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Abstract

Bacteria pose unique challenges for genome-wide association studies because of strong structuring 

into distinct strains and substantial linkage disequilibrium across the genome1,2. Although 

methods developed for human studies can correct for strain structure3,4, this risks considerable 

loss-of-power because genetic differences between strains often contribute substantial phenotypic 

variability5. Here, we propose a new method that captures lineage-level associations even when 

locus-specific associations cannot be fine-mapped. We demonstrate its ability to detect genes and 

genetic variants underlying resistance to 17 antimicrobials in 3,144 isolates from four 

taxonomically diverse clonal and recombining bacteria: Mycobacterium tuberculosis, 

Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Strong selection, 

recombination and penetrance confer high power to recover known antimicrobial resistance 

mechanisms and reveal a candidate association between the outer membrane porin nmpC and 

cefazolin resistance in E. coli. Hence, our method pinpoints locus-specific effects where possible 

and boosts power by detecting lineage-level differences when fine-mapping is intractable.

Mapping genetic variants underlying bacterial phenotypic variability is of great interest 

owing to the fundamental role of bacteria ecologically, industrially and in the global burden 

of disease6–8. Hospital-associated infections including Staphylococcus aureus, Escherichia 

coli and Klebsiella pneumoniae represent a serious threat to the safe provision of 

healthcare9,10, while the Mycobacterium tuberculosis pandemic remains a major global 

health challenge11. Treatment options continue to be eroded by the spread of antimicrobial 

resistance, with some strains resistant even to antimicrobials of last resort12.

Genome-wide association studies (GWASs) offer new opportunities to map bacterial 

phenotypes through inexpensive sequencing of entire genomes, enabling direct analysis of 

causal loci and functional validation via well-developed molecular approaches2,13–22. 

However, bacterial populations typically exhibit genome-wide linkage disequilibrium and 

strong structuring into geographically widespread genetic lineages or strains that are 

probably maintained by natural selection1,5. Approaches to controlling for this population 

structure have allowed for systematic phenotypic differences based on cluster 

membership15,16 or, in clonal species, phylogenetic history13,19–21. However, these and 

other approaches common in human GWASs3,4 risk masking causal variants because 

differences between strains account for large proportions of both phenotypic and genetic 

variability.

Here, we describe a new approach for controlling bacterial population structure that boosts 

power by recovering signals of lineage-level associations when associations cannot be 

pinpointed to individual loci because of strong population structure, strong linkage 

disequilibrium and a lack of homoplasy. We base our approach on linear mixed models 

(LMMs), which can control for close relatedness within samples by capturing the fine 

structure of populations more faithfully than other approaches23 and enjoy greater 

applicability than phylogenetic methods because recombination is evident in most 

bacteria24,25. Our approach offers biological insights into strain-level differences and 

identifies groups of loci that are collectively significant, even when individually 

insignificant, without sacrificing the power to detect locus-specific associations.
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Controlling for population structure aims to avoid spurious associations arising from (1) 

linkage disequilibrium with genuine causal variants that are population-stratified, (2) 

uncontrolled environmental variables that are population-stratified and (3) population-

stratified differences in sampling3. In the four species we investigated, we observed 

genome-wide linkage disequilibrium and strong population structure, with the first ten 

principal components (PCs)26 explaining 70–93% of genetic variation, compared with 27% 

in human chromosome 1 (Supplementary Fig. 1). Controlling artefacts arising from 

population structure therefore risks a loss of power to detect genuine associations in this 

large proportion of population-stratified loci.

For example, we investigated associations between fusidic acid resistance and the presence 

or absence of short 31 bp haplotypes or ‘kmers’ in S. aureus (see Methods and 

Supplementary Fig. 2). The kmer approach aims to capture resistance encoded by 

substitutions in the core genome, the presence of mobile accessory genes, or both13. Kmers 

linked to the presence of fusC, a mobile element-associated resistance-conferring gene 

whose product prevents fusidic acid interacting with its target EF-G (ref. 27), showed the 

strongest genome-wide association by χ2 test (P = 10−122).

