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Abstract

Human associated microbial communities exert tremendous influence over human health and disease.
With modern metagenomic sequencing methods it is now possible to follow the relative abundance of
microbes in a community over time. These microbial communities exhibit rich ecological dynamics and
an important goal of microbial ecology is to infer the ecological interactions between species directly
from sequence data. Any algorithm for inferring ecological interactions must overcome three major ob-
stacles: 1) a correlation between the abundances of two species does not imply that those species are
interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes
it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or
mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interac-
tions due to a statistical problem called “errors-in-variables”. Here we introduce an approach, Learning
Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse
linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial
dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the
inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the
gut microbiomes of two individuals and found that the interaction networks varied significantly between
individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by
distinct “keystone species”, Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate
influence on the structure of the gut microbiome even though they are only found in moderate abundance.
Based on our results, we hypothesize that the abundances of certain keystone species may be responsible
for individuality in the human gut microbiome.

Author Summary

Numerous symbiotic microbial species live in the human body, making up what is called “the human
microbiome”. Recent experiments have demonstrated the importance of the human microbiome to health
and disease, but little is currently known about the structure and dynamics of these microbial populations.
Modern DNA sequencing techniques provide a window into the ecology of these communities, but many
obstacles stand in the way of making full use of these data for mapping out the interactions between
microbial species that organize these communities in space and time. In this work, we demonstrate
that it is possible to overcome each of these obstacles in order to find out who interacts with whom in
the human microbiome. Applying our algorithm to study the interactions between the species residing
in the guts of two individuals reveals that two “keystone” species have a disproportionate influence on
the structure of the gut microbiome even though they are only found in moderate abundance. Based
on our results, we hypothesize that the abundances of certain keystone species may be responsible for
individuality in the human gut microbiome.

Introduction

Metagenomic sequencing technologies have revolutionized the study of the human-associated microbial
consortia making up the human microbiome. Sequencing methods now allow researchers to estimate

ar
X

iv
:1

40
2.

05
11

v1
  [

q-
bi

o.
Q

M
] 

 3
 F

eb
 2

01
4



2

the relative abundance of the species in a community without having to culture individual species [1–3].
These studies have shown that microbial cells vastly outnumber human cells in the body, and that
symbiotic microbial communities are important contributors to human health [1]. For example, a recent
study by Ridaura et al [4] demonstrated that transplants of gut microbial consortia are sufficient to
induce obesity in previously lean mice or to promote weight loss in previously obese mice, suggesting
an intriguing hypothesis that the composition of the gut microbiome may also contribute to obesity in
humans. Many other studies have found significant links between the composition of human-associated
microbial consortia and diseases including cancer and austim spectrum disorder [4–10]. Despite the
recent revelations highlighting the importance of the microbiome to human health, relatively little is
known about the ecological structure and dynamics of these microbial communities.

A microbial community consists of a vast number of species, all of which must compete for space
and resources. In addition to competition, there are also many symbiotic interactions where certain
species benefit from the presence of other microbial species. For example, a small molecule that is
secreted by one species can be metabolized by another [11]. These species interactions provide a window
with which to view the ecology of a microbial community, and allow one to make predictions about the
effect of perturbations on a population [12]. For example, removing a species that engages in mutualistic
interactions may diminish the abundance of other species that depend on it for survival. Given their utility
for understanding the ecology of a community, there is tremendous interest in developing techniques to
infer interactions between species from metagenomic data [12–14].

There are two approaches to inferring dependencies between microbial species from metagenomic
studies: cross-sectional analysis, and timeseries analysis [12–14]. Cross-sectional studies pool samples of
the relative abundances of the microbial species in a particular environment (e.g. the gut) from multiple
individuals and utilize correlations in the relative abundances as proxies for effective interactions between
species. By contrast, timeseries analysis follows the relative abundances of the microbial species in a
particular environment, for a single individual, over time and utilizes dynamical modeling (e.g. ordinary
differential equations) to understand dependencies between species.

