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Abstract This article examines the extent to which existing network centrality measures

can be used (1) as filters to identify a set of papers to start reading within a journal and (2)

as article-level metrics to identify the relative importance of a paper within a journal. We

represent a dataset of published papers in the Public Library of Science (PLOS) via a co-

citation network and compute three established centrality metrics for each paper in the

network: closeness, betweenness, and eigenvector. Our results show that the network of

papers in a journal is scale-free and that eigenvector centrality (1) is an effective filter and

article-level metric and (2) correlates well with citation counts within a given journal.

However, closeness centrality is a poor filter because articles fit within a small range of

citations. We also show that betweenness centrality is a poor filter for journals with a

narrow focus and a good filter for multidisciplinary journals where communities of papers

can be identified.
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Introduction

Imagine researchers investigating a topic. With current scientometric knowledge,

researchers can identify key journals, key authors, and several related journal level metrics

that would allow them to assess the relative relevance of a journal on the topic of interest.

However, even if the researchers can narrow their search to a reduced set of journals, they

are left with the problem of filtering the thousands of articles in each journal to a
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meaningful initial set. The current practice for determining the importance of a paper is to

track the number of times that the paper is cited (Abt 2000; Sikorav 1991; Zhu et al. 2004).

However, citation counts are influenced by numerous variables and require years to

accumulate even in the most highly regarded journals (Garfield 2006; Neylon and Wu

2009; Stringer et al. 2008). In addition, the reliance on citation counts only, could cause the

researcher to overlook newly published papers as they have not yet had a chance to

accumulate citations. Another approach is to rely on journal publisher and read the rec-

ommended articles. However these recommendations usually center on new articles at the

exclusion of older ones. Ideally, researchers would have the ability to immediately identify

important papers in a given journal such that they are aware of the existing body of

knowledge that has accumulated in the journal over the years while being able to leverage

new contributions as quickly as they are published.

In this article we propose the adoption of established network centrality measures that

compute the importance of journals to determine the extent to which an individual paper is

important or key within a given journal. Historically, the number of citations that a paper

accrues serves as the currency through which we measure the importance of a paper and a

myriad of journal importance measures have been proposed. For the most part, three

measures related to network centrality serve as effective guidelines for: (1) authors making

choices about where to disseminate their research; and (2) libraries making purchasing

decisions (Gross and Gross 1927). These three network centrality measures are:

betweenness centrality, closeness centrality, and eigenvector centrality. Each of these

centrality metrics utilize the network of citations formed between publications to determine

(1) which journals are important (Barnett et al. 2011; Griffin et al. 2015), (2) which authors

are important across journals (Liu et al. 2005; Yan and Ding 2009), or (3) to identify

important sentences or keywords within documents (Beliga et al. 2015; Erkan and Radev

2004; Khan and Wood 2015). However, to our knowledge, the application of these metrics

to filter out and determine the importance of papers within a single journal has not been

explored. As a result, we apply these centrality metrics to the papers within PLOS in order

to determine which of these metrics can be used to effectively filter out important papers in

a journal. Specifically, we ask the following questions:

1. Are important papers the papers that allow researchers to transition from one group of

papers to another within a journal?

2. Are important papers the papers that a researcher is more likely to find when starting

from any randomly selected paper?

3. Are important papers the papers that a researcher can reach from other important

papers?

It is important to note that the types of papers enumerated in our research questions are

not mutually exclusive and a paper can be important in more than one aspect. We restrict

our analysis to creating networks for each paper within PLOS based on papers contained

within PLOS. In order to verify our results, we investigate the correlation between a

paper’s citation count and its centrality value. The assumption here is that citation count is

a good metric that indicates the historical value of a paper and therefore should correlate

well with our recommended article-level metric.

The balance of the paper is organized as follows: In the ‘‘State of the art in network

centrality metrics’’ section we conduct a literature review on network centrality metrics; In

the ‘‘What makes a paper key’’ we describe the betweenness, closeness, and eigenvector

centrality metrics in more detail and provide examples on how they identify the importance

of a paper; In the ‘‘Methodology’’ section, we present our methodology; In the ‘‘Finding
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key papers in PLOS’’ section, we apply our methodology to identify (1) key papers in

PLOS and (2) the most appropriate centrality metric for describing the keyness of a paper

within its journal; In the ‘‘Discussion’’ section, we present our findings and in the

‘‘Conclusions’’ section, we present conclusions and future research.

State of the art in network centrality metrics

Network centrality metrics identify the importance of publications within the scientific

community by examining networks of papers based on their co-citation networks (links

formed between papers based on their citations) or their co-author networks (links formed

between papers based on their authors) for social network analysis based on the flow of

information between publications (Leydesdorff 2007, 2011). Historically, point centrality

seeks the identification of the person within a network that is structurally more central to the

network than any other person in the network; however, a main difficult arises in determining

if the central position is structurally unique (Freeman 1979). Therefore, the central node (be it

a person or any other object within the network) represents the key position in the network.

