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ABSTRACT OF THESIS 

IDENTIFYING MECHANISMS OF HOST PLANT SPECIALIZATION IN APHIS 
CRACCIVORA AND ITS BACTERIAL SYMBIONTS 

  

Many insects form close relationships with microbial symbionts. Insect symbionts can provide 
novel phenotypes to their hosts, including influencing dietary breadth. In the polyphagous 
cowpea aphid, Aphis craccivora, the facultative symbiont Arsenophonus improves aphid 
performance on one host plant (locust), but decreases performance on other plants. The goal of 
my thesis was to investigate the mechanism by which Arsenophonus facilitates use of locust. 
First, I assembled an Aphis craccivora-Arsenophonus-Buchnera reference transcriptome to 
conduct RNAseq analysis, comparing gene expression in aphids feeding on locust and fava, with 
and without Arsenophonus infection. Overall, few transcripts were differentially expressed. 
However, genes that were differentially expressed mapped to a variety of processes, including 
metabolism of glucose, cytoskeleton regulation, cold and drought regulation, and B-vitamin 
synthesis. These results imply that Arsenophonus is producing B-vitamins, which might be 
deficient in locust. In a second set of experiments, I used qPCR to test whether symbiont 
function across host plants might be mediated by bacterial titer. I measured relative 
Arsenophonus abundance across plants, and found Arsenophonus titer was variable, but 
generally greater on locust than fava. In summary, my results suggest that Arsenophonus 
synthesis of B-vitamins should be further investigated and may be mediated by bacterial titer.       
 

KEYWORDS: Aphis craccivora, Arsenophonus, B-vitamins, facultative symbionts, host plant 
facilitation, relative symbiont abundance 
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Chapter 1: Background 

The last century has yielded a renaissance of understanding for insect-plant 

interactions. It has been recognized that both plant amino acids (Kennedy, 1965) and 

secondary metabolites (Fraenkel, 1959) have been driving forces in the coevolution of 

insect herbivores with plants (Ehrlich and Raven, 1964). In accordance with the Red 

Queen hypothesis (Van Valen, 1977), for millions of years insects and plants have been 

locked in evolutionary battle, causing plants to develop physical armaments and complex 

secondary chemicals to deter herbivores, and insects to develop countermeasures against 

plant defenses. Insect measures include behavioral mechanisms (Berenbaum, 1983; 

Dussourd and Eisner, 1987), sequestration (Conner et al., 2000; Eisner et al., 1974), 

detoxification (Brattsten et al., 1977; Krieger et al., 1971; Li et al., 2002), inhibition 

(Musser et al., 2002), and microbial symbiosis (Douglas, 2015; Hammer and Bowers, 

2015). 

 From the perspective of the insect host, microbial symbionts can be classified as 

obligate or facultative. Obligate symbionts are essential to their hosts’ survival, due to 

their nutritional provisioning abilities, being maternally transmitted to each new 

generation of offspring (Hansen and Moran, 2014). In contrast, facultative symbionts are 

more dynamic, occasionally being horizontally transmitted to new hosts, along with 

maternal transmission, and can provide novel phenotypes such as: heat tolerance, 

parasitoid defense, fungal defense, reproductive manipulation and host plant usage 

(Ferrari and Vavre, 2011; Hansen and Moran, 2014; Oliver et al., 2010; Oliver and 

Martinez, 2014). These novel phenotypes, in turn, potentially give the host access to new 

ecological niches (Ferrari and Vavre, 2011; Hansen and Moran, 2014; Oliver et al., 2010; 
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Oliver and Martinez, 2014). Due to their role in nutritional supplementation, obligate 

symbionts have a long coevolutionary history with sap feeding insects, being associated 

with the origin of major clades at least 270 million years ago (Baumann, 2005; Downie 

and Gullan, 2005; Moran, 2007; Moran et al., 2005; Munson et al., 1991; Thao, Clark, et 

al., 2000; Thao, Moran, et al., 2000). Obligate symbionts have opened access for their 

hosts to new niches through the ability to use nutritionally unbalanced diets (Bennett and 

Moran, 2015; McLean et al., 2016), but their intensive level of coadaptation has made 

hosts dependent on their symbionts, and they cannot survive on their imbalanced diets 

without their microbes (Fisher et al., 2017).  

This intense coadaptation also presents risks to the obligate symbiont. For the 

symbiont, the stable internal environment relaxes selection pressures on genes that code 

for products that would be critical for survival outside the host. Consequently, deleterious 

mutations accumulate in the symbiont genome causing pseudogenization and eventually 

purging of genes (Hansen and Moran, 2014). The gene loss leads to a reduced genome, 

where only minimal housekeeping gene are kept, along with genes that code for the 

nutrient provisioning that the host requires. Eventually, even the nutrient provision genes 

can be lost. Over evolutionary time, if the diet of the insect host provides a sufficient 

supply of the same amino acids that the obligate also produces, it can cause reduced 

selection pressure on the symbiont to produce these amino acids and lead to the loss of 

these nutritional supplementation genes; this leaves the insect host unable to rely on their 

obligate symbiont to produce these amino acids, forcing increased specialization onto 

host plants that have the required nutrients, narrowing the spectrum of potential hosts the 



 

3 
 

insect can feed on and in some cases leading to possible extinction (Bennett and Moran, 

2015; McLean et al., 2016).  

Like obligate symbionts, facultative symbionts can also affect their hosts’ ability 

to use host plants. Facultative symbionts have been correlated with, and in some cases 

shown to promote, a shift in host plant utilization (Ferrari et al., 2012; Frago et al. 2012; 

Henry et al., 2013; Leonardo and Muiru, 2003; Tsuchida et al, 2011; Wagner et al., 

2015). Facultative symbionts may influence insect-plant interactions through a few 

processes like secondary compound metabolism or nutritional supplementation. Research 

suggests facultative symbionts may facilitate metabolic detoxification of secondary 

chemicals (Ghanim and Kontsedalov, 2009; Pan et al., 2013) and/or nutritional 

supplementation of cofactors, vitamins, and nucleotides (Lamelas et al., 2011) may be 

involved. A facultative symbiont known to influence many insect-plant interactions, and 

possibly facilitate detoxification and nutritional supplementation, is Arsenophonus.  

Many strains of Arsenophonus are arthropod-associated and show a diversity of 

different biological interactions with their various hosts. Arsenophonus is a reasonably 

prevalent symbiont, infecting of 4-7% of arthropods (Duron et al., 2008). The aphid 

genus Aphis is particularly prone to Arsenophonus infection, with 31% of tested species 

infected (Jousselin et al., 2013). In the parasitoid wasp, Nasonia vitripennis, 

Arsenophonus nasoniae manipulates host reproduction, and genomic sequencing of this 

strain of Arsenophonus reveals genes for virulence and symbiosis (Darby et al., 2010; 

Wilkes et al., 2010). In obligate blood feeding arthropods, Arsenophonus has been found 

as an obligate or co-obligate symbiont that supplies B vitamins to its hosts (Dale et al., 

2006; Nováková et al., 2015). As a facultative symbiont in the sap feeder Nilaparvata 
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lugens, recent genomic studies have shown that Arsenophonus has the same capacity for 

B vitamin production (Xue et al., 2014). It is possible that the nutritional supplementation 

may be a key element in the facultative status of Arsenophonus across arthropods and in 

some cases, may facilitate use of host plants that might otherwise be challenging for the 

herbivore host alone.  