Any methods for making reliable inferrences about species interactions from metagenomic studies
must overcome three major obstacles. First, as shown below, a correlation between the abundances of
two species does not imply that those species are interacting. Second, metagenomic methods measure
the relative, not absolute, abundances of the microbial species in a community. This makes it difficult
to infer the parameters in timeseries models. Finally, errors due to experimental measurement errors
and/or mis-assignment of sequencing reads into operational taxonomic units (OTUs), bias inferences of
species interactions due to a statistical problem called “errors-in-variables” [15]. We will show that each
of these obstacles can be overcome using a new method we call LIMITS (Learning Interactions from
MIcrobial Time Series). LIMITS obtains a reliable estimate for the topology of the directed species
interaction network by employing sparse linear regression with bootstrap aggregation (“Bagging”) to
learn the species interactions in a discrete-time Lotka-Volterra (dLV) model of population dynamics from
a time series of relative species abundances [16,17].

Results

Correlation does not imply interaction

Many previous works use the correlation between the relative abundances of two microbial species in
an environment (e.g. the gut) as a proxy for how much the species interact. In particular, a high
degree of correlation between the abundances of two species is often taken as a proxy for a strong
mutualistic interaction, and large anti-correlations, as indicative of a strong competitive interactions.
Using correlations as a proxy for interactions suffers from several drawbacks. First, there are important
subtleties involved in calculating correlations between species from relative abundances, but previous



3

studies have presented algorithms (e.g. SparCC) to mitigate these problems [14]. More importantly,
the abundances of two species may be correlated even if those species do not directly interact. For
example, if species A directly interacts with species B, and species B directly interacts with species C,
the abundances of species A and C are likely to be correlated even though do not directly interact.
Finally, since correlation matrices are necessarily symmetric, all interactions learned using correlations
also be symmetric.

The problems with using correlations in species abundances as proxies for species interactions can be
illustrated with a simple numerical simulation. We used the dLV model (Eq. 2) to simulate timeseries of
the absolute abundances of 10 species for 1000 timesteps, starting from 100 different initial conditions,
for two arbitrary species interaction matrices. Figure 1 compares the Pearson correlation matrices calcu-
lated from the absolute species abundances obtained from the dLV simulations and the true interaction
matrices. It is clear from Fig. 1 that there is no obvious relationship between the correlations and the
species interactions. That is, correlations in species abundances are actually very poor proxies for species
interactions.

In general, the relationship between the interaction coefficients (cij) and the correlations in the species
abundances is described by a complicated non-linear function that is difficult to compute or utilize. This
can be seen by considering the linearized dynamics (Eq. 2) of lnxi(t) around their equilibrium values,
ln〈xi(t)〉. This stochastic process is a first-order autoregessive model described by

lnx(t+ 1) = ω + J lnx(t) + η(t), (1)

where ωi = −
∑

j cij〈xj〉, and Jij = δij+cij〈xj〉 is the Jacobian obtained by linearizing around the equilib-
rium species abundances. If V is the covariance matrix with elements Vij = 〈(lnxi(t)−〈lnxi(t)〉)(lnxj(t)−
〈lnxj(t)〉)〉 and Σ is the covariance matrix of the Gaussian noise η(t), then vec(V ) = (In2−J⊗J)−1vec(Σ),
where ⊗ is the Kronecker product and vec is the matrix vectorization operator [18]. Thus, the interaction
matrix is related to the covariance matrix by complex relation even in the linear regime of the dynamics.
For this reason, it is very difficult, if not impossible, to determine the interaction coefficients using only
knowledge of the correlations and equilibrium abundances.

Cross-sectional studies that pool data across individuals and utilize the correlations between the
abundances of different species as proxies for species dependencies are especially affected by this problem.
This suggests that time-series data is likely to be more suited for inferring ecological interactions than
cross-sectional data.

Timeseries inferrence with relative species abundances

Even though the species interaction coefficients cannot be inferred from the correlations in species abun-
dances, it is possible to reliably infer the interaction matrix using timeseries models. To do so, one
utilizes a discrete time Lotka-Volterra Model (dLV) that relates the abundance of species i at a time t+1
(xi(t + 1)) to the abundances of all the species in the ecosystem at a time t (~x = {x1(t), . . . , xN (t)}).
These interactions are encoded in the dLV through a set of interaction coefficients, cij , that describe the
influence species j has on the abundance of species i [17], and inferring these interaction coefficients is
the major goal of this work. The effect of species j on species i can be beneficial (cij > 0), competitive
(cij < 0), or the two species may not interact (cij = 0).