Various metrics have been introduced for determining whether a node is key based on (1) the

node that is closest to all other papers (Freeman 1979), (2) the node positioned on the shortest

path between the greatest number of other nodes (Freeman 1977; Leydesdorff 2007), and (3)

the node that is key due to its connection to highly valued nodes (Bonacich 1987). These

metrics are known as closeness centrality, betweenness centrality, and eigenvector centrality,

respectively. They take into account the manner in which the citations: (1) accumulate over

time for an individual journal; and (2) form a relationship among different journals.

Betweenness centrality focuses on identifying nodes which are frequently found on the

shortest path between two other nodes (Freeman 1977); thus, betweenness centrality pro-

duces a relational value based on the local positions of the node with respect to the position

of the nodes that it sits between (Leydesdorff 2007). Nodes that sit on the path between two

other nodes serve to control the flow of information between the other nodes ranging from

complete control (when only one path exists between the two other nodes) to limited control

(when multiple paths exist between nodes) (Freeman 1979). Deleting nodes with high

Betweenness centrality values from a network serves to break the network into coherent

clusters (Leydesdorff 2007). These nodes also control the flow of knowledge between other

nodes (Li-chun et al. 2006). Leydesdorff (2011) shows the application of betweenness

centrality, among other metrics, to analyze the fields of nanotechnology and communica-

tions within a journal–journal citation network. Betweenness centrality computes the fre-

quency with which a given journal is cited to create the shortest path (i.e. a bridge) between

two other journals (Guns et al. 2011; Hanneman and Riddle 2005; Leydesdorff 2007).

Closeness centrality measures the ‘‘independence’’ of an individual paper with respect

to the other papers within the target body of knowledge (Freeman 1979, p. 224). A paper

that directly connects with many other papers has a high closeness centrality value while a

paper with many indirect connections has a lower value. Articles that reside on the outer

edges of a citation network are likely to have low closeness values since they require the

presence of other intermediary articles in order to reach other articles (Siler 2013). As such,

papers with high closeness centrality values extend their influence throughout the entire

network (Li-chun et al. 2006) and can be seen as a measure of how long it will take for

information to spread from a given node to the remainder of the network (Liu et al. 2015).

Closeness centrality computes the shortest path from one journal to a different journal

based on the citations of papers within each journal (Leydesdorff 2007).
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Eigenvector centrality provides a centrality value of a node (such as a journal article)

based on the summation of its links to other nodes (such as the other journal articles that it

cites) weighted by their centralities and the nodes’ links are not necessarily weighted

equally; therefore, nodes linked to higher value nodes receive a larger benefit than from

lower value nodes (Bonacich 1987). However, in the special case where all of the nodes are

weighted equally, the eigenvector centrality values may be identical to the betweenness or

closeness centrality values (Bonacich 2007). Within a social network, such as a community

of connected papers, the eigenvector centrality metric establishes the keyness of a paper

based on its connections to other papers with high eigenvector centrality values.

Eigenvector centrality computes the importance of a journal by determining how fre-

quently it is cited in other important journals (Bergstrom 2007; Bonacich 2007; West,

Bergstrom, and Bergstrom 2010). A benefit of this centrality metric is that it can be used

with valued or signed networks which use non-binary relationships between nodes

(Bonacich 2007). Eigenvector centrality has been applied to social networks for purposes

such as predicting academic positions for faculty members whose positions require pub-

lishing (Feeley et al. 2010) as well as to examine the benefits gained within citation

networks formed within different institutions on the basis that having knowledgeable

coauthors provides a greater benefit to a paper (Liu et al. 2015). Additionally, eigenvector

centrality has been applied to numerous other fields: Allesina and Pascual (2009) apply

eigenvector centrality to forecast the effects of species’ extinctions; Joyce et al. (2010)

examine the ability of eigenvector centrality to identify critical nodes within brain net-

works; Kane (2009) applies eigenvector centrality to examine the influence of editors on

the quality of articles within Wikipedia; and Lohmann et al. (2010) demonstrate that this

centrality metric is efficient for representing the brain’s neural architecture.