However, fusC-encoded resistance was observed exclusively within strains ST-1 and ST-8. 

Thus, controlling for population structure using LMM28 reduced the significance to P = 

10−39, below other loci (Fig. 1a and Supplementary Fig. 3). Kmers capturing resistance-

conferring substitutions in fusA, which encodes EF-G, were propelled to greater 

significance, because these low-frequency variants were unstratified and LMM improves 

power in the presence of polygenic effects29 (P = 10−11 by χ2 test, P = 10−157 by LMM). 

However, fusA variants explain only half as much resistance as fusC overall.

Although kmers linked to fusC did not suffer an outright loss of significance, as penetrance 

(proportion of fusC carriers expressing resistance) was very high, simulations show that for 

phenotypes with modest effect sizes (for example, odds ratios of 3), controlling for 

population structure risks loss of genome-wide significance at 59, 75, 99 and 99% of high-

frequency causal variants in M. tuberculosis (n = 1,573), S. aureus (n = 992), E. coli (n = 

241) and K. pneumoniae (n = 176) simulations, respectively, with the power loss being 

greatest when the sample size is low and the number of variants is high (Fig. 2a and 

Supplementary Fig. 4a).

Methods to limit loss of power such as ‘leave-one-chromosome-out’29 are impractical in 

bacteria, which typically have one chromosome. Instead, we developed a method to recover 

information discarded when controlling for population structure. In cases where population 

stratification reduces the power to detect locus-specific associations, our method infers 

lineage-specific associations, similar to a phylogenetic regression30,31, without sacrificing 

the power to detect locus-specific associations when possible.

We observed that leading principal components tend to correspond to major lineages in 

bacterial genealogies (or ‘clonal frames’32) despite substantial differences in recombination 

rates (Fig. 1b and Supplementary Fig. 5), reflecting an underlying relationship between 

genealogical history and principal component analysis33. Principal components are 
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commonly used to control for population structure by including leading principal 

components as fixed effects in a regression26. The regression coefficients estimated for 

principal components could therefore be interpreted as capturing lineage-level phenotypic 

differences, and each principal component tested for an effect on the phenotype. Because 

principal components are guaranteed to be uncorrelated, defining lineages in terms of 

principal components, rather than as phylogenetic branches or genetic clusters, minimizes 

the loss of power to detect lineage-level associations caused by correlations between 

lineages.

To identify lineage effects we exploited a connection between principal components and 

LMMs. In an LMM, every locus is included as a random effect in a regression. This is 

equivalent to including every principal component in the regression as a random effect34. 

We thus decomposed the random effects estimated by the LMM to obtain coefficients and 

standard errors for every principal component (see Methods). We then used a Wald test35 to 

assess the significance of the association between each lineage and the phenotype.

Our method, implemented in the R package bugwas, revealed strong signals of association 

between fusidic acid resistance and lineages including PC-6 and PC-9 (P = 10−70), 

comparable in significance to the low-frequency variants at fusA (Fig. 1c and 

Supplementary Fig. 6). We next reassessed locus-specific effects by assigning variants to 

lineages according to the principal component to which they were most correlated, then 

comparing the significance of variants within lineages. This showed that fusC and variants in 

linkage disequilibrium with fusC accounted for the strongest signals within PC-6 and PC-9 

(P = 10−34 and 10−45 respectively, Fig. 1d), with the strongest locus-specific associations 

localized to a 20 kb region containing the staphylococcal cassette chromosome (SCC), the 

most significant hit mapping to the gene adjacent to fusC. Thus, identifying loci contributing 

to the most significant lineages provides an alternative to prioritizing variants for follow-up 

based solely on locus-specific significance.