As shown in the Materials and Methods, given a time-series of the absolute abundances of the microbes
in an ecosystem, one can learn the interaction coefficients by performing a linear regression of lnxi(t +
1) − lnxi(t) against ~x(t) − 〈~x〉, where 〈x〉 is the vector of the equilibrium abundances. It is important
to note that each of these linear regressions can be performed independently for species i = 1, . . . , N . In
the following, we assume that the population dynamics are stable and that the equilibrium 〈x〉 (or 〈x̃〉)
can be estimated by taking the median species abundances over the time series.

Recall that most modern metagenomic techniques can only measure the relative abundances of mi-
crobes, not absolute abundances. This introduces additional complications into the problem of inferring
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species interactions using timeseries data. Although it is straight forward to infer species interactions
by applying linear regression to a timeseries of absolute abundances, it is not a priori clear that linear
regression still works when applied to a timeseries of the relative abundances. An important techni-
cal problem that arises when using relative abundances is that the design matrix for the regression is
singular because of the sum constraint on relative abundances of species (

∑
i x̃i(t) = 1). As a result,

there is no unique solution to the ordinary least squares problem applied to timeseries of relative species
abundances. Nevertheless, the design matrix can be made to be invertible if one, or more, of the species
are not included as variables in the regression.

This insight motivates the use of a forward stepwise regression for selecting the covariate species
that explain the changes in abundance of species i. In such a procedure, interactions and species are
added sequentially to the regression as long as they improve the predictive power of model (see Fig. 2a).
Since the design matrix now only contains a sub-set of all possible species, it is never singular and the
linear regression problem is well-defined. Furthermore, the goal of forward selection is to include only the
strongest, most important species interactions in the model. Therefore, the resulting interaction networks
are sparse and, hence, easily interpretable.

The procedure for forward stepwise regression is illustrated in Fig. 2a. We know that each species must
interact with itself, so cii is the only interaction coefficient allowed to be nonzero in the first iteration.
In each subsequent iteration, one additional interaction cij is included in the model by scanning over all
other species and choosing the one that produces the lowest error at predicting a test dataset. This is
repeated as long as the prediction error decreases by a pre-specifed percentage that controls the sparsity
of the model. A larger prediction error threshold results in more sparse solutions.

Forward stepwise regression is a greedy algorithm, which results in a well-known instability [16]. This
instability can be ‘cured’ using a method called bootstrap aggregation, or “Bagging” (Fig. 2b,c) [16].
To bag forward stepwise regression, the data are randomly partitioned into a training set used for the
regression and a test set used for evaluating the prediction error. The prediction error threshold is a
percentage that refers to how much the mean squared error evaluated on the test dataset must decrease
in order to include an additional variable in the regression. The random partitioning of the data into
training and test sets is repeated many times, each one resulting in a different estimate for the interaction
matrix. The classical approach to Bagging calls for averaging these different estimates, but this destroys
the sparsity of the solution. For this reason, we use the median of the estimates instead of averages. This
still greatly improves the stability of the inferred interaction matrix but preserves its sparsity. We call
our algorithm LIMITS (Learning Interactions from MIcrobial Time Series).

Figure 3 presents the results from applying LIMITS to infer the same interaction matrices discussed in
Figure 1. The data consist of either absolute or relative abundances from timeseries with 500 timesteps
and 10 different initial conditions. The sample sizes are quite large, but not as large as used for the
calculation of the correlations. The inferred parameters match the true interaction coefficients very
accurately – the smallest R2 between the inferred and true parameters is 0.82 – for both the symmetric
(Fig. 3a-b) and asymmetric (Fig. 3c-d) interaction matrices using either absolute or relative species
abundances.