The betweenness, closeness, and eigenvector centrality metrics each enumerate a dis-

tinct role for interpreting the importance of a node within a given network. Journals with

high eigenvector centrality are frequently cited by other important journals and are con-

sidered important. Journals that frequently create shortest path bridges between different

journals have high betweenness centrality and are considered important. Journals with low

closeness centrality scores spread information to other journals quickly and are considered

important. These metrics have been applied at the journal–journal level to find key jour-

nals; at the journal–journal level to find key authors across journals; at the paper level to

find key words and sentences; and for analyzing various topic-specific bodies of knowledge

(such as brain networks) to find key papers or authors within the given domain. However,

there is a gap in the literature for applying these centrality metrics to determine key papers

within an individual journal. This is the gap that we seek to fill by applying these metrics to

find key papers within PLOS by examining the co-citation network formed within PLOS

for PLOS papers cited by other PLOS papers. The following section provides the algo-

rithms for each of these metrics and provides an example network configuration to better

illustrate the determination of key papers for each metric.

What makes a paper key

The word ‘‘key’’ is ambiguous when referring to an article as different criteria are appli-

cable, such as most downloaded, most cited, etc. Neylon and Wu (2009) discuss this issue

and the need for measures beyond citation count, download numbers, and comments. Our

work addresses this need through the adaption of network centrality measures to identify

1008 Scientometrics (2016) 107:1005–1020

123



different types of key papers within a journal. Here, we define our network representation

of the papers within a journal and each of the three centrality measures to quantify the

keyness of an individual paper within a journal: (1) betweenness centrality, (2) closeness

centrality, and (3) eigenvector centrality.

Our network representation of the papers within a journal is constructed as follows. A

given paper x in a journal Y is initially represented as unconnected. Then, for all papers yi
within Y that explicitly cite x, an edge is drawn from yi to x. Next, for all papers zi that

explicitly cite yi an edge is drawn from zi to x. This process continues until no more papers

in the journal can be linked to paper x and is repeated for each paper. This results in a

Journal Citation Network that allows for the application of metrics to determine the status

of the journal as a whole (Bollen et al. 2006) or the status, or keyness, of individual articles

within the journal. The construction of our network assumes that research interest in a

paper is conveyed via citation and that information flows from one paper to another along

the shortest citation path.

As such, our network representation of a journal is a set of papers, (V) connected via

edges (E). Given a network (V, E), Eq. 1 defines the betweenness centrality of a paper:

g vð Þ ¼
X

s 6¼t 6¼v

rs;t vð Þ

rst
ð1Þ

In Eq. 1, rst is the number of shortest paths from paper s to paper t and rs;t vð Þ is the
number of those paths that pass through paper v. A paper with high betweenness centrality

frequently transfers information between two different papers by serving as a bridge

between them. Such a paper is key because it acts as a ‘‘Glue’’ paper by connecting many

different papers in the publication.

Equation 2 formally defines the closeness centrality of a paper. Once again our network

is a set of papers (V) connected via edges (E).

g vð Þ ¼
X

u2N;u 6¼v

c u; vð Þ

N
ð2Þ

In Eq. 2, c u; vð Þ is the minimum number of papers and citations required to traverse the

network when moving from uð Þ to vð Þ and N is the number of papers in the network. Within

the network, papers with low closeness centrality transfer knowledge, on average, to other

papers along a very short path of connected edges (Kevin Bacon effect). As a result they

are considered key ‘‘Kevin Bacon’’ papers because the knowledge encapsulated in their

paper is disseminated efficiently in the network.

Formally, Eq. 3 defines the eigenvector centrality of a paper.

Ax ¼ kx; kxi ¼
Xn

j¼1

aijxj; i ¼ 1; . . .; n ð3Þ

In Eq. 3, x is the eigenvector centrality, A is the adjacency matrix of the network, k is

the largest eigenvalue of A, and n is the number of vertices. Given our network repre-

sentation, papers with high eigenvector centrality are the most connected to other highly

connected papers. Given the number of explicit and implicit citations these papers receive

from their other well-cited paper peers, they are considered key (Big Fish) papers in Fig. 1.

Eigenvector centrality also measures the keyness of a paper based on the overlap of the

papers that it cites within its own journal and papers that it cites within other journals
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(Bonacich 1972). Bonacich (1972) finds that overlaps with central groups provides a

greater benefit than overlaps with isolated groups. Figure 1 provides an example of key

papers within a network for each of the three centrality metrics.

Figure 1 displays the same network three times colored differently for each of the

centrality metrics. Figure 1a displays the key Glue paper for the network. Node N9 rep-

resents the key paper in this network based on betweenness Centrality since it lies on the

greatest number of shortest paths between other nodes within the network. Nodes N2, N3,

N5, N6, N7, and N8 all have betweenness values of 0 (dark blue) since they are not located

between any other nodes within the network. N1 has a slightly higher value and is shown in

light red since is falls on four shortest paths that each start at N8 and end at N5, N6, N7, and

N9. N4 contains a slightly redder color since it falls on five shortest paths that each start at

N3 and end at N2, N5, N6, N7, and N9. N9 has a value of 1 (dark red) and is found on the

shortest path between 13 nodes: starting at N1, N2, and N8 and ending at N5, N6, and N7;

and starting at N3 and N4 and ending at N6 and N7.