In simulations, our method was able to recover signals of lineage-level associations in cases 

where significance at individual loci was lost by controlling for population structure, 

increasing the power 2.5-fold (M. tuberculosis) to 22.0-fold (E. coli) (Fig. 2a and 

Supplementary Fig. 4a). LMM reduced the number of falsely detected single nucleotide 

polymorphisms (SNPs) by 30-fold (K. pneumoniae) to 3,600-fold (S. aureus). However, 

fine-mapping of causal variants to specific chromosomal regions frequently suffered from 

genome-wide linkage disequilibrium, because linkage disequilibrium is not generally 

organized into physically linked blocks along the chromosome (Fig. 2b and Supplementary 

Fig. 4b), underlining the importance of recovering power by interpreting lineage effects.

We noted a trade-off to interpreting lineage effects, because they are susceptible to 

confounding with population-stratified differences in environment or sampling 

(Supplementary Fig. 7). Therefore, non-random associations between lineages and 

uncontrolled variables that influence phenotype risk false detection of lineage-level 

differences.
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Confronted with a strong population structure and genome-wide linkage disequilibrium in 

bacteria, we wished to test empirically the ability of GWASs to pinpoint genuine causal 

variants more generally. We therefore conducted 26 GWASs for resistance to 17 

antimicrobials in 3,144 isolates across the major pathogens M. tuberculosis36, S. aureus37, 

E. coli and K. pneumoniae38 (Supplementary Fig. 8).

We supplemented the kmer approach by surveying the variation in SNPs and gene presence 

or absence. We imputed missing SNP calls by reconstructing the clonal frame followed by 

ancestral state reconstruction, an approach that generally outperformed imputation using 

Beagle (Supplementary Table 1, see Methods).

Correlated phenotypes caused by the presence of multi-drug-resistant isolates led to 

significant results in unexpected loci or regions in some analyses. A combination of first-line 

drug regimens contributes to multi-drug resistance co-occurrence in M. tuberculosis, which 

led to spurious associations as the top hit before controlling for population structure between 

ethambutol and pyrazinamide resistance and SNPs in rifampicin resistance-conferring rpoB. 

Even after controlling for population structure, these associations remained genome-wide 

significant at P = 10−45 and P = 10−54.

Antimicrobial resistance has arisen over 20 times per drug in the M. tuberculosis tree, 

through frequent convergent evolution (Supplementary Fig. 4c and Supplementary Fig. 8). 

Within a single gene, such as rpoB, there are multiple targets for selection. Both SNP and 

kmer-based approaches correctly identified variants in known resistance-causing codons, but 

greater significance was attained in the latter because the targets for selection were typically 

within 31 bp (Supplementary Fig. 9a). In these cases, absence of the wild-type allele was 

found to confer resistance, with power gained by pooling over the alternative mutant alleles.

For each drug and species, we evaluated whether the most significant hit identified by 

GWAS matched a known causal variant36–38 (Supplementary Table 2). By this measure, the 

performance of GWASs across species was very good, identifying genuine causal loci or 

regions in physical linkage with those loci for antimicrobial resistance in 25/26 cases for the 

SNP and gene approach and the kmer approach after controlling for population structure 

(Table 1 and Supplementary Table 3). For accessory genes such as β-lactamases, in 

particular, mobile element-associated regions of linkage disequilibrium were often detected 

together with the causal locus (Supplementary Fig. 9b).

Genuine resistance-conferring variants were detected in all but one study, demonstrating that 

the high accuracy attained in predicting antimicrobial resistance phenotypes from genotypes 

known from the literature37,39 is mirrored by good power to map the genotypes that confer 

antimicrobial resistance phenotypes using GWASs. However, these results also reflect the 

extraordinary selection pressures exerted by antimicrobials. High homoplasy at resistance-

conferring loci caused by repeat mutation and recombination breaks down linkage 

disequilibrium, assisting mapping (Fig. 2c and Supplementary Fig. 4c).

For one drug, cefazolin, in E. coli, we identified a variation in the presence of an unexpected 

gene as the most strongly associated with resistance, nmpC (P = 10−12.4). This gene encodes 

an outer membrane porin over-represented in susceptible individuals. Permeability in the 
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Salmonella typhimurium homologue mediates resistance to other cephalosporin β-
lactams40, making this a strong candidate for a novel resistance-conferring mechanism 

discovered in E. coli.

