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Abstract. Origami is the art of folding paper. In the context of engineering, orimimetics is the application

of folding to solve problems. Kinetic origami behavior can be modeled with the pseudo-rigid-body model

since the origami are compliant mechanisms. These compliant mechanisms, when having a flat initial state

and motion emerging out of the fabrication plane, are classified as lamina emergent mechanisms (LEMs).

To demonstrate the feasibility of identifying links between origami and compliant mechanism analysis and

design methods, four flat folding paper mechanisms are presented with their corresponding kinematic and

graph models. Principles from graph theory are used to abstract the mechanisms to show them as coupled, or

inter-connected, mechanisms. It is anticipated that this work lays a foundation for exploring methods for LEM

synthesis based on the analogy between flat-folding origami models and linkage assembly.
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1 Introduction

Origami is the art of folding paper where ori- means fold and

-kami means paper. The scope and complexity of origami

has exploded in the last twenty years creating many different

schools of thought (Demaine et al., 2010). Recently in the

fields of science, mathematics and engineering, origami has

been used to solve complex problems such as airbag fold-

ing, shock absorption (crash box), and deployable telescopic

lenses (Cromvik, 2007; Ma and You, 2010; Heller, 2003).

Origami design is governed by mathematical laws, which if

better understood, could be applied in engineering. Specif-

ically, the authors propose that origami can provide inspi-

ration for synthesis techniques for compliant mechanisms.

This paper identifies key concepts that can link origami to

mechanism design.

Traditionally origami has been static and representational.

However, kinetic origami focuses on origami models that

have some novel motion. While the term “action origami”

is a more generally known term, we introduce the term ki-

netic origami to refer to models that exhibit a mechanical

motion and to differentiate from models such as paper air-

planes which are also referred to as action origami. Figure 1

shows two examples, where one is a static origami structure
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and the other is an action origami mechanism called a flasher

hat; it is shown in its fabricated and deployed forms. The way

an origami model folds also provides insight and another way

to classifying origami. The class of rigidly foldable origami

focuses on motion where the creases often act as joints and

the faces act as links with bending stress only occurring at

the creases (Tachi, 2006; Balkcom and Mason, 2008; Hull,

1994; Watanabe and Kawaguchi, 2006).

The process of folding origami has been examined using

kinematic theory (Dai and Jones, 2002; Balkcom and Mason,

2008; Tachi, 2006; Buchner, 2003). This paper focuses on

the motion of a finished origami and not the states in between

flat and final states.

Since origami relies on the deflection of flexible materials

it is a compliant mechanism. The origami mechanisms ex-

amined herein are all flat-folding in their final-folded state,

and so they are part of a subgroup of compliant mechanisms

called lamina emergent mechanisms (LEMs) (Jacobsen et al.,

2010). Lamina emergent mechanisms are compliant mecha-

nisms made from planar materials (lamina) with motion that

emerges out of the fabrication plane.

A productive connection between origami and compliant

mechanisms can be developed by drawing upon principles

from graph theory to depict the origami mechanisms via sim-

ple, planar connected graphs. These graphs can show how

the folds and facets interact with each other in their motion.

Graphs allow for improved understanding of the interaction
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Figure 1. Example of an origami structure (left) and flasher hat mechanism in its fabricated (middle) and deployed form (right).

between motion and structure of origami, and can help in

understanding how to predict complex motion and develop

corresponding mechanisms.

Origami’s rich history and research in design optimization

can provide an “orimimetic” perspective to LEM design that

can lead to the generation of novel mechanisms.

Objective

Orimimetic design refers to the application of the concepts of

folding to mechanism design. It can provide alternative ways

to achieve a particular range of motion; compliant mecha-

nisms have a similar aim. In addition, origami is achieved

from the manipulation of a planar material which motivates

its examination as a lamina emergent mechanism. The ob-

jective of this paper is to identify links between origami and

compliant mechanisms to facilitate the application of origami

design literature to compliant mechanism and LEM design.

2 Nomenclature

It is helpful to establish terminology to facilitate discussion.