In the cowpea aphid, Aphis craccivora, Arsenophonus affects aphid performance 

across different host plants. Aphids infected with Arsenophonus have greater fitness 

when feeding on locust, Robinia pseudoacacia, than uninfected aphids, but when feeding 

on Vicia faba, fava, and Medicago sativa, alfalfa, infected aphids perform more poorly 

than uninfected aphids (Wagner et al., 2015). The mechanism behind increased aphid 

performance on locust when infected with Arsenophonus is currently unknown. I 

hypothesize that Arsenophonus may either be providing nutritional supplementation or 

detoxification of locust-associated secondary plant chemicals.  

The first possibility is that Arsenophonus could be helping the cowpea aphid cope 

with nutritional deficiency on locust. Host plant quality had been shown to affect aphid 

morph production, development rate, and fecundity (Nevo and Coll, 2001). Previous 

research has shown that aphid performance can vary greatly depending on differences in 

amino acid composition among different plant species (Douglas, 1993; Sandstrom and 

Pettersson, 1994). Differences in amino acid profiles can have a potentially profound 

effect on aphids. If locust phloem is nutritionally deficient, Arsenophonus may provide a 

way to produce metabolic components like amino acids, vitamins, or cofactors. The 

production of B vitamins is a likely possibility as Arsenophonus in the Hippoboscidae fly 
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(Nováková et al., 2015) and N. lugens (Xue et al., 2014) have the capabilities to produce 

B vitamins for their hosts.  

Alternatively, Arsenophonus may help the aphid overcome secondary plant 

defense chemicals. Secondary chemicals in plants, which were once considered waste 

products, are now widely understood to be defensive compounds (Becerra et al., 2009; 

Ehrlich and Raven, 1964; Richards et al., 2015). Alfalfa, fava and locust are all a part of 

the plant family Fabaceae (Doyle and Luckow, 2003). There are a variety of secondary 

metabolites present within Fabaceae, and there is differential secondary chemistry among 

different groups within the family (Wink, 2013). Microbial symbionts across many 

different insect groups have been found to detoxify potentially toxic chemicals (Hammer 

and Bowers, 2015). If Arsenophonus can produce enzymes linked to detoxification, it 

could explain how Arsenophonus facilitates the use of locust, particularly if locust has 

some secondary chemical compounds that fava or alfalfa do not. 

The main of objective of my thesis is to understand the role Arsenophonus plays 

in improving cowpea aphid performance on locust.  I addressed this topic through two 

different methods: RNAseq analysis and qPCR. In Chapter 2, I used RNAseq analysis of 

the joint transcriptome of Aphis craccivora, its facultative symbiont Arsenophonus, and 

its obligate symbiont Buchnera aphidicola. In this exploratory process, I looked for 

differential gene expression across host plants, to generate mechanistic hypotheses for 

Arsenophonus function. Following my transcriptomic results, in Chapter 3 I used qPCR 

to assess how the Arsenophonus bacterial population size (titer) responds to the selective 

environments of locust and fava. I hypothesized that bacterial titer would be higher on 

locust than fava because aphids experience increased performance when infected and 
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feeding on locust compared to those infected and feeding on fava. More generally, the 

results from my thesis may give insight into the role facultative symbionts may play in 

the evolution of dietary breadth and host plant usage in herbivores. 
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Chapter 2: Differential expression of the Aphis craccivora-Arsenophonus-Buchnera 

transcriptome in response to two different host plants 

Introduction 

Insect herbivores have been closely tied to plants for millions of years. In 

response to the herbivore threat, plants have developed physiological, molecular, and 

chemical defenses to deter the feeding of insects, evolving into many divergent taxa in 

the process (Agrawal and Weber, 2015; Futuyma and Agrawal, 2009). Selection 

pressures, biotic and abiotic, have prompted insect herbivore evolution of behavioral 

avoidance mechanisms (Berenbaum, 1983; Dussourd and Eisner, 1987), sequestration 

(Conner et al., 2000; Eisner et al., 1974), detoxification (Brattsten et al., 1977; Krieger et 

al., 1971; Li et al., 2002), inhibition (Musser et al., 2002), and microbial symbiosis 

(Douglas, 2015; Hansen and Moran, 2014). Particularly critical to many insect clades, 

bacterial symbiosis has influenced host plant utilization and the evolution of many insect 

herbivores (Dussourd and Eisner, 1987; Schoonhoven et al., 2005).  

Many insect herbivores are associated with symbionts. From the perspective of 

the insect hosts, symbionts can be split into two categories; primary obligate symbionts, 

which are essential to the function of their hosts and provide nutritional supplementation, 

and facultative symbionts, which are non-essential, but can provide a range of functions 

(Douglas, 2015; Hansen and Moran, 2014). Obligate symbionts helped their hosts to 

initially colonize niches where key nutrients are missing, such as plant phloem, which in 

turn facilitated the adaptive radiation of their insect hosts into diverse clades (Bennett and 

Moran, 2015; McLean et al., 2016). Obligate symbionts are non-free living, with small 

population sizes that experience regular bottlenecks, and thus have no opportunity for 
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genetic recombination (Hansen and Moran, 2014). The internal cellular environment of 

their hosts is benign, meaning that selection pressures on any traits not necessary for 

symbiosis are reduced or absent, thus allowing the accumulation, and subsequent 

fixation, of deleterious mutations and erosion of the genome, losing elements that would 

be necessary for free-living microbes (Hansen and Moran, 2014). Even genes important 

to nutritional supplementation can eventually be lost, restricting ecological host range and 

possibly even leading to extinction of both host and symbiont (Bennett and Moran, 2015; 

McLean et al., 2016). These processes lead to obligate symbionts having a few 

characteristic traits, including A+T bias in their DNA makeup, reduced genome size, and 

lack of mobile DNA elements (Hansen and Moran, 2014).  However, many host lineages 

with failing obligate symbionts have acquired another microbial partner to augment or 

replace the original. There are many examples of insect clades with co-symbionts or 

replacement symbionts (Koga et al., 2013; McCutcheon et al., 2009; McCutcheon and 

von Dohlen, 2011; Urban and Cryan, 2012). But where do these replacement symbionts 

come from? One possibility would be facultative symbionts that co-occur in the same 

host. 

Facultative symbionts are non-essential to their hosts, but some do hold the 

capacity to provide nutritional functions like obligate symbionts. In the right 

circumstances, if an obligate symbiont loses the ability synthesize nutritional components 

and the facultative symbiont can produce the nutritional components lost in the obligate, 

the insect host may be able to continue with the facultative compensating for the obligate. 

