRNAs were 
identified (Figure 8E). The complete list of 30 cir-
cRNAs is provided in Supplementary Figure S9.

Drug Prediction

COL1A2, COL3A1, LUM and THBS4 were uploaded 
into DGIdb to identify potential drugs. A total of 
three drugs (ocriplasmin, collagenase  clostridum 
histolyticum and vasopressin) were identified after 
the analysis (Supplementary Table S2).

Discussion

Through bioinformatic analysis, the present study 
identified four candidate genes (COL3A1, COL1A2, 
LUM and THBS4) associated with DCM. Enrichment 
analysis indicated that these genes were all enriched 
in extracellular matrix, and the TGF beta signaling, 
focal adhesion, and collagen related pathways. A 
LASSO model constructed with expression profiles 
of these four genes indicated that they may serve as 
biomarkers for DCM. The miRNA-mRNA network 
analysis revealed that hsa-let-7b-5p, hsa-let-7c-5p 
and hsa-miR-29b-3p may play crucial roles in the 
pathogenesis of DCM. The circRNA prediction 
suggested that 30 potential circRNAs, including 
GIT2_hsa_circRNA10114, ANKRD52_hsa_cir-
cRNA9983 and JARID2_hsa_circRNA6618, may 
be involved in DCM. Additionally, three potential 
small molecule compounds were identified with the 
DGIdb database in this study.

DCM is one of the most common causes of heart 
failure in the general population, yet its molecular 
basis and pathological mechanism remain poorly 
understood. However, advances in bioinformatics 
have provided researchers with an optimal approach 
to explore disease-associated genes and poten-
tial medication targets, on the basis of extensive 
genetic data [13]. Although several studies have 
investigated specific disease-associated molecular 
targets of DCM through bioinformatics in recent 
years, these studies had small sample sizes, and 
their bioinformatic analyses were not comprehen-
sive and rigorous. In the present study, the datasets 

with large sample sizes were used for the analysis 
(a total of 252 patients with DCM and 182 healthy 
donors were included), and differential expression 
analysis and weighted gene co-expression network 
analysis (WGCNA) were applied to identify the 
hub genes of DCM. These genes were validated in 
another dataset with a large sample size (37 patients 
with DCM and 14 healthy donors). Clinically, the 
LASSO model and visual nomogram constructed 
in this study may support prediction of DCM, and 
possibly aid in its early detection and treatment. 
Moreover, the prediction of related miRNAs and 
circRNAs may facilitate the discovery of novel 
DCM targets for future research. Therefore, the 
present bioinformatic analysis reports a thorough 
analysis of DCM, providing crucial information for 
further understanding the disease’s molecular basis 
and pathological mechanism.

Differential expression and WGCNA analyses 
were used to identify overlapping genes between 
the GSE141910 and GSE5406 datasets, thus 
resulting in a total of 30 genes, including ASPN, 
PENK, LTBP2, COL1A2, COL3A1, COL15A1, 
LUM, THBS4, MYOT, SLC19A2, SERPINE1 and 
SERPINE2. These findings were consistent with 
those from other studies of DCM. For instance, in 
Zhao et al. [11], the GSE3585 and GSE42955 data-
sets were subjected to differential expression anal-
ysis, which led to the identification of 89 DEGs, 
including COL1A2, THBS2, THBS4 and CTGF. 
In another study by Zhang et al. [14], ASPN was 
identified as a potential biomarker for patients with 
DCM with heart failure. Furthermore, LTBP2 inhi-
bition has been suggested to decrease myocardial 
oxidative stress injury, myocardial fibrosis and 
myocardial remodeling in DCM model rats through 
the NF-κB signaling pathway [15].

GSEA of whole expression profiles of GSE141910 
and GSE5406 indicated that several pathways, 
including the TGF beta signaling pathway, mito-
chondrial RNA processing, calcium activated 
cation channel activity and MAPK signaling path-
way, may play critical roles in the pathogenesis of 
DCM. TGF β signaling, the primary contributor to 
fibrosis development, has also been reported to be 
involved in the progression of DCM and to be acti-
vated by angiotensin II in cardiac remodeling [16]. 
Inhibition of TGF beta may have therapeutic effects 
in various fibrotic heart conditions, including DCM. 
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Calcium channel dysfunction has also been asso-
ciated with DCM. A previous study has indicated 
that the expression of CACNA1C is downregulated 
in DCM cardiomyocytes, and the L-type calcium 
channel currents are diminished [17]. In another 
study, Orai channel deficient mice have been found 
to develop rapid dilated cardiomyopathy with the 
loss of channel function [18], thereby indicating that  
Orai channels, which are an essential part of  
cellular calcium signaling, have major roles in DCM 
pathogenesis. In agreement with the GSEA results, 
GO and KEGG analyses of WGCNA key modules 
also revealed the critical role of TGF beta signaling 
and fibrosis in patients with DCM, as well as the 
dysfunction of cardiac muscle contraction and ion 
channels.