Key terms, and their use, are provided below.

2.1 Origami

Origami. Origami is defined as the art of folding paper, and

in the context of engineering, it is the use of folding to solve

mechanical problems (Demaine and O’Rourke, 2007).

Kirigami. Kirigami is defined as the art of folding and

cutting paper (Hart, 2007). An example of kirigami is shown

in Fig. 2 with the side view showing how creases are made

such that the house pops out of the paper. Kinetic kirigami

models are often LEMs, especially kirigami pop-up models.

Hinge creases. In traditional origami hinge creases define

the boundaries between flaps. In the context of mechanisms

they are creases along which lies an interface of two planar

faces and it is the axis about which both facets rotate (De-

maine and O’Rourke, 2007).

Construction creases. Creases used to create references

in the construction of the mechanism are not directly used

to create motion, are referred to as construction creases. In

some cases, they coincide with hinge creases (Demaine and

O’Rourke, 2007).

Structural creases. Structural creases are used to define

the shape of flaps; they can be hinge creases as well. These

creases are not needed in most mechanisms and they are not

feasible for many materials. They may/can be substituted or

eliminated in various ways (Demaine and O’Rourke, 2007).

Crease vs. fold. A fold is an action and a crease is the

product of that action. Creases may be folded in one of two

ways: mountain or valley.

Mountain crease. A convex crease (Hull, 2002).

Valley crease. A concave crease (Hull, 2002).

2.2 Mechanisms

Compliant mechanism. Mechanisms which transfer or trans-

form motion, force, or energy at least in part through the

deflection of flexible members are compliant mechanisms

(Howell, 2001).

Lamina emergent mechanism. Lamina emergent mecha-

nisms (LEMs) are a subset of compliant mechanisms made

from planar materials (lamina) with motion that emerges out

of the fabrication plane (Jacobsen et al., 2010). They are a

subset of compliant mechanisms, in that they use the deflec-

tion of flexible members to achieve the desired motion. As a

subset of compliant mechanisms, LEMs can provide feasible,

repeatable solutions to advance the design and manufacturing

of products. The advantages of LEMs include: reducing the

number of parts, reducing cost, reducing weight, improving

recyclability, increasing precision, and eliminating assembly

(Jacobsen et al., 2010). The incorporation and use of LEMs

offer many potential advantages in the design of mechanical

products. These mechanisms can provide opportunities for

more cost-effective, compact, easy to assemble, and modular

products.

Spherical mechanism. In a spherical mechanism any point

in a moving body is confined to move within a spherical sur-

face, and all spherical surfaces of motion are concentric (Chi-

ang, 1988).
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Figure 2. A kirigami house made in cardstock.

Orimimetic. Orimimetic means the ability to imitate folds.

In an engineering design context, it refers to the ability to

use the concept of folding to solve problems. Specifically it

refers to the use of folding, either conceptually or literally, in

mechanism design.

2.3 Principles from graph theory

Graph. A graph consists of points, called vertices, and con-

nections, called edges (Marcus, 2008).

Planar graph. A graph with no edges crossing is a planar

graph (Marcus, 2008).

Facet. The area enclosed by a planar graph is referred to

as a facet.

Degree. The degree of a vertex is the number of edges that

occur at that vertex (Marcus, 2008).

Degree sequence. The degree sequence of a graph is the

degrees of each vertex listed in decreasing order (Marcus,

2008).

Regular graph, d-regular graph. A graph is considered

regular if all its vertices are of the same degree. It can be

referred to as a d-regular graph, where d is a non-negative

integer where each vertex has degree d (Marcus, 2008).

Generically rigid. A graph is generically rigid if almost

every realization of the graph is rigid. A realization of a

graph is an assignment of coordinates to joints but without re-

strictions on edge lengths. Generic realizations avoid degen-

eracies such as having three points collinear, four points con-

cyclic, or inducing parallel edges (Demaine and O’Rourke,

2007).

3 Origami background

These sections describe the relevant history and current ap-

plications of origami.