For the same network configuration, Fig. 1b displays the Kevin Bacon papers based on

the closeness centrality metric. N4 is now the key paper (dark red) with three direct links

(distance between nodes equals one) and two indirect links with distance between nodes

equal to two. N9 has the second highest value (medium red) with three direct links and zero

indirect links. N3 is in third (light red) with one direct link, three indirect links with

distance between nodes equal to two, and two indirect links with distance between nodes

equals three. N1 and N2 are both light blue with one direct link and three indirect links

each. N8 is medium blue with one direct link, one indirect with a distance of two, and three

order links with a distance of three. N5, N6, and N7 are dark blue with no links to any other

nodes.

Figure 1c displays the Big Fish paper based on the eigenvector centrality metric, again

using the same network configuration as the previous two networks. Assuming that N3 and

N8 (dark blue) provide very low-scoring nodes, they provide very little benefit to N4 and N1

(medium blue), respectively. N2 (light blue) receives a slight benefit from N4 which it

conveys to N9 along with small benefits from N1 and N4. Therefore, due to the culmination

of benefits from its incoming nodes N9 is moderately important (medium red) within the

network. N9 provides its benefit to N6 and N7 (each shown in light red) as well as N5. N5 is

the key node based on its eigenvector centrality value due to the cumulative benefits from

N4 and N9. Therefore, each centrality metric identifies a different key node within the same

Fig. 1 Example of ‘‘key’’ papers based on the selected centrality metric for directed networks. A color

scheme represents the keyness of each paper in the network with the most ‘‘key’’ papers shown in dark red

(maximum value) and the least key papers shown in dark blue (minimum value). a N9 falls on the greatest

number of shortest paths between other nodes within the network and serves as the Glue paper. b N4

contains the greatest number of connections (direct plus indirect) to the other nodes and serves as the Kevin

Bacon paper. c N5 connects to higher valued papers and serves as the Big Fish paper. (Color figure online)
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network. There are network configurations that can lead to the same node being the key

paper for different metrics (Bonacich 2007). In the next section, we present how these

centrality metrics fit into our methodology for examining papers within PLOS.

Methodology

We employ a two-step approach for filtering and finding key papers within a publication.

We start by modeling the publication as a co-citation network consisting of the papers

within the publication as nodes and the relationships (the citations) between each of the

papers as links. To generate this network, we first retrieve the list of citations for each

paper within the journal. Next, we check each of the cited papers to identify if each cited

paper comes from the same publication. For each of these papers, we then check their

citations to see if they also originate from the same publication. We repeat this process

until there are no additional citations that originate from the same journal as the initial

paper. This procedure results in a directed network with the flow of information originating

from the cited paper into the paper doing the citing. Therefore, we form a dataset of papers

An citing papers BAx, where n is the number of papers within the publication and BAX is the

set of papers within the publication that Ai cites (where i is the current paper). Figure 2

displays the methodology for creating the network and for analyzing the papers within the

network.

Fig. 2 Two-step process for determining the ‘‘key’’ papers within a publication based on the three

centrality metrics. Step 1 involves creating the citation network for all of the papers within each publication.

Step 2 involves calculating the centrality values for each paper within the network in order to identify the

‘‘key’’ papers based on each centrality metric
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In Step 2, we load the set of papers for each publication into an open source graph and

network analysis software tool named Gephi. Gephi provides a means to explore networks

through ‘‘spatializing, filtering, navigating, manipulating and clustering’’ nodes under a

variety of visualizations (Bastian et al. 2009, p. 1). Among other types of network analysis

metrics, Gephi can calculate the eigenvector, betweenness, and closeness centrality metrics

of each node within a directed network. Therefore, we use Gephi to read in the dataset of

papers and to calculate these three centrality values for every paper within a publication.

We then sort the papers from high to low values in order to determine the key papers for

each of these centrality metrics. The best filter is one that returns the smallest non-zero

number of papers.

In order to determine which centrality metric can be used to identify key papers, we

analyze the papers within the network to determine the centrality metric that best correlates

with the citation counts for each paper. Our assumption is that since citation count is the

standard metric, any good metric should correlate well with the number of citations. The

approach is as follows. For each key paper obtained we identify (1) the total number of

times the paper has been cited in any journal, (2) the total number of times the paper was

cited within the journal it was published, and (3) the number of times the paper was cited

by other papers within its publishing journal in the first five years of its publication. We use

the Spearman correlation coefficient to measure the degree of association between each

metric and these three citation counts for each key paper in order to compare the rank of a

paper’s centrality to its respective citation count. Spearman correlation functions by sorting

the papers by high to low centrality value and assigning them a numerical value based on

their ranked position after being sorted. Then, the papers are sorted by high to low value

based on their citation counts and assigned a numerical value indicating their ranking after

being sorted. These two sets of ranking values are then checked for correlation. This

correlation approach normalizes the non-linearities between the two sets of data and also

accounts for ties within the data sets (i.e. multiple papers with 1 citation). In the following

section we apply this methodology to find key papers within PLOS.