Four hub genes, COL1A2, COL3A1, LUM and 
THBS4, were identified through PPI network anal-
ysis and related online databases. These genes 
were associated with fibrosis and myocardium 
remodeling, thus highlighting the major role of  
cardiac fibrosis in the progression of DCM. Cardiac 
fibrosis can impair the contractile function of the  
myocardium, thereby leading to poor prognosis 
in patients with DCM. In a study by Verdonschot 
et al. [19], COL1A2 and COL3A1, along with 
COL1A1, COL5A1 and TGFβ1, had significantly 
higher expression in patients with DCM who did 
not respond to cardiac resynchronization  therapy 
(CRT) than DCM patients who responded to 
CRT. Furthermore, higher expression of COL1A1, 
COL3A1 and matrix  metalloproteinase-9 (MMP9) 
was observed in a DCM mouse model than in con-
trol mice [20]. Recent studies have indicated that 
LUM and THBS4 are associated with heart failure  
[21, 22]. In addition, another study has indicated 
that Thbs4(-/-) mice exhibit higher heart weight 
because of increased extracellular matrix deposi-
tion, thus leading to impaired channel function and 
decreased vessel density [23]. However, limited 
studies have explored the relationship between DCM 
and these two genes (LUM and THBS4). The present 
analysis provides the first evidence that LUM and 
THBS4 may play crucial roles in the pathogenesis 
of DCM. Nonetheless, further validated experiments 
are required to confirm these findings.

The single-gene GSEA of the four hub genes 
revealed enrichment in biological processes and path-
ways associated with fibrosis, including extracellular 

matrix, collagen binding, the TGF beta signaling 
pathway, focal adhesion and smooth muscle contrac-
tion. Furthermore, the expression levels of these four 
genes in GSE116250 were found to be significantly 
higher in patients with DCM than controls.

A LASSO model was generated by using the 
expression profiles of COL1A2, COL3A1, LUM 
and THBS4. Receiver operating characteristic 
(ROC) curve analysis indicated that the model had 
a high AUC value in both the training and test sets, 
thereby suggesting that these four genes may serve 
as potential biomarkers of DCM. A calibration 
plot was constructed, and DCA further validated  
the model’s effectiveness. Notably, the model  
displayed high specificity, negative predictive 
value, sensitivity and positive predictive value, thus 
indicating its strong ability to distinguish patients 
with DCM from healthy donors. Additionally, the 
model was validated in two independent datasets, 
GSE5406 and GSE116250, both of which showed 
high AUC values. These findings further supported 
that increased expression of COL1A2, COL3A1, 
LUM and THBS4 may contribute to the pathogen-
esis of DCM.

miRNAs are endogenous non-coding RNA 
molecules that target the 3‘UTR regions of genes, 
thereby regulating gene expression through sup-
pressing  target gene translation [24]. Recent studies 
have suggested important roles of miRNAs in the 
 progression of DCM. In ADAR2-/- mice, downregu-
lation of miR-29b, miR-405 and  miR-19 ais associ-
ated with cardiomyopathy and cardiac fibrosis [25]. 
To further explore the molecular basis of DCM, 
we performed miRNA prediction on COL1A2, 
COL3A1, LUM and THBS4.

Our analysis identified three overlapping miRNAs 
(hsa-let-7b-5p, hsa-let-7c-5p and hsa-miR-29b-3p) 
that may play important roles in DCM. These find-
ings were consistent with those from a study by 
Onrat et al. [26] indicating significantly higher let-
7b-5p and let-7c-5p in DCM than in ischemic cardi-
omyopathy. However, Wang et al. [27] have reported 
downregulation of the miR-29 (miR-29a, miR-29b 
and miR-29c) and miR-133 (miR-133a and miR-
133b) families in patients with DCM. Therefore, 
further experimental validation of the effect of hsa-
miR-29b-3p on DCM is needed. Recent studies 
have investigated circRNAs—miRNA sponges that 
inhibit miRNA function [28]—and their potential 
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role in cardiovascular diseases [29]. In myocardial 
infarction, upregulation of circRNA CDR1as has 
been found to increase cardiac infarct size [30]. 
Another study has indicated differential expres-
sion of circRNAs originating from the TTN gene in 
neonatal rat hearts compared with adult rat hearts, 
thereby suggesting a critical role of circRNAs in 
heart development [31]. In a study by Siede et al. 
[32], compared to control patients with non-failing 
hearts, patients with DCM showed a decrease in 
circDNAJ6C and an increase in circSLC8A1, circ 
CHD7 and circATXN10. However, the roles of cir-
cRNAs in DCM remain poorly understood. In the 
present study, the prediction of circRNAs based on 
the three overlapping miRNAs resulted in the iden-
tification of 30 circRNAs that may have high poten-
tial value as novel biomarkers for DCM.