In the aphid species Cinara cedri, functional annotation of the genomes of both the 

obligate symbiont, Buchnera, and the facultative symbiont, Serratia, indicate that 
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Serratia may be transitioning from a facultative symbiont to a co-obligate. Buchnera has 

lost the ability to synthesis some nutritional components, but Serratia has retained these 

missing nutritional synthesis pathways (Lamelas et al., 2011).  The transition of 

facultative symbiont to obligate does not seem to be isolated to Serratia only, as the same 

process may be happening in Hamiltonella, in the aphid genus Uroleucon (Degnan and 

Moran, 2008) and whitefly Bemisia tabaci (Sagot et al., 2015), along with facultative 

symbionts in weevils (Toju et al., 2013). However, most facultative symbionts are likely 

not transitioning to a co-obligate or replacement status, as the loss of obligate symbiont 

function is a rare event over evolutionary time.  

Unlike obligate symbionts, many facultative symbionts provide their hosts with 

novel phenotypes that can give access to a wider array of ecological niches (Douglas, 

2015; Hansen and Moran, 2014; Oliver et al., 2010; Su et al., 2013). In aphids, there is 

evidence that colonization of novel host plants has been facilitated by the presence of 

facultative symbionts (Frago et al., 2012; Henry et al., 2013; Wagner et al., 2015). 

Aphids with similar ecologies across different regions have been found harboring the 

same facultative symbiont (Henry et al., 2013), along with a pattern of higher infection 

frequency in host-alternating or polyphagous aphid species suggesting a specific 

metabolic function (McLean et al., 2016). Akin to the co-obligate or replacement 

symbioses, it has been suggested that facultative symbionts may be providing nutritional 

supplementation (Oliver et al., 2010). Alternatively, it is possible that facultative 

symbionts may provide plant secondary chemical detoxification abilities, similar to many 

gut symbionts (Hammer and Bowers, 2015). Understanding the molecular underpinnings 

of facultative symbionts will help define the metabolic function(s) they may contribute in 
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facilitation of novel host plants.  A molecular method that can be used to discover the 

metabolic functions of facultative symbionts, transcriptomics, can act as a hypothesis-

generating procedure, allowing annotation and identification of differentially expressed 

symbiont genes between different host plants, which can provide clues to symbiont 

function.  

Aphis craccivora, the cowpea aphid, is a global polyphagous pest that can be 

infected with a variety of facultative symbionts (Brady and White, 2013). In Eastern 

North America, the cowpea aphid is mainly found on two host plants, alfalfa and locust, 

with aphids on locust almost always associated with the infection by the facultative 

symbiont Arsenophonus (Wagner et al., 2015). Arsenophonus infected cowpea aphids 

have increased performance on locust when compared to uninfected aphids. In contrast, 

Arsenophonus infected cowpea aphids perform worse on alfalfa and fava when compared 

to their uninfected counterparts (Wagner et al., 2015).  

Knowing that Arsenophonus infected aphids perform better on locust, we can 

manipulate the host plants the aphids are feeding on and explore the effects on the 

transcriptome of the aphid and its facultative symbiont. I used next generation sequencing 

technologies to explore the molecular mechanisms behind this aphid-symbiont 

interaction. Using RNA-seq, I created an Aphis craccivora-Arsenophonus-Buchnera 

reference transcriptome. Then, using the reference transcriptome, I compared expression 

of Arsenophonus infected and uninfected cowpea aphids on both locust and fava to 

identify molecular mechanisms associated with Arsenophonus infection and locust 

utilization, with a specific focus on bacterial biological pathways linked to host plant 

facilitation.  
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Methods 

My experiment aimed to generate plausible hypotheses to explain how 

Arsenophonus facilitates the use of locust as a host plant by the cowpea aphid, Aphis 

craccivora. My experiment consisted of a 2 × 2 factorial design: aphid infection status 

(Infected with Arsenophonus vs Uninfected) by host plant (Robinia pseudoacacia, locust 

vs Vicia faba, fava). I used three genetically distinct aphid clones in the experiment, 

which came from colonies that had been maintained in the lab on fava multiple years 

prior to the experiment (Table 2.1). Each aphid colony had originally been initiated with 

a single aphid individual, which parthenogenetically reproduced to produce genetically 

identical aphid populations. Two of the clones, LE+ and LW+, were naturally infected 

with Arsenophonus. Sub-colonies of each of these clones were subsequently cured of 

infection via antibiotic diet (LE- and LW-; Wagner et al., 2015). The third clone, AL-, 

was naturally uninfected with Arsenophonus, and was experimentally transfected with 

Arsenophonus via hemolymph microinjection (AL+; Wagner et al., 2015). Thus, for all 

three clones we had paired, genetically identical colonies, differing only in Arsenophonus 

infection status. For the experiment, each of these six colonies was subdivided and reared 

on both fava and locust, for a total of 12 experimental units. Each colony was maintained 

in a 3.78-liter plastic jar with mesh panels for ventilation fitted over either fava or locust 

seedlings growing in 10cm pots. Aphids fed on the host plants for approximately 2 weeks 

under ambient laboratory temperature (22° + 4°C) and supplemental full spectrum lights 

(16 L:8 D).  

For each of the 12 colonies, nymphal aphids were collected for RNA extraction. 

All aphid nymphs collected from fava were 4th instar, but limited supply of aphids on 
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locust required a broader collection range, corresponding to all 1st-4th instar nymphs.  For 

each sample approximately 50 aphids were collected (corresponding to 3.00-18.0 mg 

fresh weight aphid/sample).  RNA was isolated from each sample by homogenizing 

specimens in Trizol reagent, and purified using QIAGEN RNeasy Plus Universal RNA 

extraction kit (Hilden, Germany) according to manufacturer protocols.  RNA 

concentration was assessed using a Thermo Fisher Scientific nanodrop 2000 

spectrophotometer (Waltham, MA, USA).  

RNA sample library preparation and sequencing were performed at the Beckman 

Coulter Genomics sequencing facility (Danvers, MA, USA). In total, 14 A. craccivora 

RNA samples were sequenced, two of which were not part of the experiment described 

above (Table 2.2). Each library was prepared using Illumina TruSeq Stranded Total RNA 

Library Prep Kit, which includes Ribo-Zero chemistry to reduce ribosomal representation 

in the library. Libraries were multiplexed into a single sample that was sequenced across 

2 lanes on an Illumina HiSeq 2500 platform with 2 x 100bp read lengths. Samples were 

demultiplexed and adapters were removed from the reads by the sequencing facility.  In 

total, 463,982,406 reads were produced across the 14 samples, all of which I used to 

construct the reference transcriptome, which I subsequently used to evaluate differential 

expression of the 12 experimental samples.   

To construct the reference transcriptome, I pre-processed the samples using the 

programs FastQC (Andrews, 2010) to check quality and Trimmomatic (Bolger et al., 

2014) to remove low quality sequences. Standard Trimmomatic settings were used, an 

internally calculated quality score that accounts for sequence quality was used to remove 

leading low-quality nucleotide bases below 3, trailing low-quality nucleotide bases below 
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3, entire sequences where a 4-base sliding window indicated average quality per a base 

dropped below 15, and sequences that were shorter than 36 bases. Next, I created a de 

novo assembly of the Illumina reads using Trinity software on the University of 

Kentucky high performance computing cluster. Reads were normalized through in silico 

read normalization processes, which produced a combined transcriptome for Aphis 

craccivora, its obligate symbiont Buchnera, and the facultative symbiont Arsenophonus. 