3.1 Origami history

The current origami movement began in the early 20th cen-

tury, though historically origami has its beginning in several

countries dating back to the Muromachi period, from 1333–

1573 AD (Demaine and O’Rourke, 2007). Akira Yosihzawa

and his origami works have been largely credited for the cre-

ative explosion in origami in the last century (Demaine and

O’Rourke, 2007). Since the 1920’s, origami design has be-

come increasingly complex and varied. Initially origami was

used to create figures and animals. As the art has progressed,

the models have become increasingly complex, starting with

a few to a few dozen steps to a few hundred or even a thou-

sand steps. In the last twenty years new branches of origami

have begun to be explored by more than artists; a growing

number of mathematicians, educators, engineers and scien-

tists have gathered to discuss the applications of origami in

their respective fields (Demaine and O’Rourke, 2007).

Closely related to origami are other forms of paper en-

gineering, such as kirigami, pop-up paper mechanisms, and

origami architecture (Winder et al., 2009a).

3.2 Origami applications in engineering and science

Previous work has focused on studying the folding process

to map the transition between initial and final states. An ex-

ample is airbag folding designs which unfold smoothly from

their flat starting state to their final volume (Cromvik, 2007).

The Diffractive Optics Group at Lawrence Livermore Labo-

ratory has worked on developing a telescope having a 100 m

diameter lens that could collapse to fit into a space vehicle

having a 4 m diameter and 10 m length. Lang used origami

to identify a design that would fit and maintain the integrity

of the surface when deployed into space (Heller, 2003; Wu

and You, 2010; Wei and Dai, 2009). Origami has also been

applied to the crash box of a car to improve energy absorbtion
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Figure 3. A common double slit kirigami representation and its

corresponding PRBM both shown placed in the crease of a folded

sheet of paper.

in a low speed collision (Ma and You, 2010). Miura explored

methods of folding maps that could be unfolded with the sim-

ple pull of a corner (Miura, 2002). In the 1980’s he invented

the Miura-ori pattern, which is used as a basis for folding

solar arrays (Miura and Natori, 1985). In 2005, Mahadevan

published findings that this same pattern exists in leaf fold-

ing, wings, and flower petals (Mahadevan and Rica, 2005).

4 Origami mechanisms

This paper considers kinetic origami or origami mechanisms

as opposed to origami structures. We will use the terms ki-

netic origami and origami mechanism interchangeably.

4.1 Kinematic modeling of origami mechanisms

Origami mechanisms are modeled with hinge creases as

joints and facets as links (Winder et al., 2009b). Origami

that is rigid-foldable is a “piecewise linear origami that is

continuously transformable without the deformation of each

facet” (Tachi, 2010). Rigid origami is also defined as having

regions of the paper between crease lines that do not need

to bend or twist in the folding process (i.e., the facet could

be replaced with sheet metal and hinge creases replaced by

hinges and it would still fold up) (Hull, 1994; Tachi, 2006).

Figure 4 shows an example of rigid origami made by mod-

eling the links of a square twist, a common origami unit for

tessellations, converted to a polypropylene compliant mech-

anism.

4.2 Origami and compliant mechanisms

Origami mechanisms are compliant mechanisms; their mo-

tion is a result of the deflection of the material. As a mate-

rial undergoes deformation, the resulting stored strain energy

gives rise to an internal spring force. Balkcom notes that “the

Figure 4. A rigid-foldable version of the square twist origami con-

structed from polypropylene sheet and paper. The polypropylene

shows that it behaves rigidly, where bending is only allowed at the

folds.

configuration of paper is determined by internal spring forces

as well as external forces and constraints” (Balkcom and Ma-

son, 2008). Thus, the origami can be viewed as a compliant

mechanism which can be modeled using the pseudo-rigid-

body model.

By focusing on origami in a fabricated state we only ex-

amine the hinge creases that contribute to the mechanism’s

structure and motion, not the folds that were used to con-

struct it.