Finally, three potential drugs, ocriplasmin, col-
lagenase, clostridum histolyticum and vasopressin, 
were identified on the basis of the four hub genes. 
Studies have shown that arginine vasopressin levels 
are elevated in dogs and patients with DCM [33, 
34]. Therefore, the therapeutic value of vasopres-
sin inhibitors in treating DCM may be helpful but 
requires further investigation. These three drugs 
could be validated through in vitro experiments to 
provide a reference for clinical practice.

Limitation

A common limitation of bioinformatic analysis 
is poor reproducibility, because of the variability 
of results generated with different methods and 
parameters. Therefore, this study used large sam-
ple sizes and multiple analysis methods to screen 
the hub genes and ensure validation. The results 
showed good overall reproducibility. However, 
because this study investigated the molecular basis 
for DCM through only bioinformatics, the findings 
require experimental validation.

Conclusion

In summary, this study used datasets with large 
sample sizes and multiple analysis methods to 
screen and validate the hub genes in DCM. The 
hub genes, including COL3A1, COL1A2, LUM and 
THBS4, were identified as potential biomarkers of 
DCM. Furthermore, the present analysis identified 

several hub gene-associated molecules, such as 
miRNAs (hsa-let-7b-5p, hsa-let-7c-5p and hsa-miR-
29b-3p) and circRNAs (GIT2_hsa_circRNA10114, 
ANKRD52_hsa_circRNA9983, JARID2_hsa_cir-
cRNA6618, etc.) that may contribute to the 
development of DCM. These findings may help 
improve diagnosis and the development of new 
treatment strategies for preventing the progres-
sion of DCM, and may serve as a foundation for 
further studies.

Materials and Methods

Data Processing

The high-throughput sequencing expression pro-
file GSE141910 dataset, based on the GPL16791 
Illumina HiSeq 2500 (Homo sapiens) platform, and 
the microarray expression profile GSE5406 dataset, 
based on the GPL96 [HG-U133A] Affymetrix Human 
Genome U133A Array platform, were downloaded 
from the Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/) [35] for further 
analysis. The GSE141910 dataset includes heart tis-
sue samples from 166 patients with DCM with heart 
failure and 166 healthy donors without heat failure. 
The GSE5406 dataset includes heart tissue samples 
from 86 patients with DCM with heart failure and 
16 healthy donors without heart failure. In addition, 
the validation expression profile GSE116250 data-
set, based on the GPL16791 Illumina HiSeq 2500 
(Homo sapiens) platform, includes heart tissue sam-
ples from 50 patients with DCM with heart failure 
and 14 healthy donors without heart failure. All 
data from the three expression files were displayed 
in fragments per kilobase of transcripts per million 
mapped reads and normalized by log2

 conversion 
or robust multi-array analysis. Probes without gene 
symbols were removed, and genes with more than 
one probe were averaged in R software.

Weighted Gene Co-expression Network 
Construction

The WGCNA package in R was used to process 
the data from GSE141910 and GSE5406 to con-
struct gene co-expression networks [36]. WGCNA 
can be used to identify candidate biomarkers and 
therapeutic targets by indicating modules with 

http://www.ncbi.nlm.nih.gov/geo/
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highly related genes among samples. Soft powers 
β  =  3 in GSE141910 and β  =  11 in GSE5406 were 
selected with the function pickSoftThreshold to 
build a scale-free network. The topological overlap 
matrix (TOM) and the corresponding dissimilar-
ity (1-TOM) were calculated from the adjacency 
matrix. Subsequently, the 1-TOM matrix was clus-
tered with hierarchical clustering to classify similar 
gene expression into different modules. The mod-
ule size was set to 50–10,000, merge cut height 
was set to 0.25, and verbose was set to 3. To further 
identify module-trait relationships and functional 
modules in the network, we calculated MM and GS 
values for all modules. MM represents the corre-
lation between gene expression values and module 
eigengenes [37], whereas GS represents the correla-
tion between genes and samples [38]. Modules with 
high correlation coefficients were selected for fur-
ther analyses.