A de novo assembly was needed as all three organisms’ have congeneric genomes 

available, but not conspecific. Transcriptome mapping and coverage statistics were 

generated in CLC Genomics workbench 10.1.1 (CLC Bio, Aarhus, Denmark, 

http://www.clcbio.com/) using default read alignment options.  

Within CLC genomics workbench, I used the RNA-Seq Analysis with default 

read alignment options to map the reads from each individual sample set back to the 

Trinity reference to produce transcript expression tracks. Differential expression analysis 

was also run within CLC genomics workbench. For expression analysis options, paired 

reads were counted as two (two reads in an intact pair are each counted as one mapped 

read and mapped members of broken pairs each get a count of one). The differential 

expression was used to compare aphid infection status (Infected with Arsenophonus vs 

Uninfected) by host plant (locust vs fava).  I then had four differential expression 

contrasts: 1) infected with Arsenophonus on locust vs infected with Arsenophonus on 

fava, 2) uninfected on locust vs uninfected on fava, 3) infected with Arsenophonus on 

locust vs uninfected on locust and 4) infected with Arsenophonus on fava vs uninfected 

on fava. Comparison 1 was used to identify candidate genes associated with improved 

aphid performance on locust in the presence of Arsenophonus. Comparison 2 identified 
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transcripts that change expression across hostplants even in the absence of Arsenophonus.  

By comparing this group of transcripts to the first group, I could then identify candidates 

that were uniquely associated with change of hostplant use in the presence of 

Arsenophonus. Comparisons 3 and 4 were used to look for transcripts associated with 

symbiont infection on each host plant. Aphid clone was not incorporated into any of these 

contrasts. All comparisons were made using expression values measured in Reads Per 

Kilobase of transcript per Million mapped reads (RPKM) that were transformed (log 2) 

and normalized according to quantile values. P-values for differential gene expression 

were adjusted with a False Discovery Rate (FDR) correction; values at α = 0.05 following 

correction were considered significant.  

To identify differentially expressed genes, I blasted significantly differentially 

expressed transcripts using the BLAST2GO pipeline within CLC genomics workbench. 

In “CloudBlast,” I used blastx against the NCBI non-redundant protein sequences 

database. Separately, I also used both blastx and blastn to verify the origin of my 

transcripts by blasting them against Aphididae, Buchnera, and Arsenophonus specific 

NCBI non-redundant protein sequences and nucleotide collection databases respectively.  

Results 

I generated a de novo assembled Aphis craccivora-Arsenophonus-Buchnera 

transcriptome from Illumina paired reads of 14 different clonal samples. The 

transcriptome nucleotide distribution was AT biased at 68.2%.  In total, 326,591 contigs 

were generated with lengths 200bp and longer (Table 2.3). The total length of assembled 

contigs was 335.819 Mb and the N50 was 2023bp (Table 2.3). On average, 99% of reads 

mapped back to the assembled transcriptome (Table 2.4)  
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The differential expression comparisons looked at different combinations of aphid 

infection status and host plant, with three aphid clones as replicates for each treatment. 

The four comparisons were: 1) infected with Arsenophonus on locust vs infected with 

Arsenophonus on fava, 2) uninfected on locust vs uninfected on fava, 3) infected with 

Arsenophonus on locust vs uninfected on locust and 4) infected with Arsenophonus on 

fava vs uninfected on fava. 

The first comparison of interest was of Arsenophonus infected aphids on locust 

versus fava. Only 5 transcripts were significantly differentially expressed, after correcting 

for the false discovery rate (Table 2.5). All five were upregulated on fava relative to 

locust, and none of them originated from Arsenophonus. Four of the transcripts were all 

isoforms of the same gene, corresponding to an uncharacterized protein from the 

Acyrthosiphum pisum genome (LOC103310381; Table 2.5). The fifth DE transcript was 

the outer membrane porin, OmpA-like protein, from the obligate symbiont Buchnera.  

 The second comparison was of uninfected cowpea aphid on locust versus 

uninfected cowpea aphids on fava. Overall, there were 44 DE genes in the absence of 

Arsenophonus (Table 2.6). When comparing these genes to those identified in the first 

comparison, 3 of the 5 genes listed for the first contrast are also found in the second 

contrast (Table 2.7). This indicates that most of the differential expression from the 

primary comparison is not specifically associated with Arsenophonus infection. Of the 44 

DE genes in the uninfected aphid contrast, three originated from Buchnera and the rest 

from the aphid (Table 2.6). Most of the DE genes were upregulated on fava, but 12 of 

them were upregulated on locust. Of the genes upregulated on locust, 10 were associated 

with Aphis craccivora and 2 were associated with Buchnera (Table 2.6). The 10 DE 
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aphid genes correspond to: three isoforms of maltase A3-like which is involved in 

carbohydrate metabolism, tropomyosin isoform X10, which affects cytoskeleton 

regulation, cold and drought-regulated CORA-like protein, an A pisum uncharacterized 

protein (LOC107171435), and 4 genes that had no match in blastx. The 2 DE Buchnera 

genes are serine acetyltransferase, which participates in the pathways for cysteine and 

sulfur metabolism, and a putative protein (ECO:0000313).  

 When looking at the third comparison, of Arsenophonus infected aphids on locust 

vs uninfected aphids on locust, there were 75 DE genes (Table 2.8). However, of these 

75, 71 were from Arsenophonus, which obviously correspond to the Arsenophonus 

infected treatment (Table 2.8). Of these Arsenophonus genes, 2 were connected to B-

vitamin metabolism, beta-ketoacyl-[acyl-carrier-] synthase I and serine acetyltransferase 

(Strauss et al., 2001; Toomey and Wakil, 1966). The 4 non-Arsenophonus genes were all 

from Buchnera, with 3 being upregulated in the Arsenophonus infected treatment and 1 

being upregulated in the uninfected treatment (Table 2.8). The 3 Buchnera genes 

upregulated in infected aphids were:1) a Buchnera gene that has homology with the 

hypothetical protein ALO39_101110 from the bacterium Pseudomonas syringae, 2) 

ORF16-lacZ fusion which metabolizes lactose, and 3) an operon that codes for shikimate 

dehydrogenase (aroE) and cysteinyl-tRNA synthetase (cysS), which are involved with the 

production of aromatic amino acids and cysteine metabolism respectively. The 1 DE 

Buchnera gene upregulated in uninfected aphids, which is also upregulated on fava in 

comparison 1, is OmpA-like protein.  