Pseudo-rigid-body model

The pseudo-rigid-body model (PRBM) uses rigid-body com-

ponents, rigid links and springs, that have equivalent force-

deflection characteristics to model the deflection of flexi-

ble members (Howell, 2001). Figure 3 shows a common

kirigami double slit and its corresponding PRBM (Winder

et al., 2009a).

4.3 Origami as a lamina emergent mechanism

Because origami mechanisms are made from lamina mate-

rials it follows that they are LEMs. Traditionally, origami

designs are judged by their efficiency and accuracy in terms

of material usage and number of folds (Lang and Hull, 2005).

For a model of an animal, efficiency is often defined by the

ratio of the size of the final model to the initial sheet.

A branch of origami that is of special relevance to LEMs

is flat-folding origami, which is origami that folds to a flat

state, and tessellations or tilings, which could be useful for

LEM applications in arrays. The repetition of basic folds in

tessellations leads to the development of an origami mecha-

nism that expands and contracts thereby capturing the motion

that would be required for an array-type structure.

Table 1 lists examples of origami corollaries in each of the

six categories. The potential for origami insights in LEM de-

sign can be seen by mapping existing applications of origami

to the six application categories for LEMs (Albrechtsen et al.,

2010).
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Table 1. Origami Applications by LEM Technology Category.

LEM Application Class Origami Corollaries

Disposable mechanisms Packaging

Novel Array mechanisms Space sails

Telescopes

Scalable mechanisms Origami at nano-level

Cellular origami

Surprising Motion mechanisms Pop-up books

Shock-absorbing mechanisms Crash box

Deployable mechanisms Airbags

Stents

5 Linking origami to mechanisms with graphs

Principles from graph theory can be used as a tool to under-

stand how origami functions as a mechanism (Dobrjanskyj

and Freudenstein, 1967). Graphs can model both origami and

mechanisms on an abstract level and show their similarities.

The abstraction of origami mechanisms to graphs demon-

strates how the origami functions as a mechanism. Origami

mechanisms can be reduced to graphs which show how they

behave also. Applications of this are seen in Dai’s carton

folding research where graph theory is applied to show an

equivalent mechanism (Dai and Jones, 2002).

In a graph of a kinetic origami model folds become line

segments (edges) and links become nodes (vertices). From

such graphs it can be seen that origami mechanisms may be

thought of as interconnected linkages, with each loop rep-

resenting a linkage system. It is important to note that in

graph theory the shape of an edge or the position of the ver-

tices does not matter since graphs depict connections (Mar-

cus, 2008).

The crease pattern can be related to the graph of the

origami mechanism in some cases where all creases are hinge

creases and the origami can be flattened via actuation. In this

case the graph and crease pattern are considered dual graphs.

Figure 5 shows the square twist with its crease pattern and

corresponding graph overlaid. However, for the general case,

the crease pattern may include structural and construction

creases which aid in the folding of the origami but do not

contribute to the motion and therefore are not considered in

the origami’s corresponding graph.

Any simple planar connected graph with four segments

connecting four vertices that is a 2-regular graph represents

a four-bar mechanism. The graphs depict the degree of in-

terconnection for each linkage system. This is shown in how

each facet relates to its neighbouring facets. Each facet in a

graph represents a linkage having the same number of links

as nodes. For example, a facet (enclosed region) having four

Figure 5. The crease pattern for the square twist shown in Fig. 4 is

shown with its corresponding graph overlaid in black. In the crease

pattern the red corresponds to mountain folds and blue to valley

folds.

vertices (links) on the boundaries separating four segments

(joints) is representative of a four-bar linkage.

6 Paper mechanism examples

Four paper mechanisms are shown in Table 2 with their

corresponding kinematic and graphical representations. For

simplification, all four paper mechanisms are flat-folding

mechanisms and are rigid-foldable.

The kinematic representations for each mechanism exam-

ine a portion of the larger mechanism and its motion. When

the paper mechanisms have a flat initial state and they can

be represented with kinematics, by definition they can be re-

alized as a LEM. In addition, the graphs representing each

paper mechanism show more abstractly the mechanism and

how they are coupled. The graphs also indicate the type of

fold, where mountain folds are shown in red and valley folds

are in blue.