Population structure presents the greatest challenge for GWASs in bacteria, because of the 

inherent trade-off between the power to detect genuine associations of population-stratified 

variants and robustness to unmeasured, population-stratified confounders. By introducing a 

test for lineage-specific associations, we allow these signals to be recovered even in the 

absence of homoplasy, while acknowledging the increased risk of confounding. Detecting 

lineage effects is valuable, because characterizing phenotypic variability in terms of strain-

level differences is helpful for biological understanding and it permits the prediction of 

traits, including clinically actionable phenotypes, from strain designation.

Identifying loci that contribute to the most significant lineage-level associations offers 

flexibility in the interpretation of bacterial GWASs, where it will often be difficult to 

pinpoint significance to individual locus effects and where linkage disequilibrium can make 

the fine-mapping of causal loci a genome-wide problem. Loci can be prioritized for follow-

up by identifying groups of lineage-associated variants that collectively show a strong signal 

of phenotypic association, but which cannot be distinguished statistically. This strategy 

provides an alternative to prioritizing variants based solely on locus-specific significance, 

but it carries risks, because lineage-associated effects are more susceptible to confounding 

with population-stratified differences in environment or sampling. This trade-off between 

power and robustness underlines the importance of functional validation for bacterial 

GWASs going forward.

Methods

Linear mixed model

In the LMM41–45, the phenotype is modelled as depending on the fixed effects of covariates 

including an intercept, the ‘foreground’ fixed effect of the locus whose individual 

contribution is to be tested, the ‘background’ random effects of all the loci whose cumulative 

contribution to phenotypic variability we will decompose into lineage-level effects, and the 

random effect of the environment:

Formally,

where there are n individuals, c covariates, L loci, l is the foreground locus, yi is the 

phenotype in individual i, Wij is covariate j in individual i, αj is the effect of covariate j, Xij 

is the genotype of locus j in individual i, βl is the foreground effect of locus l, γj is the 

background effect of locus j and εi is the effect of the environment (or error) on individual i. 

Biallelic genotypes are numerically encoded as −fj (common allele) or 1−fj (rare allele), 
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where fj is the frequency of the rare allele at locus j. This convention ensures that the mean 

value of Xij over individuals i is zero for any locus j. Because triallelic and tetrallelic loci are 

rare, we use only biallelic loci to model background effects. When the foreground locus is 

triallelic (K = 3) or tetrallelic (K = 4), the genotype in individual i is encoded as a vector 

indicating the presence (1) or absence (0) of the first (K − 1) alleles and βl becomes a vector 

of length (K − 1).

Treating the background effects of the loci as random effects means the precise values of 

coefficients γj are averaged. The γj are assumed to follow independent normal distributions 

with common mean 0 and variance λτ−1 to be estimated. As most loci are expected to have 

little or no effect on a particular phenotype, this tends to constrain the magnitude of the 

background effect sizes to be small. The environmental effects are also treated as random 

effects assumed to follow independent normal distributions with mean 0 and variance τ−1. 

The model can be rewritten in matrix form as

with

where u represents the cumulative background effects of the loci, MVN denotes the 

multivariate normal distribution, In is an n × n identity matrix, and K is an n × n relatedness 

matrix defined as K = XX′, which captures the genetic covariance between individuals.

Testing for locus effects

To assess the significance of the effect of an individual locus l on the phenotype, controlling 

for population structure and background genetic effects, the parameters of the linear mixed 

model α1…αc, βl, λ and τ were estimated by maximum likelihood, and a likelihood ratio 

test with (K − 1) degrees of freedom was performed against the null hypothesis that βl = 0 

using the software GEMMA28.