The fourth and final comparison was of Arsenophonus infected aphids on fava vs 

uninfected aphids on fava. The Arsenophonus infected to uninfected comparison on fava 
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had 56 DE genes (Table 2.9). As expected, many of these genes (50), were of 

Arsenophonus origin, corresponding to the presence or absence of the facultative 

symbiont (Table 2.9). When contrasting comparison 3 and comparison 4, 49 of the 

Arsenophonus genes were the same (Table 2.7), and all represented bacterial maintenance 

genes (Table 2.8; Table 2.9). Of the DE genes unique to comparison 3, only the 2 B-

vitamin synthesis genes, beta-ketoacyl-[acyl-carrier-] synthase I and serine 

acetyltransferase (Strauss et al., 2001; Toomey and Wakil, 1966), were not linked to 

bacterial maintenance. For the 6 non-Arsenophonus genes in comparison 4, 4 are from 

Buchnera and 2 are of aphid origin (Table 2.9). From Buchnera, 3 genes were 

upregulated in the Arsenophonus infected treatment and 1 was upregulated in the 

uninfected treatment (Table 2.9). These 3 genes were hypothetical protein 

ALO39_101110, ORF16-lacZ fusion, and the operon containing aroE along with cysS 

(all 3 of which were also found in comparison 3). The 1 DE Buchnera gene that was 

upregulated in the uninfected treatment had no matches in blastx. Both DE aphid genes 

were upregulated in the Arsenophonus treatment (Table 2.9). Of the 2 upregulated aphid 

genes, one codes for glutathione S-transferase isoform D-like and the other has no match 

in blastx.  

Discussion 

I expected a significant transcriptomic response when I compared gene expression 

of Arsenophonus-infected aphids feeding on locust (an environment where the symbiont 

has been shown to have beneficial fitness effects) versus Arsenophonus-infected aphids 

feeding on fava.  However, the overall differential gene expression was of only 5 genes in 

total, all of which were upregulated on fava. None of these genes were from 
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Arsenophonus and instead came from the aphid host and the primary symbiont, 

Buchnera. The aphid genes are all related to an uncharacterized protein from A. pisum 

(LOC103310381), so not much functional information can be learned from them. The 

single Buchnera gene, with 41-fold upregulation on fava, was the porin membrane 

protein OmpA.  

OmpA, as found in Escherichia coli, provides structural integrity to the outer 

cellular membrane, can serve as a receptor to phages, and permits the diffusion of small 

solutes, which could possibly include amino acids (Manning et al., 1977; Sugawara and 

Nikaido, 1992; Wang, 2002). Considering that both Buchnera and Escherichia coli are 

gammaproteobacteria (Nováková et al., 2013), the proteins probably function similarly in 

Buchnera, albeit with a few differences. In Buchnera, the protein is used for host 

recognition purposes (Tamas et al., 2001), has been shown to have host interaction in 

hampering symbiont cell division (Login and Heddi, 2013), and is involved in amino acid 

metabolism (Sabater-Muñoz et al., 2017). For both comparison 1 and 3, OmpA was down 

regulated in conjunction with Arsenophonus on locust. Speculatively, Arsenophonus may 

obviate some part of the Buchnera OmpA function when aphids feed on locust. 

 To understand if the DE differences seen in our Arsenophonus infected treatments 

were a response to infection or host plant, we also compared gene expression of 

uninfected aphids on locust and fava as a control comparison. The same aphid isoforms 

of A. pisum protein LOC103310381 were upregulated on fava, even in the absence of 

Arsenophonus, indicating their expression is a general response to host plant changes, and 

not directly related to the symbiont. In the uninfected aphids, we detected several other 

genes that were differentially expressed as well, including three isoforms of maltase A3-
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like, tropomyosin isoform X10, which affects cytoskeleton regulation, and cold and 

drought regulated CORA-like protein, all of which were upregulated on locust. The 

presence of maltase A3-like leads me to speculate that locust may have a higher starch 

content than fava, which maltase A3-like metabolizes into glucose (Stafford-Banks et al., 

2014). Tropomyosin is a thin filament associated protein involved in muscle contraction 

(Lee et al., 2016; Meng et al., 2014). Within lepidopteran herbivores, changes in host 

plant nutrition can be linked to expression of tropomyosin isoform involved in flight 

muscle metabolism (Portman, 2013). This may be flight related for aphids as well, as not 

all aphids become winged alates, and the developmental trigger for an aphid to become 

an alate is often related to nutritional stress (Nevo and Coll, 2001). It is possible that there 

were more nymphs destined to become alates on locust versus fava, because we were not 

able to control for this factor during sample collection. Serine acetyltransferase in 

Buchnera was also upregulated on locust. This protein catalyzes serine, which is 

subsequently used in the pathway of cysteine amino acid synthesis (Kredich and 

Tomkins, 1966; Shigenobu et al., 2000) and can also be used in production of the B-

vitamin, Pantothenate (Strauss et al., 2001). If the phloem from locust had high serine 

levels, which has been shown under non-drought conditions (Liu et al., 2013), Buchnera 

could be overexpressing serine acetyltransferase. The transcriptional response of aphids 

lacking Arsenophonus shows that host plant quality may have some effect on the aphid 

host and its primary symbiont. However, it provides no clues to the function of 

Arsenophonus.  

 The final set of contrasts compared the transcriptome of aphids with and without 

Arsenophonus on each host plant. It was expected that the majority of DE of genes in 
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these dual comparisons would likely correspond to Arsenophonus itself, which was 

present in the infected treatment but absent in the uninfected treatment. This expectation 

was validated with 75 of the DE genes deriving from Arsenophonus, and only 4 DE genes 

originating from Buchnera. Forty-nine of the DE Arsenophonus genes were detected 

from both aphids on locust and on fava. The bulk of these genes represent bacterial 

maintenance genes. However, shared amongst Arsenophonus infected aphids on both 

plants, are two standout Arsenophonus genes, lipoyl synthase and 3,4-dihydroxy-2-

butanone-4-phosphate. Both genes produce intermediate products in B-vitamin pathways 

and are also found in the Arsenophonus of the brown planthopper, Nilaparvata lugens 

(Xue et al., 2014). The DE for only the Arsenophonus infected versus uninfected locust 

comparison showed yet two more Arsenophonus genes connected to B-vitamin 

metabolism, beta-ketoacyl-[acyl-carrier-] synthase I and serine acetyltransferase (Strauss 

et al., 2001; Toomey and Wakil, 1966). Interestingly, in the blood feeding family of flies, 

Hippoboscidae, Arsenophonus exists as an obligate symbiont that most likely produces 

B-vitamins for its hosts (Nováková et al., 2015). For one Hippoboscidae species, 

phylogenetic analysis shows that its obligate Arsenophonus symbiont is closely related to 

facultative Arsenophonus symbionts within sap feeders (Dale et al., 2006). As suggested 

with Arsenophonus in the Hippoboscidae fly (Nováková et al., 2015) and N. lugens (Xue 

et al., 2014), Arsenophonus might be providing the Aphis craccivora host B-vitamins. 

This is just speculative and needs experimental manipulation to test this hypothetical 

functional relationship.  

 From a transcriptomics perspective, there are a few experimental shortcomings 

that could be improved in future efforts. First, the age of aphid nymphs could be more 
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strictly controlled. Use of a broader range of aphid instars on locust was unavoidable in 

the present experiment, due to a limited supply of aphids. The life stage used for an 

expression study can make a difference in the DE seen (Brisson et al., 2007; Brisson et 

al., 2010) and using several instars may have increased the variability in our results. 