Finding key papers in PLOS

We apply the eigenvector, betweenness, and closeness centrality metrics to identify key

papers within each of the discipline-specific PLOS periodicals: PLOS Biology, PLOS

Computational Biology, PLOS Genetics, PLOS Medicine, PLOS Pathogens, and PLOS

Neglected Tropical Diseases. To accomplish this task, we first create a model of PLOS as a

co-citation network that displays the papers as nodes and the links (via citations) as the

connections between the nodes. The inception dates of these journals vary from 2003 to

2005, but each journal has continued to be published through 2014. For each of these

journals, we construct a network representation of the papers using the approach described

in the ‘‘Methodology’’ section, resulting in six unique co-citation networks. The process of

creating each of these domain-specific networks starts by taking only the papers within the

current periodical and then linking each paper to each other paper that it cites within any of

the PLOS journals. This process repeats for each of the cited papers, and then for each of

the cited papers’ cited PLOS papers, and so on until there are no more cited papers that cite

a PLOS paper. Additionally, while we do not create a co-citation network for PLOS One

(since PLOS One is not domain specific) the cited papers that reside in PLOS One are

included in the co-citation network.
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As an example, to create a co-citation network for PLOS Biology, we start with a paper

within PLOS Biology PB1, extract its citation list, and identify that three of its cited papers

are contained within a PLOS journal: two from PLOS Biology; and one from PLOS One.

These three papers are added as nodes to the network and linked to PB1 using directed links

that point towards PB1. Then we take the citation lists for each of these three papers and

add them as nodes with links pointing towards the papers that they cite. This process

repeats until no more citations exist within PLOS. Then, we take the next paper within

PLOS Biology that is not already contained within the network and start this process again,

each time adding to the existing network for PLOS Biology. Using these six co-citation

networks, we compute the betweenness, closeness, and eigenvector centrality values of

each paper within the six PLOS periodicals. Table 1 provides the characteristics for each of

the created co-citation networks.

We observe that the networks for all journals are scale-free and the paper to citation

ratio (nodes to links in Table 1) follows a Power law. This means that that the citation

counts do not increase proportionally with the increasing number of papers. This finding is

consistent with Redner (1998) and Price (1965) about scientific papers in general and

indicates that PLOS papers that are highly cited tend to get more cited over time (Price

1965) which might overvalue some papers when relying solely on citation count. We

summarize our findings in Table 2 which shows the Glue, Kevin Bacon, and Big Fish

papers within PLOS for each of the six journals. As expected, there are many Kevin Bacon

papers for each of the periodicals; therefore, the total number of Kevin Bacon papers is

given in place of the paper titles.

Discussion

In terms of filtering, we observe that betweenness centrality (Glue Paper) is not an

effective filter especially in cases where there are no distinct communities of papers. In the

case of the journals that we analyzed, this filter returns zero papers. Closeness centrality

(Kevin Bacon Paper) is also not a good filter because it yields a large number of papers.

This finding confirms the recency bias discussed in Price (1965) and points to the lack of

existence of the ‘‘super classic’’ paper that was posited in Price (1965). In other words,

there is no foundational set of papers that are cited at a relatively higher frequency in the

journals that we analyzed. Eigenvector centrality (Big Fish Paper) yields a small set of

papers and therefore is the best filter that can be used as an initial starting point. A key

observation is that the papers we discover as Big Fish are relatively recent (2007-2014).

Table 1 Network configuration of each of the discipline-specific PLOS periodicals

PLOS Periodical Graph type Number of nodes Number of links

PLOS Biology Directed 3215 1926

PLOS Computational Biology Directed 4877 2191

PLOS Genetics Directed 4593 464

PLOS Medicine Directed 2541 894

PLOS Pathogens Directed 5818 2620

PLOS Neglected Tropical Diseases Directed 3150 226

The number of links shown in Column 4 are the number of links connecting any PLOS paper to another

PLOS paper within the dataset
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Table 2 Comparative view of key papers based on each centrality metric

Journal Glue

paper

Kevin Bacon paper Big Fish paper Eigen-

vector

value

PLOS Biology

(Established

2003)

None 452 papers originating from all

PLOS journals except for

PLOS Disease

Wong, O. K., Guthold, M., Erie, D.

A., & Gelles, J. (2008).

Interconvertible Lac repressor–

DNA loops revealed by single-

molecule experiments. PLOS

Biology, 6(9), e0060232

1.0

Knoops, K., Kikkert, M., van den

Worm, S. H., Zevenhoven-

Dobbe, J. C., van der Meer, Y.,

Koster, A. J., … & Snijder, E. J.