Testing for lineage effects

Because controlling for population structure drastically reduces the power at population-

stratified variants, and because a large proportion of variants are typically population-

stratified in bacteria, we recovered information from the LMM regarding lineage-level 

differences in phenotype.
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We defined lineages using principal components because we observed that principal 

components tend to trace paths through the clonal frame genealogy corresponding to 

recognizable lineages (as seen by the branch colouring in Fig. 1b and Supplementary Fig. 5) 

and because principal components are mutually uncorrelated, minimizing loss of power to 

detect differences between lineages due to correlations. Principal components were 

computed based on biallelic SNPs using the R function prcomp(), producing an L by n 

loading matrix D and an n by n score matrix T where T = X D. Dij records the contribution 

of biallelic SNP i to the definition of principal component j, while Tij represents the 

projection of individual i onto principal component j.

Point estimates and standard errors for the background locus effects are usually overlooked 

because the assumed normal distribution with common mean 0 and variance λτ−1 tends to 

cause them to be small in magnitude and not significantly different from zero. However, 

cumulatively, the background locus effects can capture systematic phenotypic differences 

between lineages. We therefore recovered the post-data distribution (equivalent to an 

empirical Bayes posterior distribution) of the background locus random effects, γ, from the 

LMM, and reinterpreted it in terms of lineage-level differences in phenotype.

Empirically, we found that the post-data distribution of the background random effects was 

generally insensitive to the identity of the foreground locus and comparable under the null 

hypothesis (βl = 0). We therefore calculated the mean and variance–covariance matrix of the 

multivariate normal post-data distribution of γ in the LMM null model. These are equivalent 

to those of a ridge regression46 and were computed as

respectively. Both λ and τ were estimated by GEMMA under the LMM null model. Using 

the inverse transformation of the biallelic variants from PCA, X = TD−1, the background 

random effects can be rewritten in terms of the contribution of the n principal components:

where g = D−1γ, and gj is the background effect of principal component j on the phenotype. 

We computed the mean and variance of the post-data distribution of g as m = D−1µ and S = 

D−1ΣD, respectively, using the affine transformation for a multivariate normal distribution. 

To test the null hypothesis of no background effect of principal component j (that is, gj = 0), 

we used a Wald test with test statistic  which we compared against a χ2 

distribution with one degree of freedom to obtain a P value.

Although we identified and tested for lineage effects in the LMM setting, lineage effects 

could also be identified and tested for by interpreting the coefficients of leading principal 

components or genetic cluster membership included as fixed effects in a regression, both of 

which represent alternative methods for controlling for population structure.
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Identifying non genome-wide principal components

Some principal components capture variation localized to particular areas of the genome. We 

identified non genome-wide principal components by testing for spatial heterogeneity of the 

loading matrix W for biallelic SNPs across the genome. SNPs were grouped into 20 

contiguous bins (indexed by j ) of nearly equal sizes Nj, and the mean Oij and variance Vij in 

the absolute value of the SNP loadings for principal component i in bin j were calculated, as 

well as the mean absolute value Ei of the SNP loadings for principal component i across all 

SNPs. The null hypothesis of no heterogeneity was assessed by comparing the test statistic 

χi
2 = Σj (Oij − Ei)

2/(Vij/Nj) to a χ2 distribution with degrees of freedom equal to the number 

of bins minus one to obtain a P value.

Antimicrobial resistance testing, genome sequencing and SNP calling

We investigated 241 E. coli and 176 K. pneumoniae UK clinical isolates newly reported 

here, together with 992 S. aureus and 1,735 M. tuberculosis isolates reported 

previously36,37. All isolates were tested for resistance to multiple antimicrobials based on 

routine clinical laboratory protocols, and DNA was extracted and sequenced on Illumina 

platforms as previously described36–38. We called SNPs using standard methods47,48, 

employing Stampy49 to map reads to reference strains CFT073 (genbank accession no. 

AE014075.1), MGH 78578 (CP000647.1), H37Rv (NC_000962.2) and MRSA252 

(BX571856.1) for E. coli, K. pneumoniae, M. tuberculosis and S. aureus, respectively. The 

distributions of biallelic SNP frequencies are provided in Supplementary Table 4.