The four-bar double slit mechanism (Table 2, row 1) uses

the PRBM to show how each crease can be modeled as a joint

with a torsional spring. Its graph is a 2-regular graph. It has

three valley folds, and one mountain fold as indicated by the

colors of edges in the graph. Each link has only two joints

that define its motion.

For the 45-degree-fold twisting mechanism, also known

as the pop-up spinner card (Table 2, row 2) each center

fold, along the spine of the mechanism, is a 45 degree fold

(O’Rourke, 2011). The kinematic representation shows only

four links along the spine. The 45-degree-fold twisting

mechanism is a chain of four-bar mechanisms where those

links not on the ends share two links between each neigh-

bouring linkage system, and each inside link is constrained

by three joints with one of those joints shared between each

neighbouring linkage system.

The square twist mechanism (Table 2, row 3) is a se-

ries of coupled spherical mechanisms which collapse onto

one another. Figure 4 shows the basic square twist, and the
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Table 2. Table of Mechanisms.

Paper Mechanism Kinematic Representation Graph

1. Four-Bar Double Slit

2. 45-degree-fold Twisting Mechanism

3. Square Twist

4. Water Bomb Base Tessellation

Mech. Sci., 2, 217–225, 2011 www.mech-sci.net/2/217/2011/
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kinematic representation shows one of the four-bar linkages

seen at the corner of the twisting square platform. It may be

better to express the square twist as inter-connected four-bar

spherical mechanisms, which may be seen in the graph rep-

resentation. The outer corner links each connect to only two

joints. There are two neighbouring links on each end that are

connected to three joints and are shared between two linkage

systems. Of the 7 nodes of degree four, 3 are shared between

four linkage systems and 4 are shared between three linkage

systems.

Lastly, the kinematic representation for the water bomb

base tessellation is shown in Table 2, row 4. As a graph the

water bomb base tessellation is a 3-regular graph. The water

bomb base tessellation contains six-bar linkage systems that

are interconnected. Each link is shared between three link-

age systems via three joints. This is also the basic tessellation

used in the origami stent design which allows for the mecha-

nism to compact radially as well as lengthwise (Kuribayashi

et al., 2006).

7 Discussion

The examples in Table 2 examine a single four-bar mech-

anism, four-bars connected in series, four bars in series and

parallel, and a six-bar spherical mechanism. The use of graph

theory helps bridge the fields of origami and mechanisms.

Visually the graphs show how the origami models are in-

terconnected spherical mechanisms. The following sections

will introduce concepts for knowing whether a graph can be

realized as a flat-folding mechanism.

7.1 Mobility

Given any generic graph we can determine whether it is

generically rigid or flexible and subsequently realizable as

a mechanism or a structure, where a mechanism would be

classified as generically flexible and a structure as generi-

cally rigid. A generic graph can be realized as a mechanism

in two dimensions when

e< 2n−3 (1)

or in three dimensions when

e< 3n−6 (2)

where n is the number of nodes and e is the number of edges

in the graph (Demaine and O’Rourke, 2007). When

e= 2n−3 (3)

the graph is generically rigid.

7.2 Assembly

For a four-bar mechanism to be assembled it is required to

meet the criteria of

l< s+ p+q (4)

where l refers to the length of the longest link, s to the length

of the shortest link and p and q the lengths of the other links.

Likewise for an origami to be folded flat it must follow cer-

tain criteria. In determining flat-foldability it is assumed

models can be folded perfectly, ignoring folding error, that

paper has zero thickness, and that our creases have no width

(Hull, 2002). The following criteria were developed for de-

termining local flat-foldability, where local means about a

single vertex.

Theorem 1 (Kawasaki, Justin, Hull). A single-vertex

crease pattern defined by angles θ1+θ2+ ...+θn = 360◦ is flat-

foldable if and only if n [the number of creases] is even and

the sum of the odd angles θ2i+1 is equal to the sum of the

even angles θ2i, or equivalently either sum is equal to 180◦

(Demaine and O’Rourke, 2007).