Additionally, it is possible we did not have enough read depth, or replicate clones to 

reliably detect differential expression. RNAseq experiments in general have lots of 

variation, since there is only so much that can be controlled for in experiments and 

changing conditions can drastically affect expression. Transcriptomic studies function 

effectively as exploratory tools, allowing the production of hypothesis driven questions. 

A future step should be qPCR validation on the DE genes seen here, with an emphasis on 

those related to vitamin B synthesis. Further transcriptomic studies could increase read 

depth, allowing for identification of more DE genes. An expanded repertoire of DE genes 

might reveal genes related to host plant utilization that we did not find in the present 

experiment.  
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Table 2.1: Aphid clonal lines used for the RNAseq experiment. 

Clonal 
Line 

Host plant 
of origin 

Infection status Means of 
symbiont 
infection 

Collection 
location 

Date of 
collection 

LE+ Locust Ars + Naturally 
infected 

37⁰57’N 
84⁰43’W 

Sept 
2011 

LE- Locust Uninfected Cured 37⁰57’N 
84⁰43’W 

Sept 
2011 

LW+ Locust Ars + Naturally 
infected 

37⁰57’N 
84⁰23’W 

Sept 
2011 

LW- Locust Uninfected Cured 37⁰57’N 
84⁰23’W 

Sept 
2011 

AL+ Alfalfa Ars + Transinfected 38⁰04’N 
84⁰39’W 

Aug 
2011 

AL- Alfalfa Uninfected Naturally 
uninfected 

38⁰04’N 
84⁰39’W 

Aug 
2011 
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Table 2.2: Samples used to generate the transcriptome, including 12 experimental 

samples and 2 additional samples.  

Clonal line 
(Sample) 

Origin 
host plant 

Feeding 
host plant 

Arsenophonus 
presence 

Symbiont 
manipulation 

Experimental 
Samples 

    

LE+ Locust Locust Present Naturally infected 

LE+ Locust Fava Present Naturally infected 

LE- Locust Locust Absent Cured of 
Arsenophonus  

LE- Locust Fava Absent Cured of 
Arsenophonus 

LW+ Locust Locust Present Naturally infected 

LW+ Locust Fava Present Naturally infected 

LW- Locust Locust Absent Cured of 
Arsenophonus 

LW- Locust Fava Absent Cured of 
Arsenophonus 

AL+ Alfalfa Locust Present Transinfected  

AL+ Alfalfa Fava Present Transinfected 

AL- Alfalfa Locust Absent Naturally 
uninfected 

AL- Alfalfa Fava Absent Naturally 
uninfected 

Additional 
Samples 

    

AC1AB- Alfalfa Fava Absent Cured of 
Hamiltonella 

SHP- Locust Fava Absent Naturally 
uninfected 
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Table 2.3: Transcriptome contig statistics for A. craccivora-Buchnera-Arsenophonus 

joint transcriptome.  

Contig measurements Length (bp) 
N50 2,023 
N20 4,328 
Median length 495 
Average 1028 
Total 335,819,155 
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Table 2.4: Mapping statistics of 12 experimental sample reads to A. craccivora-

Buchnera-Arsenophonus joint transcriptome. 

Measurements Count Average 
length 

Total bases 
(bp) 

Percentage 
mapped (%) 

Total reads 432,223,538 100 43,222,353,800  
Mapped 429,572,673 100 42,957,267,300 99.39 
Not mapped 2,650,865 100 265,086,500 0.61 
Contigs 326,591 1,028.26 335,819,155  
Reads in pairs 394,909,800 162.70 39,490,980,000 91.37 
Broken paired reads 34,662,873 100 3,466,287,300 8.02 
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Table 2.5: Differentially expressed genes between Arsenophonus-infected aphids feeding 

on locust versus fava.  

Transcript identifier 
Gene 
length 
(bp) 

Product description Fold 
change P-value  Upregulated 

on 

Aphis craccivora      
Unique to PL vs PF*      

     DN59507_c1_g1_i2 1676 A. pisum uncharacterized 
protein LOC103310381 -11.41 0.00013 Fava 

Shared with NL vs NF*      

     DN59507_c1_g1_i1 1304 A. pisum uncharacterized 
protein LOC103310381 -84.37 6.52E-09 Fava 

     DN59507_c1_g1_i3 2099 A. pisum uncharacterized 
protein LOC103310381 -10.42 1.63E-05 Fava 

     DN59507_c1_g1_i6 713 A. pisum uncharacterized 
protein LOC103310381  -8.68 0.00014 Fava 

Buchnera      
Unique to PL vs PF*      

     DN70885_c0_g1_i1 257 outer membrane A 
precursor  -41.11 0.00434 Fava 

*Abbreviations: P stands for Arsenophonus infected, N stands for uninfected, L is 
locust host plant, and F is fava host plant. 
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Table 2.6: Differentially expressed genes between uninfected cowpea aphids on locust 

versus fava.  

Transcript identifier 

Gene 
length 
(bp) Product description 

Fold 
change P-value  

Upregulated 
on 

Aphis craccivora      
Unique to NL vs NF*      
DN63093_c5_g3_i2 515 maltase A3-like 10.84 0.00122 Locust 
DN58402_c4_g1_i1 649 maltase A3-like 10.06 0.0058 Locust 
DN61795_c9_g1_i6 706 A. pisum uncharacterized protein LOC107171435 7.57 0.00304 Locust 
DN63093_c2_g1_i1 501 maltase A3-like 5.62 4.05E-06 Locust 
DN62929_c5_g6_i1 443 tropomyosin isoform X10 4.67 0.00299 Locust 
DN61233_c0_g1_i3 324 cold and drought-regulated CORA-like 3.88 6.23E-05 Locust 
DN61233_c2_g1_i2 1742 no match 3.24 1.33E-05 Locust 
DN62618_c0_g1_i1 274 no match 2.6 0.00194 Locust 
DN62618_c0_g6_i1 202 no match 2.55 0.0177 Locust 
DN62618_c0_g8_i1 230 no match 2.14 0.00644 Locust 
DN62100_c5_g1_i18 765 40S ribosomal S7 -70.45 0.00315 Fava 
DN96811_c0_g1_i1 947 no match -33.02 0.0239 Fava 
DN55094_c0_g2_i1 434 no match -30.08 0.00571 Fava 
DN57421_c0_g1_i2 1456 aminoacylase-1-like isoform X1 -8.28 7.25E-16 Fava 
DN65072_c2_g3_i5 2115 beta-retaining glycosyl hydrolase -7.16 3.77E-06 Fava 
DN58696_c2_g1_i3 242 transport Sec61 subunit gamma -5.84 0.0428 Fava 
DN65491_c6_g3_i11 405 unconventional myosin-XVIIIa isoform X4 -5.66 0.0408 Fava 
DN58467_c2_g3_i1 2027 A. pisum uncharacterized protein LOC100573101 -5.42 0.00171 Fava 
DN59433_c4_g1_i6 555 cuticle 7-like -5.15 0.00083 Fava 
DN59809_c5_g1_i2 1802 A. pisum uncharacterized protein LOC107173407 -4.78 0.00134 Fava 
DN58778_c8_g2_i4 1454 TPA_inf: cathepsin B -4.37 4.05E-06 Fava 
DN58949_c8_g1_i2 1895 A. pisum uncharacterized protein LOC107165607 -4.09 0.00147 Fava 
DN54183_c0_g1_i1 848 proteasome subunit alpha type-7-1 -3.89 0.00774 Fava 
DN51361_c0_g1_i1 841 MD-2-related lipid-recognition -like -3.86 0.00387 Fava 
DN57987_c18_g1_i1 3193 sclerostin domain-containing 1 -3.56 9.97E-05 Fava 
DN61102_c9_g4_i1 403 cuticular precursor -3.5 0.0128 Fava 
DN59067_c7_g2_i2 3198 agrin -3.33 6.38E-06 Fava 
DN60158_c1_g1_i2 1813 nuclear polyadenylated RNA-binding 3 -3.15 0.00083 Fava 
DN62443_c7_g4_i1 1638 A. pisum uncharacterized protein LOC100167400 -3.14 0.0148 Fava 
DN61710_c2_g1_i2 1083 soluble calcium-activated nucleotidase 1 -3.13 0.0486 Fava 
DN57596_c0_g1_i1 229 no match -3.05 0.0284 Fava 
DN61610_c5_g1_i1 383 no match -2.96 0.00299 Fava 
DN58792_c1_g3_i1 3696 A. pisum uncharacterized protein LOC107168224 -2.36 0.0354 Fava 
DN61437_c6_g2_i3 791 ATP synthase subunit mitochondrial -2.19 2.03E-11 Fava 