To ensure that the exceptional performance of our sparse linear regression approach to inferring
species interactions was not a fluke due to a particular choice of interaction matrices, we calculated the
correlation between the true and inferred parameters for many randomly generated interaction matrices
(Fig. 4). Note that these simulations do not include any measurement errors (see next section for more
on this). The performance of the algorithm obviously depends on sample size, but LIMITS generally
perform admirably at inferring ecological interactions (see Figs. 4a-b for symmetric and asymmetric
matrices, respectively). Furthermore, Figs. 4c-d show that our results do not strongly depend on the
prediction error threshold over most reasonable choices of threshold (0-5%). These results demonstrate
that in the absence of measurement noise, LIMITS can successfully learn the interaction parameters from
both absolute and relative abundances.
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Inferring interactions in the presence of measurement errors

Up to this point, our analyses have ignored the impact of “measurement noise” on the inferred species
interactions. There are two important sources of measurement noise in metagenomic data. The first
source is experimental noise introduced by sequencing errors. The second, and perhaps larger source
of noise, is the mis-classification of sequencing reads into operational taxonomic units (OTUs). Most
metagenomic studies rely on the sequencing of 16S rRNA to estimate species composition and diversity
in a community. These 16S sequences are binned into groups, or OTUs, that contain sequences with a
predetermined degree of similarity. By comparing the sequences in an OTU to known sequences in an
annotated database, it is often possible to assign OTUs to particular species or strains. In general, this is
an extremely difficult bioinformatics problem [19] and is likely to be a significant source of measurement
errors. Thus, any algorithm for inferring species interactions must be robust to measurement errors.

At first glance, it is tempting to assume that measurement noise, which we assume is multiplicative,
simply adds to the stochastic (ln ηi(t)) term that acts on the dependent variable (lnxi(t+ 1)− lnxi(t))
and, therefore, should have little impact on the inferred interactions (see Methods). However, as we
discuss below, this is not the case since the xi(t) also act as the independent variables in the regression.
Standard regression techniques assume that the independent variables are known exactly, and violation
of this assumption results in biased parameter estimates even for asymptotically large sample sizes [15].

For example, in the simplest case of a 1-dimensional regression Y = α+βX the estimator β̂ is always less
than the real β, i.e. β̂ = COV(X,Y )/VAR(X) ≤ β with equality only if there is no measurement error
on X. The bias induced by using noisy indepedent variables in regression is known as the “errors-in-
variables” problem in the statistical literature [15]. Analysis of the errors-in-variables bias for multivariate
regression is more complicated than the 1-dimensional example; nevertheless, it can be stated quite
generally that the interaction parameters inferred in the presence of signficant measurement errors will
be incorrect. The most reliable method for mitigating the errors-in-variables bias is to measure additional
data on some “instrumental variables” that provide information on the true values of the relative species
abundances [15]. Unfortunately, in most cases we often do not have access to such additional data.

Although the errors-in-variables bias cannot be eliminated, the topology of the interaction network
can still be reliably inferred using our sparse linear regression approach even when the measurements of
the relative species abundances are very noisy. Knowledge of which interactions are beneficial (cij > 0),
competitive (cij < 0), or zero (cij = 0) defines the topology of the interaction network. In the following
simulations, we focus only on whether a given interaction is zero (cij = 0) or not (cij 6= 0) because
we found that errors in the signs of the interactions were rare. The accuracy of the interaction topolo-
gies inferred from noisy relative abundance data were assessed using simulations with randomly chosen
(asymmetric) interaction matrices. We computed the specificity – the fraction of species pairs correctly
identified as non-interacting – and the sensitivity – the fraction of species pairs correctly identified as
interacting – of the inferred topologies (Fig. 5) [20]. Figure 5a shows that LIMITS produced specificities
between 60% and 80% for different choices of the prediction error threshold, and that the performance
was relatively insenstive to multiplicative measurement noise up to, and even beyond, 10%. By contrast,
Fig. 5b shows that applying forward variable selection to the entire dataset, i.e. without Bagging, pro-
duced results that were very senstive to the choice of the prediction error threshold and even produced
specificities as low as 0%. The sensitivities for detecting interacting species with (Fig. 5c) or without
(Fig. 5d) Bagging are both quite good, ranging between 70% and 80% for measurement noise up to 10%.
These results demonstrate that both the forward stepwise regression and the median bootrap aggregation
are crucial components of the LIMITS algorithm. Moreover, LIMITS reliably infers the topology of the
species interaction network even when there are significant errors-in-variables.
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Keystone species in the human gut microbiome