(2008). SARS-coronavirus

replication is supported by a

reticulovesicular network of

modified endoplasmic reticulum.

PLOS Biology, 6(9), e0060226

0.50

PLOS

Computational

Biology

(Established

2005)

None 1271 papers originating from

all PLOS journals

Rougier, N. P., Droettboom, M., &

Bourne, P. E. (2014). Ten simple

rules for better figures. PLOS

Computational Biology, 10(9),

e1003833

1.0

Staff, T. P. C. B. (2014).

Correction: The Self-Limiting

Dynamics of TGF-b Signaling In

Silico and In Vitro, with Negative

Feedback through PPM1A

Upregulation. PLOS

Computational Biology, 10(8),

e1003832

0.37

PLOS Disease

(Established

2007)

None 184 papers originate from all

PLOS journals except for

PLOS Biology

Simarro, P. P., Diarra, A., Postigo,

J. A. R., Franco, J. R., & Jannin,

J. G. (2011). The human African

trypanosomiasis control and

surveillance programme of the

World Health Organization

2000–2009: the way forward.

PLOS Neglected Tropical

Diseases, 5(2), e0001007

1.0

Teixeira, A. R., Gomes, C., Nitz,

N., Sousa, A. O., Alves, R. M.,

Guimaro, M. C., … & Hecht, M.

M. (2011). Trypanosoma cruzi in

the chicken model: Chagas-like

heart disease in the absence of

parasitism. PLoS Neglected

Tropical Diseases, 5(3),

e0001000

0.17
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This finding fits the metric since eigenvector centrality looks at the importance of a paper

based on the papers that it cites. The transitive property of eigenvector centrality dictates

that newer papers mentioning several important works gains more importance regardless of

length of time between the publications. We also observe that although the papers iden-

tified as key have a low number of citations, the number of downloads is very high

(average 1704 and median 1082 downloads). Table 3 provides additional information on

the Big Fish papers for each of the six domain specific PLOS journals.

Table 2 continued

Journal Glue

paper

Kevin Bacon paper Big Fish paper Eigen-

vector

value

PLOS Genetics

(Established

2005)

None 345 papers originate from all

PLOS journals except for

PLOS Disease and PLOS

Medicine

Wojciechowski, R., & Hysi, P. G.

(2013). Focusing in on the

complex genetics of myopia.

PLOS Genetics, 9(4), e1003442

1.0

Connallon, T., & Clark, A. G.

(2013). Sex-differential selection

and the evolution of X

inactivation strategies. PLOS

Genetics, 9(4), e1003440

0.27

PLOS Medicine

(Established

2004)

None 188 papers originate from all

PLOS journals

Gong, Y., Somwar, R., Politi, K.,

Balak, M., Chmielecki, J., Jiang,

X., & Pao, W. (2007). Induction

of BIM is essential for apoptosis

triggered by EGFR kinase

inhibitors in mutant EGFR-

dependent lung adenocarcinomas.

PLOS Medicine, 4(10), e0040294

1.0

Unger, A., & Riley, L. W. (2007).

Slum health: from understanding

to action. PLOS Medicine, 4(10),

e0040295

0.47

PLOS Pathogens

(Established

2005)

None 1331 papers originate from all

PLOS journals except for

PLOS Disease

Lamb, E. W., Walls, C. D., Pesce, J.

T., Riner, D. K., Maynard, S. K.,

Crow, E. T., … & Davies, S. J.

(2010). Blood fluke exploitation

of non-cognate CD4 ? T cell

help to facilitate parasite

development. PLOS Pathogens,

6(4), e1000892

1.0

Bánki, Z., Posch, W., Ejaz, A.,

Oberhauser, V., Willey, S.,

Gassner, C., … & Wilflingseder,

D. (2010). Complement as an

endogenous adjuvant for dendritic

cell-mediated induction of

retrovirus-specific CTLs. PLoS

Pathogens, 6(4), e1000891

0.39

Column 1 provides each journal within PLOS along with the year that the journal was established. Columns

2, 3, and 4 present the Glue, Kevin Bacon, and Big Fish papers within each journal, respectively. Column 3

also indicates which journals the Kevin Bacon papers originate from including PLOS One. Column 5

provides the Eigenvector values for the Big Fish papers. Due to the large number of Kevin Bacon papers

within each journal the total number of Kevin Bacon papers is provided in place of the titles
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Table 3 Analysis of key Big Fish papers for each PLOS journal