DN62950_c2_g1_i4 2617 
A. pisum uncharacterized protein LOC107165083 
isoform X2 -2.18 0.00644 Fava 

DN64092_c4_g1_i1 1775 urease accessory -like -2.17 0.00333 Fava 
DN64007_c1_g1_i3 1599 muscle -1.84 9.54E-05 Fava 
DN58973_c5_g2_i2 785 mitochondrial-processing peptidase subunit beta -1.72 0.00429 Fava 
Shared with PL vs PF*      
DN59507_c1_g1_i1 1304 A. pisum uncharacterized protein LOC103310381 -64.49 5.19E-07 Fava 
DN59507_c1_g1_i3 2099 A. pisum uncharacterized protein LOC103310381 -5.78 0.000111 Fava 
DN59507_c1_g1_i6 713 A. pisum uncharacterized protein LOC103310381 -4.44 9.54E-05 Fava 
Buchnera      
Unique to NL vs NF*      
DN45610_c0_g1_i1 233 serine acetyltransferase 28.49 0.0439 Locust 
DN58726_c0_g2_i18 428  putative protein ECO:0000313 14.92 0.0355 Locust 
DN57981_c0_g3_i1 327 hypothetical protein ESOG_04481, partial -9.85 0.0354 Fava 

*Abbreviations: P stands for Arsenophonus infected, N stands for uninfected, L is locust 
host plant, and F is fava host plant. 

  



 

28 
 

Table 2.7: Summary table for transcriptional response comparisons   

Transcriptional  Ars+ Ars-  
response Locust vs Fava Locust vs Fava Overlap 
Upregulated in Locust 0 12 0 
Upregulated in Fava 5 32 3 
Total 5 44 3 
Transcription Locust Fava  
response Ars+ vs Ars- Ars+ vs Ars- Overlap 
Upregulated in Ars+ 74 55 49 
Upregulated in Ars- 1 1 0 
Total 75 56 49 
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Table 2.8: Differentially expressed genes between Arsenophonus-infected and uninfected 

cowpea aphids on locust.  

Transcript identifier  Gene 
length 
(bp) 

Product description Fold 
change 

P-value  Upregulated 
on 

Arsenophonus 
  

 
 

 
Unique to PL vs NL* 

  
 

 
 

DN63397_c5_g1_i1 240 Uncharacterised protein [Shigella sonnei] 635.43 1.29E-15 Ars + 
DN57702_c0_g7_i1 875 serine acetyltransferase 582.55 1.45E-12 Ars + 
DN56518_c2_g2_i1 343 cell wall-associated hydrolase 537.05 1.11E-13 Ars + 
DN65502_c3_g4_i1 299 hypothetical protein BTY97_18675 531.81 3.60E-14 Ars + 
DN44815_c0_g1_i1 243 Quinone oxidoreductase 449.99 5.92E-15 Ars + 
DN20855_c0_g1_i1 294 Uncharacterised protein 256.27 2.57E-19 Ars + 
DN58726_c0_g2_i2 374 secreted ECO:0000313 255.99 4.89E-12 Ars + 
DN65067_c0_g2_i5 374 daphnid bacterial-ribosomal-RNA- possible HGT 232.95 0.00905 Ars + 
DN65557_c5_g1_i1 1010 superoxide dismutase [Mn] 108.7 0.00441 Ars + 
DN58081_c1_g3_i1 212 conserved hypothetical protein 97.32 1.15E-10 Ars + 
DN56952_c0_g2_i1 7357 phenylalanine--tRNA ligase subunit beta 82.04 0.00303 Ars + 
DN54507_c1_g1_i1 4723 beta-ketoacyl-[acyl-carrier- ] synthase I 79.05 0.00235 Ars + 
DN55867_c1_g2_i1 443 hypothetical protein XBKQ1_1410001 78.41 0.0254 Ars + 
DN46776_c0_g1_i1 3953 molecular chaperone 74.86 0.0254 Ars + 
DN51157_c0_g1_i1 4334 peptidase M23 69.15 0.00201 Ars + 
DN48630_c0_g1_i1 2533 plasmid stabilization 67.94 0.00433 Ars + 
DN65557_c3_g7_i1 1834 murein DD-endopeptidase 66.99 0.0116 Ars + 
DN43079_c1_g2_i1 5772 transketolase 60.06 0.024 Ars + 
DN40091_c0_g1_i1 5260 Cold-shock DEAD box A 53.45 0.0275 Ars + 
DN97069_c0_g1_i1 648 30S ribosomal S20  40.85 0.0209 Ars + 
DN67994_c0_g1_i1 443 50S ribosomal L25 39.56 0.0132 Ars + 
DN58358_c0_g2_i1 665 SsrA-binding protein [Arsenophonus sp. ENCA] 26.47 1.79E-05 Ars + 
DN61866_c2_g7_i1 214 daphnid bacterial-ribosomal-RNA- possible 22.65 0.0104 Ars + 
DN64845_c6_g1_i1 235 hypothetical protein NTHI1209_00002 

[Haemophilus influenzae] 
7.33 0.0367 Ars + 

DN56404_c3_g2_i1 498 conserved hypothetical protein 5.11 0.00314 Ars + 
Shared with PF vs NF* 

  
 

 
 