Emboldened by the success of our algorithm on synthetic data, we applied LIMITS to infer the species
interactions in the gut microbiomes of two individuals. The data from Caporaso et al [3] were obtained
from the MGRAST database [21] in a pre-processed form; i.e. as relative species abundances instead of
raw sequencing data. These data consisted of approximately a half-year of daily sampled relative species
abundances for individual (a) and a full year of daily sampled relative species abundances for individual
(b). In general, we require at least n2 timepoints in order to infer the interactions from n species. The
number of available timepoints was O(100), so we considered only the 10 most abundant species from
individuals (a) and (b). Because the most abundant species were not entirely the same in individuals
(a) and (b), we studied 14 species obtained by taking the union of the 10 most abundant species from
individual (a) with the 10 most abundant species from individual (b). The 14 species are listed in Fig. 6.

The species interaction network of the gut microbiome of individual (a) (shown in Fig. 6a) is dominated
by the species Bacteroides fragilis even though it is found only in moderate abundances. Bacteroides
fragilis has 6 outgoing interactions in individual (a), in contrast to the other 13 species that have 0-3
outgoing interactions. The species interaction network of the gut microbiome of individual (b) (shown
in Fig. 6b) is also dominated by a single species, Bacteroides stercosis, which is also found only in
moderate abundaces. Bacteroides stercosis has 4 outgoing interactions in individual (b), in contrast to
the other 13 species that have 0-2 outgoing interactions. In addition, many of the interactions involving
Bacteroides fragilis and Bacteroides stercosis are beneficial interactions. Based on these results, we refer
to Bacteroides fragilis and Bacteroides stercosis as “keystone species” of the human gut microbiome
because these two species exert tremendous influence on the structure of the microbial communities, even
though they have lower median abundances than some other species.

Additionally, we observed that the species interaction topology of the gut microbiome of individual
(a) differs substaintially from the species interaction topology of the gut microbiome of individual (b),
as is clear from Fig. 6. In individual (a), Bacteroides fragilis is much more abundant than Bacteroides
stercosis and, in turn, it is Bacteroides fragilis that dominates the interaction network of individual
(a). Likewise, in individual (b), Bacteroides stercosis is much more abundant than Bacteroides fragilis
and, in turn, it is Bacteroides stercosis that dominates the interaction network of individual (b). This
observation motivates us to propose an intriguing hypothesis, that the abundances of certain keystone
species are responsible for individuality of the human gut microbiome. Of course, much more data, from
a larger population, will be required to confirm or reject this hypothesis.

Discussion

Metagenomic methods are providing an unprecedented window into the composition and structure of
micriobial communities. They are revolutionizing our knowledge of microbial ecology and highlight the
important roles played by the human microbiome in health and disease. Nevertheless, it is important to
carefully consider the tools used to analyze these data and to address their associated challenges. We
have highlighted three major obstacles that must be addressed by any study designed to use metagenomic
data to analyze species interactions: 1) a correlation between the abundances of two species does not
imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from
metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due
to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units
(OTUs), bias inferrences of species interactions due to a statistical problem called “errors-in-variables”.

To overcome these obstacles, we have introduced a novel algorithm, LIMITS, for inferring species
interaction coefficients that combines sparse linear regression with bootstrap aggregation (Bagging). Our
method provides reliable estimates for the topology of the species interaction network even when faced
with significant measurement noise. The interaction networks constructed using our approach are sparse,
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including only the strongest ecological interactions. Regularizing the inference of the interaction network
by favoring sparse solutions has the benefit that the results are easily interpretable, enabling the identi-
fication of keystone species with many important interactions. Furthermore, our work suggests that it is
difficult to learn species interactions from cross-sectional studies that pool samples of the relative abun-
dances of the microbial species from multiple individuals. This highlights the importance of collecting
extended time-series data for understanding microbial ecological dynamics.

We applied LIMITS to time-series data to infer ecological interaction networks of two individuals and
found that the interaction networks are dominated by distinct keystone species. This motivated us to
propose a hypothesis: that the abundances of certain keystone species are responsible for individuality
of the human gut microbiome. While more data will be required to confirm or reject this hypothesis,
it is intriguing to examine its potential consequences for the human microbiome. The keystone species
hypothesis implies that even small perturbations to an environment can have a large impact on the
composition of its resident microbial consortia if those perturbations affect a small number of important
“keystone” species. Moreover, relatively small differences in individual diets, or minor differences in the
interaction between the host immune system and the gut microbiota, that affect keystone species may be
sufficient to organize gut microbial consortia into distinct types of communities, or “enterotypes” [22,23].