Defining the pan-genome

To investigate gene presence or absence we created a pan-genome for each set of isolates. To 

obtain whole genome assemblies, reads were de novo assembled using Velvet50. We 

annotated open reading frames on the de novo assemblies for each isolate. We then used the 

Bayesian gene-finding program Prodigal51 to identify a set of protein sequences for each de 

novo assembly. These annotated protein sequences were clustered using CD-hit52, with a 

clustering threshold of 70% identity across 70% of the longer sequence. We converted the 

output of CD-hit into a matrix of binary genotypes denoting the presence or absence of each 

gene cluster in each genome (Supplementary Fig. 2).

Kmer counting

Some diversity such as indels and repeats is difficult to capture using standard variant calling 

tools. To capture non-SNP variation, we pursued a kmer or word-based approach13 in which 

all unique 31 base haplotypes were counted from the sequencing reads using dsk53 

following adaptor trimming and removal of duplicates and low-quality reads using 

Trimmomatic54. If a kmer was counted five or more times in an isolate, then it was counted 

as present; if not, it was treated as absent (Supplementary Fig. 2). This produced a 

deduplicated set of variably present kmers across the data set, with the presence or absence 

of each determined per isolate. The total number of SNPs, kmers and gene clusters per 

species can be found in Supplementary Table 5.
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Phylogenetic inference

Maximum likelihood phylogenies were estimated for visualization and SNP imputation 

purposes using RAxML version 7.7.6 (ref. 55), with a general time reversible (GTR) model 

and no rate heterogeneity, using alignments from the mapped data based on biallelic sites, 

with non-biallelic sites being set to the reference.

SNP imputation

Because Illumina sequencing is inherently more error-prone than Sanger sequencing, strict 

filtering is required for reliable mapping-based SNP calling, contributing to a small but 

appreciable frequency of uncalled bases in the genome due to ambiguity or deletion. 

Restricting analysis to sites called in all genomes is undesirable, while ignoring uncalled 

sites by removing individuals with missing data at individual sites generates P values that 

cannot be validly compared between sites because they are calculated using data from 

differing sets of isolates.

SNP imputation is therefore generally considered necessary for GWASs56. We imputed 

missing base calls using two approaches, ClonalFrameML57 and Beagle56. Imputation 

using ClonalFrameML57 involves estimating the clonal frame by maximum likelihood58, 

then jointly reconstructing ancestral states and missing base calls by maximum likelihood 

utilizing the phylogeny reconstructed earlier59. To use Beagle, the mapped data were coded 

as haploid (one column per individual) and input as phased data56,60.

Testing imputation accuracy

To simulate data for testing imputation accuracy, 100 sequences were randomly sampled 

from each GWAS data set across the phylogeny. Maximum likelihood phylogenies were 

estimated for the 100 sequences of each species using RAxML55, as above. Any columns in 

the alignment corresponding to ambiguous bases in the reference genome were excluded. 

One round of imputation was performed using ClonalFrameML to produce complete data 

sets with no ambiguous bases (Ns), which were then treated as the truth for the purpose of 

testing. The empirical distributions of Ns per site in the data sets of 100 sequences were 

determined, and these were sampled with replacement to reintroduce Ns to the variable sites 

in 100 simulated data sets. These sequences were then imputed again using ClonalFrameML 

and Beagle. Accuracy was summarized per site as a function of the frequency of Ns per site 

and the minor allele frequency. Overall, ClonalFrameML was more accurate than Beagle, so 

ClonalFrameML was used for all GWAS analyses (Supplementary Table 1).

Calculating association statistics before controlling population structure

We wished to compare the significance of associations before and after controlling for 

population structure. For the SNP and gene presence or absence data, an association between 

each SNP or gene and the phenotype was tested by logistic regression implemented in R. For 

the kmer analyses, an association between the presence or absence of each kmer was tested 

using a χ2 test implemented in C++. For each variant a P value was computed.
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Correction for multiple testing

Multiple testing was accounted for by applying a Bonferroni correction61; the individual 

locus effect of a variant (SNP, gene or kmer) was considered significant if its P value was 

smaller than α/np, where we took α = 0.05 to be the genome-wide false-positive rate and np 

to be the number of SNPs and genes, or kmers, with unique phylogenetic patterns, that is, 

unique partitions of individuals according to allele membership. Because the phenotypic 

contribution of multiple variants with identical phylogenetic patterns cannot be disentangled 

statistically, we found that pooling such variants improved the power by demanding a less 

conservative Bonferroni correction than correcting for the total number of variants 

(Supplementary Fig. 10).