Paper title Journal Year

journal

established

Year

paper

published

Times

cited

within

PLOS

Total times

downloaded

from PLOS

Interconvertible Lac repressor–

DNA loops revealed by single-

molecule experiments

PLOS Biology 2003 2008 4 1082

SARS-coronavirus replication is

supported by a reticulovesicular

network of modified

endoplasmic reticulum

PLOS Biology 2003 2008 12 2158

Correction: The Self-Limiting

Dynamics of TGF-b Signaling In

Silico and In Vitro, with

Negative Feedback through

PPM1A Upregulation

PLOS

Computational

Biology

2005 2014 0 49

Ten simple rules for better figures PLOS

Computational

Biology

2005 2014 0 8672

Focusing in on the complex

genetics of myopia

PLOS Genetics 2005 2013 1 508

Sex-differential selection and the

evolution of X inactivation

strategies

PLOS Genetics 2005 2013 0 473

Slum health: from understanding

to action

PLOS Medicine 2004 2007 2 3009

Induction of BIM is essential for

apoptosis triggered by EGFR

kinase inhibitors in mutant

EGFR-dependent lung

adenocarcinomas

PLOS Medicine 2004 2007 5 2238

The human African

trypanosomiasis control and

surveillance programme of the

World Health Organization

2000–2009: the way forward

PLOS Neglected

Tropical

Diseases

2007 2011 42 1976

Trypanosoma cruzi in the chicken

model: Chagas-like heart disease

in the absence of parasitism

PLOS Neglected

Tropical

Diseases

2007 2011 3 866

Complement as an endogenous

adjuvant for dendritic cell-

mediated induction of retrovirus-

specific CTLs

PLOS Pathogens 2005 2012 2 527

Blood fluke exploitation of non-

cognate CD4 ? T cell help to

facilitate parasite development

PLOS Pathogens 2005 2010 3 345

Column 1 provides the title of the key paper. Column 2 displays the journal containing the key paper.

Column 3 shows the year that the journal was established. Column 4 displays the year that the key paper was

published. Column 5 shows the number of times that the paper is cited by other papers within PLOS as of

February 19, 2015. Column 6 shows the total number of times that the paper has been downloaded from the

PLOS website in either PDF or XML formats as of February 20, 2015
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In terms of using eigenvector centrality as a metric, papers with high eigenvector values

have an advantage over papers with low values since an increasing citation count for a

paper in a network causes the eigenvector value of all of its connected papers to also

increase. However, since it has been shown that papers that get cited tend to get cited more

(scale-free property), papers connected to those with high eigenvector centrality value will

get an indirect boost in relative importance. As a result, eigenvector centrality is a good

filter but we need to investigate more in order to determine if it also serves as a good metric

for determining which papers are key.

As stated in the ‘‘Finding key papers in PLOS’’ section, we explore the correlation

between centrality metrics and citation counts to determine which metrics serve as good

filters. We will focus only on eigenvector centrality since it is the best filter according to

our criteria. Specifically, we explore the extent to which eigenvector centrality explains:

(1) the number of times the paper was cited within PLOS in the first 5 years of its

publication; (2) the total number of times that the paper was cited within PLOS; and (3) the

total number of times the paper has been cited in any publication according to Google

Scholar. The numbers of citations for (1) and (2) will be equal for papers that are not yet

5 years old. We use the Spearman correlation coefficient to measure the degree of asso-

ciation between the eigenvector centrality of a paper and the three collected citation counts

to compare the rank of a paper’s centrality to the rank of its respective citation count. This

is preferable to comparing the value of a paper’s centrality measure to the value of its

respective citation counts because each of the three citation counts follows a logarithmic

distribution. Since we know that the citation count follows a power law, ranking each of

the variables normalizes these non-linearities between the data sets. Table 4 shows that for

all six discipline-specific PLOS journals there is a positive statistically significant Spear-

man correlation between the eigenvector centrality of a paper within our network and each

of the three citation counts. Furthermore, almost all the correlations are of moderate

strength ([0.50) and many related to the number of citations within the journal are strong

Table 4 Correlation of eigenvector centrality metrics for papers in each publication within PLOS

Publication Correlation between

eigenvector centrality of

publication and its

discipline-specific 5 Year

PLOS Cites

Correlation between

eigenvector centrality of

publication and its total

citations within PLOS at the

end of 2014

Correlation between

eigenvector centrality of

publication and its total

overall citations as of

2014

PLOS Biology 0.9206309 0.9883407 0.448269

PLOS

Computational

Biography

0.9537765 0.9801788 0.5124322

PLOS Disease 0.9667521 0.9740426 0.6196576

PLOS Genetics 0.9626788 0.9825487 0.5449447

PLOS Medicine 0.9492422 0.9624285 0.3817552

PLOS Pathogens 0.9613983 0.9788194 0.5681881

Column 1 displays the name of the PLOS journal. Column 2 displays the correlation between the eigen-

vector centrality value and the number of citations that the paper has accumulated by other papers within

PLOS after 5 years. Column 3 displays the correlation between the eigenvector centrality value and the

number of citations that the paper has accumulated by other papers within PLOS by the year 2014. Column 4

displays the correlation between the eigenvector centrality value and the total number of citations from any

source that the paper has accumulated by the end of year 2014 according to Google Scholar
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([0.80). The eigenvector centrality values correlate well within discipline key papers

within 5 years of publication and at least moderately predictive for all other citations. As a

result, we conclude that eigenvector centrality is the most appropriate centrality metric for

filtering papers and measuring the relative importance of a paper within a journal.