Our analysis identified the closely related species Bacteroides fragilis and Bacteroides stercosis as
potential keystone species of the gut microbiome [24]. Previous studies have suggested that the abundance
of Bacteroides fragilis modulates the levels of several metabolites and, in turn, the composition of the
gut microbiome in a mouse model of gastrointestinal abnormalities associated with autism spectrum
disorder [9]. Abundance of both Bacteroides fragilis and Bacteroides stercosis are associated with an
increased risk of colon cancer [5,6,10], and previous authors even suggest that Bacteroides fragilis acts as
a critical “keystone pathogen” in the development of the disease [8]. Classical ecological models of species
interaction demonstrate that the manner of the interaction between two species is not solely a function
of their identity, but is highly dependent on the environment in which the interaction takes place [25,26].
Increased abundance of Bacteroides species is associated with high fat diets, including typical Western
diets with a high consumption of red meat that are associated with increased cancer risk [5]. It is possible
that Bacteroides fragilis and Bacteroides stercosis act as keystone species in individuals consuming high
fat diets due to their ability to convert bile into metabolites that are used by other members of the
microbial community [5, 9].

The keystone species hypothesis can be experimentally tested by perturbing the abundance of indi-
vidual species in a microbial consortium and observing the effect on the composition of the community.
Our prediction is that most perturbations will have little impact on the overall structure of the microbial
community, but perturbations applied to a small number of keystone species will have a large impact
on the structure of the community. Due to ethical concerns, it is difficult to envision a direct experi-
mental test of the keystone species hypothesis in human microbiota and, therefore, to test our specific
predictions in regards to the keystone species Bacteroides fragils and Bacteroides stercosis. Nevertheless,
experimental tests could be performed in animal models, or even in culture if a large enough microbial
consortia can be assembled.

Materials and Methods

Discrete Time Lotka-Volterra Model for absolute abundances

Metagenomic sequencing methods have made it possible to follow the time evolution of a microbial
population by determining the relative abundances of the species in a community in discrete intervals
(e.g. one day). Given the discrete nature of these data, it is most sensible to use a discrete-time model of
population dynamics. The discrete-time Lotka-Volterra (dLV) model of population dynamics (sometimes
called the Ricker model) relates the abundance of species i at a time t+ δt (xi(t+ δt)) to the abundances
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of all the species in the ecosystem at a time t (~x = {x1(t) . . . xN (t)}). These interactions are encoded
in the dLV through a set of interaction coefficients, cij , that describe the influence species j has on the
abundance of species i [17], and inferring these interaction coefficients is the major goal of this work. The
abundance of a species can also change due to environmental and demographic stochastic effects. The
dLV can be generalized to include stochasticity by including a log-normally distributed multiplicative
noise, ηi(t). Specifically, the dynamics are modeled by the equations

xi(t+ δt) = ηi(t)xi(t) exp(δt
∑
j

cij(xj(t)− 〈xj〉)), (2)

where 〈xj〉 is equilibrium abundance of species j and is set by the carrying capacity of the environment.
In writing these equations in this form, we have assumed that in the absence of noise the dLV equations
have a unique steady-state solution with the abundances given by 〈xj〉. Notice that in the absence of
multiplicative noise and the limit δt→ 0, the dLV model reduces to the usual Lotka-Volterra differential
equations:

1

xi(t)

dxi(t)

dt
=

∑
j

cij(xj(t)− 〈xj〉). (3)

In what follows, without loss of generality, we set δt = 1. This is equivalent to measuring time in
units of δt. To fit microbial data, it is actually helpful to work with the logarithm of Equation (2).
Furthermore, we assume that the sampling time and the update time are both equal to 1. Taking the
logarithm of Eq. 2 yields,

lnxi(t+ 1)− lnxi(t) = ζi(t) +
∑
j

cij(xj(t)− 〈xj〉), (4)

where by construction ζi(t) = ln ηi(t) is a normally distributed variable. This logarithmic form of the dLV
model is especially convenient for inferring species interactions from time series of species abundances
because the inference problem reduces to standard linear regression (as discussed below).