The genome-wide −log10 P value threshold for SNPs and genes (or kmers) was 6.1 (7.3) for 

S. aureus ciprofloxacin, erythromycin, fusidic acid, gentamicin, penicillin, methicillin, 

tetracycline and rifampicin, 5.9 (6.7) for S. aureus trimethoprim, 6.5 (7.3) for all 

antimicrobials tested for E. coli, 6.6 (7.3) for all antimicrobials tested for K. pneumoniae and 

5.0 (7.6) for all antimicrobials tested for M. tuberculosis. We also accounted for multiple 

testing of lineage effects by applying a Bonferroni correction for the number of principal 

components, which equals the sample size n.

Running GEMMA

For the analyses of SNPs, genes and kmers, we computed the relatedness matrix K from 

biallelic SNPs only. We tested for foreground effects at all biallelic, triallelic and tetrallelic 

SNPs, genes and kmers. GEMMA was run using a minor allele frequency of 0 to include all 

SNPs. GEMMA was modified to output the ML log-likelihood under the null, and 

alternative and −log10 P values were calculated using R.

To perform LMM on tri- and tetra-allelic SNPs, each SNP was encoded as K − 1 binary 

columns corresponding to the first K − 1 alleles. For each column, an individual was 

encoded 1 if it contained that allele and 0 otherwise. The first column was input as the 

genotype, and the others as covariates into GEMMA. The log-likelihood of the null from the 

biallelic SNPs, together with the log-likelihood under the alternative for each of the SNPs, 

was used to calculate the P value per SNP.

Due to the large number of kmers present within each data set, it was not feasible to run 

LMM on all kmers. We therefore applied the LMM to the top 200,000 most significant 

kmers from the logistic regression, plus 200,000 randomly selected kmers of those 

remaining. The randomly selected kmers were used to indicate whether some were 

becoming relatively more significant than the top 200,000, providing a warning in the case 

where large numbers of kmers became significant only after controlling for population 

structure.

Variant annotation

SNPs were annotated in R using the reference fasta and genbank files to determine SNP type 

(synonymous, non-synonymous, nonsense, read-through and intergenic), the codon and 

codon position, reference and non-reference amino acid, gene name and gene product.
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Unlike the SNP approach, where we can easily refer to the reference genome to find what 

gene the SNP is in and the effect that it may have, annotation of the kmers is more difficult. 

We used BLAST62 to identify the kmers in databases of annotated sequences. Each kmer 

was first annotated against a BLAST database created of all refseq genomes of the relevant 

genus on NCBI. This enabled automatic annotation of all kmers that gave a sufficiently 

small e-value against the genus-specific database. All kmers were also searched against the 

whole nucleotide NCBI database, first to compare and confirm the matches made against the 

first database and second to annotate the kmers that did not match anything in the within-

genus database. Finally, when the resistance-determining mechanism was a SNP, the top 

10,000 kmers were mapped to a relevant reference genome using Bowtie2 (ref. 63). This 

was used to determine whether the most significant kmers covered the position of the 

resistance-causing SNP or whether they were found elsewhere in the gene.

Genes were annotated for each CD-hit gene cluster by performing BLAST62 searches of 

each cluster sequence against a database of curated protein sequences downloaded from 

UNIPROT64.