Eigenvector centrality identifies the papers frequently cited by other important papers

within other disciplines of the same journal for papers within a specific discipline. A high

Spearman ranking correlation between eigenvector centrality values and citation counts

indicates that papers with high eigenvector centrality values also have high citation counts

relative to the other papers within the journal. Recall that Spearman ranking correlation

accounts for the ranking of eigenvector values against the ranking of the citation counts for

the papers. This might indicate that people are more likely to cite (1) papers within the

outlet that they are trying to publish in because the authors are aware of the existing

research or they feel pressured to cite papers within this outlet as discussed in Wilhite and

Fong (2012) and (2) papers within their first 5 years of publication since they are on the

cutting edge of research as observed in Price (1965).

The strength of the Spearman Correlation coefficient decreases (despite remaining

statistically significant) when we examine the rank of the eigenvector values against the

rank of the total Google Scholar citation counts. This may occur due to the authors being

less aware of the papers, being less inclined to search for papers outside of the journal that

they are publishing in, or feeling less pressured to cite papers within the current outlet

thereby denoting a real non-spurious relationship between the two measures. The papers

with low eigenvector centrality values are less likely to be cited by researchers going

forward as these papers may not be at the forefront of the research within that discipline, as

evidenced by the high correlation between low eigenvector values and low citation counts.

However, these papers remain likely to be cited since the correlations remain strong. These

finding is also in line with those of Price (1965). In short, Eigenvalue is a good metric for

in-journal article ranking with the limitation that the value of a paper can be inflated as the

papers it relates grows in citation count.

Conclusions

In this paper, we examine the extent to which the metrics are useful for identifying

important papers within a journal and we identify 12 Big Fish papers within PLOS. We

show that the co-citation network within PLOS follows a power law similar to that of the

citation count of a paper over time. Consequently, closeness centrality is not very useful for

filtering the papers within a journal because it yields too many important papers and

betweenness centrality is not a useful metric when there are no communities of papers to

connect. Results show that eigenvector centrality is a good metric for identifying important

papers in a journal. Our results are critical in that eigenvector centrality is time-indepen-

dent and allows for the identification of key papers at the time of their publication. While a

newly published paper may be classified as a key paper with respect to eigenvector cen-

trality, the paper will not yet have had a chance to be read by the scientific community;

therefore, the eigenvector centrality metric serves as a starting hypothesis that the paper is

indeed a key paper. These Big Fish papers link with highly regarded papers and having

passed through a peer reviewed process may indeed serve as a key paper within the same

networks as the papers that they cite.
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We recommend that journals calculate and include the eigenvector centrality of each

paper within the publication to provide both researchers and students an idea of the relative

importance of the paper within its own publication or within a larger body of knowledge.

We also recommend that journals publish and update the top 10 or top 25 papers in

decreasing order of eigenvector centrality each time a new issue of the journal is published.

This top 10 or top 25 can constitute the initial set of papers that the journal recommends a

researcher use as a starting point for exploring the journal. The peer-review process

remains critical in preventing unworthy papers from being published even if they cite a

large number of key papers. Chan et al. (2015) note that the quality of the scientific

contribution of a work can be biased due to factors such as institutional affiliation and the

time of publication. Therefore, the eigenvector centrality metric identifies papers that are

reachable from other key papers, but it does not serve as an absolute metric on the quality

of identified Big Fish papers. Furthermore, in terms of proposal submission and promotion,

researchers can show the importance of new publications before they accumulate citations

by employing eigenvector centrality. Finally, each researcher can create a co-citation

network of their publication and measure the relative importance of their work based on the

eigenvector centrality rather than the total citation count. By doing so, researchers can

identify other important work that is related to their most important work and thus explore

fruitful lines of work and areas of collaboration with other researchers working in the same

domain.

Future work includes further exploring the connections between Big Fish papers and

their download counts over time. Of particular interest to eigenvector centrality is the

potential to explore the usefulness of a weighted-eigenvector metric that accounts for the

total download counts or frequency of downloads over time for each paper within the

network. Additionally, the centrality values of the papers obtained using citations within

the journals that they are published in can be compared against their centrality values using

citations from all sources to examine the effect on the determination of keyness for a paper

between these two sources.
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