Thus, far we have assumed that it is possible to directly measure the absolute abundances xi(t).
However, in practice, metagenomic sequencing studies typically provide relative abundances x̃i = Z−1xi
, where Z =

∑
j xj . Provided that the number of species is large (N � 1), the fluctuations in the total

population size Z(t) =
∑

i xi(t) around its mean value 〈Z〉 =
∑

i〈xi〉 will be small. In this case, the
dynamics of the relative abundances (x̃i(t)) are well-described by a modified dLV model:

x̃i(t+ 1) ≈ ηi(t)x̃i(t) exp(
∑
j

c̃ij(x̃j(t)− 〈x̃j〉)), (5)

where we have defined the new interaction coefficients c̃ij = 〈Z〉cij which are related to the true interaction
coefficients cij by the average population size. Thus, relative species abundance data can be modeled
using the dLV model, but the interaction coefficients are known only up to an arbitrary multiplicative
constant. However, as discussed in the main text, the design matrix for relative species abundances is
singular so simple linear regression fails.

In all of the simulations discussed in the main text the stochasticity was set to ln ηi(t) ∼ N (0, 0.1).

Linear Regression

Suppose we are given data consisting of the absolute (or relative) abundances of the species in a population
of N species in the form of timeseries of length T starting from M initial conditions. We infer each row
(~ci = {cij}Nj=1) of the interaction coefficient matrix (C) separately. The equilibrium population 〈x〉 (or
〈x̃〉) is assumed to correspond to the population median. The design matrix is an M(T − 1)×N matrix
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with rows Xl = {x(k)1 (t) − 〈x1〉, ..., x(k)N (t) − 〈xN 〉}. The data vector has length M(T − 1) and is given

by ~vi = {lnx(k)i (1) − lnx
(k)
i (0), ..., lnx

(k)
i (T ) − lnx

(k)
i (T − 1)}. Note that any of the timepoints with

x
(k)
i (t) = 0 were left out of the regression because the logarithm of zero is undefined. The least squares

estimate for the interaction coefficients is ĉi = X+~vi, where the + denotes the psuedo-inverse.

Outline of the LIMITS Algorithm

Here, we present a high-level outline of the LIMITS algorithm (see Fig. 2). An implementation of the
LIMITS algorithm written in Mathematica (Wolfram Research, Inc.) is available from the authors upon
request. Since all of the regressions are performed independently for each species, we will only describe
the algorithm for inferring a row of the interaction matrix (~ci = {cij}Nj=1). One simply loops over i to
obtain the full interaction matrix. Moreover, bootstrap aggregating simply involves performing the whole

proceedure L times, thereby constructing multiple estimates ~c
(1)
i , . . . ,~c

(L)
i and taking their median. Thus,

the only thing that takes some effort to explain is how to construct one of estimate of ~ci.

1. First, we randomly partition the data into a training set and a test set, each containing half the
data points.

2. A set of active coefficients is initialized to ACTIVE = {cii} and a set of inactive coefficients is
initialized to INACTIVE = {cij}j 6=i.

3. A linear regression including only species i is performed on the training set, and the inferred
coefficient is used to calculate a prediction error (called ERROR) for the test dataset.

4. For each coefficient c in INACTIVE create TEST = ACTIVE
⋃
{c} and perform a linear regression

using the coefficients in TEST against the training dataset.

5. Next, the inferred coefficients are used to calculate the prediction errors for the test dataset. The
particular species j with the smallest prediction error is retained, and we call this error ERROR(j).

6. If 100× (ERROR−ERROR(j))/ERROR is greater than a pre-specified error threshold then we set
ERROR = ERROR(j), ACTIVE = ACTIVE