This theorem is generally known as Kawasaki’s Theorem,

though also discovered independently by Justin in 1989. It’s

analogy in mechanisms is the condition for a changepoint

mechanism where

s+ l= p+q (5)

Theorem 2 (Maekawa [Kasahara and Takahama],

Justin). In a flat-foldable single-vertex mountain-valley pat-

tern defined by angles θ1+θ2+ ...+θn = 360◦, the number of

mountains and the number of valleys differ by ±2 (Demaine

and O’Rourke, 2007).

Theorem 2 is generally know as Maekawa’s Theorem. It

is essentially a condition for assembling a four-bar closed

kinematic chain.

Theorem 3 (Kawasaki, Justin). If an angle θi is a strict

local minimum (i.e., θi−1 > θi < θi+1), then the two creases

bounding angle θi have an opposite mountain-valley assign-

ment in any flat-foldable mountain-valley pattern (Demaine

and O’Rourke, 2007).

This theorem is analogous to the conditions defining the

classes for spherical four-bar LEMs where the shortest link

has to connect to two links having opposite direction assign-

ment.

An additional criterion is that a sheet can never penetrate

a fold. To determine this it is required to have the geometry

specified as well as the angles.

While criteria exist for determining the local flat-

foldability (for a single vertex crease pattern), determin-

ing global flat-foldability is np-hard (non-deterministic

polynomial-time hard). However we will explore the flat-

foldability of the square twist to better understand these rules

for assembly.

Square twist

The square twist crease pattern, shown in Fig. 6, has 212

possible assignments and of those only 16 are flat-foldable

(Hull, 2003). Figure 7 shows the 16 valid assignments for

the square twist. It should be noted that only 6 of these 16

are unique.

www.mech-sci.net/2/217/2011/ Mech. Sci., 2, 217–225, 2011



224 H. C. Greenberg et al.: Identifying links between origami and compliant mechanisms

1/2

1/4

Figure 6. Crease pattern for square twist.

1/2

1/4

Figure 7. The 16 possible square twists given Theorem 3.

Next by applying Theorem 2 we can determine the remain-

ing crease designations which are shown in Fig. 8.

It is easier to use the graph (on the right) as opposed to

the crease pattern for visualizing how Theorem 2 is applied.

Note that each subgraph for one of the four four-bars has

either 3 mountain and 1 valley folds or 1 mountain and 3

valley folds. Corresponding paper representations of each

are shown in Fig. 9.

All six paper models in Fig. 9 are flat-folded versions of

the square twist which are kinetic origami. An important

distinction to make is that while an origami can be folded

flat it does not mean that it is kinetic. Since all folds here

are simple folds and they are non-locking folds this allows

us to actuate the square twist to have the twisting motion to

go from a folded state (half the size of the original square)

back to the original square.

8 Conclusions

Graphs of kinetic origami and kirigami models were used to

show how the fields of origami and mechanisms are related.

We propose that some of the literature from the origami field

can be applied to mechanisms and vice versa. This was

shown by comparing the criteria for flat-foldability to some

conditions required for changepoint mechanisms to be as-

Figure 8. The 6 possible unique square twist crease patterns and

their corresponding graphs given Theorem 2.

Figure 9. Folded origami models corresponding to the 6 possible

square twists corresponding to those shown in Fig. 8.

sembled. As such it is anticipated that the abstraction to

graph theory will improve the ability to synthesize LEMs.

In addition, by examining the graphs of some paper mech-

anisms it is understood that their motion is achieved because

they are a system of coupled, or interconnected, mechanisms.

Graph theory includes theories for identifying whether a

generic graph is rigid or flexible in n-dimensions. As such

it is believed that given any generic graph we can know

whether it represents a structure or mechanism. Showing the

relationship between origami and mechanisms will facilitate

the application of origami design principles in the design of

compliant mechanisms and LEMs.
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