Testing power by simulating phenotypes

To assess the performance of the method for controlling population structure, we performed 

100 simulations per species. In each simulation, a biallelic SNP was chosen randomly (from 

those SNPs with minor allele frequency above 20%) to be the causal SNP. Binary 

phenotypes (case or control) were then simulated for each genome with case probabilities of 

0.25 and 0.5, respectively, in individuals with the common and rare allele at the causal SNP 

(an odds ratio of 3). For each simulated data set, we tested for locus effects at every biallelic 

SNP, and for lineage effects at every principal component, as described above. The power to 

detect locus effects was defined as the proportion of simulations in which the causal SNP 

was found to have a significant locus effect. This was compared to a theoretically optimum 

power computed as the proportion of simulations in which the causal SNP was found to have 

a significant locus effect when population structure and multiple testing were not controlled 

for. The power to detect lineage effects was computed as the proportion of simulations in 

which the principal component most strongly correlated to the causal SNP was found to 

have a significant lineage effect. We defined fine mapping precision as the distance spanned 

by SNPs within two log-likelihoods of the most significant SNP in the test for locus effects, 

in those simulations in which the causal locus was genome-wide significant. We calculated 

the number of homoplasies per SNP by counting the number of branches in the phylogeny 

affected by a substitution based on the ClonalFrameML ancestral state reconstruction, and 

subtracting the minimum number of substitutions (K − 1).

Code availability

We have created an R package, bugwas, implementing our method for controlling population 

structure, and an end-to-end GWAS pipeline using R, Python and C++. Both can be 

downloaded from www.danielwilson.me.uk/virulogenomics.html.
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Figure 1. Controlling for population structure in bacterial GWASs for fusidic acid resistance in 
S. aureus.

a, Effect of controlling for population structure using LMM on the significance of the 

presence or absence of 31 bp kmers. The 200,000 most-significant kmers prior to control for 

population structure and a random 200,000 are plotted. Each kmer is colour-coded according 

to the principal component to which it is most strongly correlated, and grey if it is not most 

strongly correlated to one of the 20 most significant principal components. b, Principal 

components correspond to lineages in the clonal genealogy. Branches are colour-coded by 

one of the 20 most significant principal components to which they are most correlated. 
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Individual genomes are colour-coded with black or grey lines to indicate fusidic acid 

resistance and susceptibility, respectively. The circle passing through the line is colour-coded 

to indicate the phenotype predicted by the LMM. c, Wald tests of significance of lineage-

specific associations. Some principal components, for example, PC-9, are hashed to indicate 

that no branch in the clonal genealogy was most strongly correlated with it. Asterisks above 

the bars, for example PC-25, indicate evidence for lineages associated with particular 

genomic regions. d, Manhattan plot showing significance of unique variants after controlling 

for population structure, with variants clustered by principal component. The horizontal 

ordering is randomized. This allows identification of the variants corresponding to the most 

significant lineage-specific associations.
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Figure 2. Power, false positives, fine mapping and homoplasy in S. aureus. Simulation results.

a, Controlling for population structure and multiple testing lead to a drastic reduction in 

power to detect locus effects, compared with the theoretical optimum power for a single 

locus. The Wald test improves the power several-fold by detecting lineage-specific effects. b, 

Top: mean numbers of false-positive SNPs and patterns (that is, unique distributions of SNP 

alleles among individuals) are drastically reduced by controlling population structure with 

LMM. Bottom: fine mapping precision is very coarse owing to genome-wide linkage 

disequilibrium. Interpreting lineage effects is useful when the locus-specific signal cannot be 

fine-mapped. c, Number of times that common SNPs (minor allele frequency (MAF) > 20%) 

and antibiotic resistance phenotypes have emerged on the phylogeny. d, When homoplasy is 

high, the power to detect locus effects is much improved, explaining the good power to map 

antibiotic resistance phenotypes. In the simulations, causal loci were selected at random 

from high-frequency SNPs (MAF > 20%) in the n = 992 isolates and phenotypes simulated 

per genome with case probabilities of 0.25 and 0.5 for the common and rare alleles, 

respectively (odds ratio of 3). Genome-wide significance (to detect locus effects) was based 

on a Bonferroni-corrected P value threshold of α, equal to 0.05 divided by the number of 

SNP patterns.
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