⋃
{cij}, and cij is deleted from INACTIVE, otherwise

we terminate the loop and return an estimate for the interactions ~ci = {cij}Nj=1.
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Figure 1. There is no simple relation between interaction coefficients and correlations in
abundance. a) A symmetric interaction matrix and the corresponding correlation matrix. b) There is
no relation between the interaction parameters and the correlations in abundance for the symmetric
interaction matrix. c) An asymmetric interaction matrix and the corresponding correlation matrix. d)
There is no relation between the interaction parameters and the correlations in abundance for the
asymmetric interaction matrix. Points from above the diagonal in the interaction matrix are gray
circles, whereas points from below the diagonal are black squares. In a and c, matrix elements have
been scaled so that the smallest negative element is −1, the largest positive element is +1, and all
elements retain their sign. In b and d, interaction coefficents were scaled so that the largest element by
absolute value has |cij | = 1.
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Figure 2. Schematic illustrating forward stepwise regression and median bootstrap
aggregating. a) In forward stepwise regression, interactions are added to the model one at a time as
long as including the additional covariate lowers the prediction error by a pre-defined threshold. b) The
prediction error used for variable selection is evaluated by randomly partitioning the data into a
training set used for the regression and a test used to evaluate the prediction error. c) Multiple models
are built by repeatedly applying forward stepwise regression to random partitions of the data, each
containing half the data points. The models are aggregated, or “bagged”, by taking the median, which
improves the stability of the fit while preserving the sparsity of the inferred interactions.
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Figure 3. Example fits of interaction parameters using sparse linear regression. a) A
symmetric interaction matrix (left), the corresponding matrix inferred from absolute abundance data
(middle), and the corresponding matrix inferred from relative abundance data (right). b) There is good
aggreement between the true and inferred interactions, from both absolute (black) and relative (gray)
abundances, for the symmetric interaction matrix. c) An asymmetric interaction matrix (left), the
corresponding matrix inferred from absolute abundance data (middle), and the corresponding matrix
inferred from relative abundance data (right). d) There is good aggreement between the true and
inferred interactions, from both absolute (black) and relative (gray) abundances, for the asymmetric
interaction matrix. The prediction error threshold was set to 5% in for all fits.
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Figure 4. Performance of sparse linear regression as a functon of sample size and the
prediction error threshold. a) Performance on absolute (red) and relative (black) abundances as a
function of sample size for symmetric interaction matrices. b) Performance on absolute (red) and
relative (black) abundances as a function of sample size for asymmetric interaction matrices. c)
Performance on absolute (red) and relative (black) abundances as a function of the out-of-bag error
threshold for symmetric interaction matrices. d) Performance on absolute (red) and relative (black)
abundances as a function of the out-of-bag error threshold for symmetric interaction matrices. Error
bars correspond to ± one standard deviation, and lines connect the means.
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Figure 5. Sensitivity and specificity of predicted interactions as a function of
measurement error for bagged and unbagged models. Specificity refers to the fraction of
species pairs correctly identified as non-interacting, while sensitivity refers to the fraction of species
pairs correctly identified as interaction. Both measures range from 0 (poor performance) to 1 (good
performance). a) Specifity of sparse linear regression with Bagging as a function of measurement error
for different prediction error thresholds. b) Specificity of sparse linear regression trained on the entire
data set without Bagging as a function of measurement error for different prediction thresholds. c)
Sensitivity of sparse linear regression with Bagging as a function of measurement error for different
prediction error thresholds. d) Sensitivity of sparse linear regression trained on the entire data set
without Bagging as a function of measurement error for different prediction error thresholds. Notice
that without bagging, model performance is extremely sensitive to choice of prediction error threshold
for adding new interactions
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Figure 6. Interaction topologies of abundant species in the guts of two individuals. The
size of a node denotes the median relative species abundance, beneficial interactions are shown as solid
red arrows, and competetive interactions are shown as dashed blue arrows. In individual a) species 4
Bacteroides fragilis acts as a keystone species with 6 outgoing interactions, compared to a median
number of outgoing interactions of 1. In individual b) species 5 Bacteroides stercosis acts as a keystone
species with 4 outgoing interactions, compared a median number of outgoing interactions of 1. The 14
species included in the model were obtained by taking the union of the top 10 most abundant species
from individuals a and b. The prediction error threshold was set to 3%, graphs obtained using other
prediction thresholds are shown in the Supporting Information.

Figure S1. Interaction topologies of abundant species in the guts of two individuals using
different prediction error thresholds. The size of a node denotes the median relative species
abundance, beneficial interactions are shown as solid red arrows, and competetive interactions are
shown as dashed blue arrows. The 14 species included in the model were obtained by taking the union
of the top 10 most abundant species from individuals a and b.