Identification of Differentially Expressed 
Genes

The limma package in R was used to screen the 
DEGs between patients with DCM with heart fail-
ure and healthy donors [39]. The criteria for differ-
ential analysis were an adjusted P value less than 
0.05 and |log

2
-fold change |  greater than 0.6 in both 

GSE141910 and GSE5406. The adjusted P-value 
was calculated with the Benjamini and Hochberg 
false discovery rate (<0.05). Subsequently, the 
overlapping genes between DEGs and co-expressed 
genes from the most positively and negatively cor-
related modules were visualized with the R package 
VennDiagram.

Enrichment Analysis

GSEA is a powerful analytical method that allows 
for sequencing of genes on the basis of differential 
expression between two groups. It can be used to 
investigate whether preset gene sets are enriched 
at the top or bottom of the sequencing table [40]. 
The GSEA software was used to explore differential 
biological functions and pathways between patients 
with DCM and healthy donors. The gene set c5.go.
v7.4.symbols.gmt [Gene ontology] and c2.cp.kegg.
v7.4.symbols.gmt [Curated] were downloaded 

for analysis. P  <  0.05 was considered statistically 
significant.

The clusterProfiler package in R was used to 
conduct GO analysis and KEGG pathway enrich-
ment analysis [41]. An adjusted P value <0.05 was 
selected as the criterion for analysis. GO annotation 
included biological process, cellular component 
and molecular function.

PPI Network Analysis

To predict the PPI network, the STRING database 
(version 11.0, https://string-db.org/) was used [42]. 
Genes with a score of 0.4 or higher were chosen 
for PPI network construction. Subsequently, the 
PPI network was visualized and analyzed with 
Cytoscape software [43].

Hub Gene Screening and Validation

CytoHubba, a Cytoscape plugin, was used to cal-
culate the MCC of each node and screen the top 
ten hub genes in the PPI network [44]. The search 
term “dilated cardiomyopathy” was used to iden-
tify genes associated with DCM in the Genecards 
(https://www.genecards.org/) database and the 
CTD (http://ctdbase.org/) [45, 46]. Four overlap-
ping genes (COL3A1, COL1A2, LUM and THBS4) 
between hub genes and databases were further 
analyzed. The differential expression of these four 
genes in patients with DCM compared with healthy 
donors was investigated with Student’s t-test in the 
validation dataset GSE116250.

Construction and Validation of the LASSO 
Model

LASSO was used to select the best features for high-
dimensional data [47]. The expression profiles of the 
identified hub genes were extracted to construct the 
LASSO model with the glmnet R package to estimate 
the predictive value of hub genes for DCM. The genes 
were considered biomarkers for DCM when their 
regression coefficients were non-zero in the LASSO 
model. An index for the model was created with the 
following formula: index  =  ExpGene1  ×  Coef1 + 
ExpGene2  ×  Coef2 + ExpGene3  ×  Coef3 +…, where 
Exp represents the expression value of genes, and 
Coef represents the regression coefficient of genes. 

https://string-db.org/
https://www.genecards.org/
http://ctdbase.org/
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GSE141910 was randomly assigned to a training set 
(70%) and test set (30%). In addition, GSE5406 and 
GSE116250 were used as validation sets to evaluate 
the reliability of the model.

The ability of the LASSO model to identify DCM 
was assessed by calculation of the AUC with the 
pROC R package [48]. An AUC greater than 0.7 
indicates a well-constructed model. The calibration 
performance and DCA were conducted with the 
rms package and rmda package in R, respectively 
[49, 50].

miRNA and circRNA Prediction

The hub genes were analyzed with miRWalk 2.0 
(http://mirwalk.umm.uni-heidelberg.de/) to predict 
targeted miRNAs [51]. Five datasets (TargetScan, 
miRanda, miRDB, miRWalk and RNA22) were 
used for analysis with selection conditions set at 
P  <  0.05 and a minimum seed sequence length of 
a heptamer. The predicted miRNAs were visual-
ized with Cytoscape. Overlapping miRNAs were 
selected to predict upstream molecules of circRNAs 
with the StarBase v2.0 tool (http://starbase.sysu.
edu.cn/starbase2/index.php) [52], with a selection 
condition of the highest reliability (very high strin-
gency ≥ 5). The overlapping circRNAs were visual-
ized with the R package VennDiagram.

Drug Screening

The drug prediction database DGIdb (https://www.
dgidb.org) was used to obtain gene-drug interactions 
and potential drug candidates for the identified hub 
genes [53]. The hub genes were input into DGIdb to 
retrieve all possible gene-drug interactions.
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