DN58358_c0_g1_i6 941 SsrA-binding protein [Arsenophonus sp. ENCA] 698.29 4.41E-16 Ars + 
DN39876_c1_g1_i1 2783 molecular chaperone 587.29 1.76E-09 Ars + 
DN57009_c0_g1_i1 2209 16S rRNA (cytidine(1402)-2 -O)-methyltransferase 539.42 1.01E-34 Ars + 
DN65557_c3_g6_i1 1212 transposase IS5 ssgr IS903 family 476.64 2.11E-27 Ars + 
DN81462_c0_g1_i1 1386 porin 432.42 4.13E-17 Ars + 
DN65502_c3_g3_i9 416 dehydration responsive 398.58 6.79E-11 Ars + 
DN39355_c0_g1_i1 502 heat-shock 379.76 2.47E-05 Ars + 
DN24426_c0_g1_i1 1562 tRNA dihydrouridine synthase 318.76 9.15E-14 Ars + 
DN39355_c0_g2_i1 1045 heat-shock 307.95 7.10E-05 Ars + 
DN81995_c0_g1_i1 451 murein lipo 266.69 4.29E-07 Ars + 
DN30853_c1_g1_i1 1341 porin 216.01 8.67E-12 Ars + 
DN29545_c0_g1_i1 3434 molecular chaperone 198.64 9.14E-06 Ars + 
DN47916_c0_g1_i1 679 50S ribosomal L21 197.62 1.51E-07 Ars + 
DN65557_c3_g2_i2 458 IS5 IS1182 family transposase 197.55 4.25E-12 Ars + 
DN59119_c2_g1_i1 833 primosomal replication N 195.41 1.94E-09 Ars + 
DN54389_c0_g2_i1 230 membrane [ECO:0000313] 190.76 4.17E-12 Ars + 
DN89639_c0_g1_i1 1333 Z-ring-associated 181.79 5.88E-08 Ars + 
DN59518_c3_g1_i2 1451 elongation factor Tu 179.06 7.92E-09 Ars + 
DN59119_c5_g1_i1 543 50S ribosomal L9 172.42 1.58E-07 Ars + 
DN65557_c3_g1_i1 548 hypothetical protein [Arsenophonus nasoniae] 171.8 1.93E-07 Ars + 
DN58932_c3_g2_i1 1379 transcriptional regulator 166.72 6.85E-08 Ars + 
DN65557_c3_g2_i1 621 IS5 IS1182 family transposase 163.64 3.96E-09 Ars + 
DN65267_c1_g8_i8 14797 pre- translocase subunit 159.76 4.28E-08 Ars + 
DN58538_c2_g5_i6 266 Quinone oxidoreductase [Escherichia coli O25b:H4] 155.65 4.12E-11 Ars + 
DN65557_c20_g1_i1 657 50S ribosomal L28 155.15 3.34E-08 Ars + 
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Table 2.8, continued  
Transcript identifier  Gene 

length 
(bp) 

Product description Fold 
change 

P-value  Upregulated 
on 

 

Arsenophonus 
  

 
 

  
Shared with PF vs NF* 

  
 

 
  

DN55229_c0_g2_i1 1100 50S ribosomal L13 116.94 5.65E-06 Ars +  
DN59518_c3_g1_i1 6816 elongation factor G 116.74 8.96E-06 Ars +  
DN53747_c0_g2_i1 3313 Secretion system effector C ( ) like family 116.16 2.93E-05 Ars +  
DN1534_c0_g1_i1 863 lipoyl synthase 102.21 0.000363 Ars +  
DN89650_c0_g1_i1 633 peroxidase  100.7 0.00062 Ars +  
DN55356_c0_g1_i1 6136 30S ribosomal S1 94.74 0.000451 Ars +  
DN59518_c5_g1_i1 12763 DNA-directed RNA polymerase subunit beta 87.36 7.77E-05 Ars +  
DN40593_c0_g1_i1 1448 flavodoxin 85.065 0.00289 Ars +  
DN54817_c0_g2_i1 3605 signal recognition particle 75.11 0.000397 Ars +  
DN73782_c0_g1_i1 1464 enoyl-[acyl-carrier- ] reductase 72.53 0.000556 Ars +  
DN59212_c1_g10_i1 266 conserved hypothetical protein 70.66 2.46E-06 Ars +  
DN65557_c3_g2_i3 684 IS5 IS1182 family transposase 68.41 0.00667 Ars +  
DN60979_c0_g3_i2 295 hypothetical protein ALO80_101181 67.92 1.03E-06 Ars +  
DN90989_c0_g1_i1 909 conjugal transfer pilus assembly protein TraU 

[Arsenophonus nasoniae] 
54.51 0.000361 Ars +  

DN61866_c2_g7_i2 501 daphnid bacterial-ribosomal-RNA- possible 37.51 0.000948 Ars +  
DN61866_c2_g7_i3 425 daphnid bacterial-ribosomal-RNA- possible 22.03 0.0132 Ars +  
DN59212_c1_g7_i1 309 hypothetical conserved 18.66 0.00201 Ars +  
DN59212_c1_g8_i2 320 3,4-dihydroxy-2-butanone-4-phosphate synthase 13.99 2.04E-05 Ars +  
DN65067_c1_g4_i1 282 hypothetical protein Abol_046_003 11.96 3.55E-05 Ars +  
DN35650_c0_g1_i1 206 Putative uncharacterized protein 11.92 0.0271 Ars +  
DN63397_c5_g8_i2 356 PG1 homology to Homo sapiens 7.62 4.95E-06 Ars +  
Buchnera 

  
 

 
  

Unique to PL vs NL* 
  

 
 

  
DN70885_c0_g1_i1 257 outer membrane A precursor -13.69 0.0419 Ars -  
Shared with PF vs NF* 

  
 

 
  

DN60979_c0_g3_i1 294 hypothetical protein ALO39_101110 109.61 3.06E-06 Ars +  
DN63397_c5_g8_i5 2763 ORF16-lacZ fusion 16.25 2.15E-07 Ars +  
DN65502_c3_g3_i2 444 shikimate dehydrogenase (aroE) gene, complete 

cds; 23S ribosomal RNA and 5S ribosomal RNA 
genes, complete sequence; and cysteinyl-tRNA 
synthetase (cysS) gene, partial cds 

13.8 0.000279 Ars +  

*Abbreviations: P stands for Arsenophonus infected, N stands for uninfected, L is locust host plant, and F 
is fava host plant. 
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Table 2.9: Differentially expressed genes between Arsenophonus-infected and uninfected 

cowpea aphids on fava.  

Transcript identifier  

Gene 
length 
(bp) Product description 

Fold 
change P-value  

Upregulated 
on 

Aphis craccivora      
Unique to PF vs NF*      
DN60515_c4_g10_i1 442 no match 352.94 0.038 Ars + 
DN63642_c3_g3_i1 581 glutathione S-transferase isoform D-like 18.88 5.87E-03 Ars + 
Arsenophonus      
Unique to PF vs NF*      
DN58358_c0_g1_i8 397 transcriptional regulator 270.71 5.90E-14 Ars + 
DN65067_c0_g2_i2 374 daphnid bacterial-ribosomal-RNA- possible HGT 24.27 3.25E-08 Ars + 

DN59212_c1_g3_i6 280 
conserved hypothetical protein [Brucella suis bv. 4 
str. 40] 21.9 0.00153 Ars + 

DN60179_c4_g9_i1 215 IS1 transposase 6.84 2.47E-05 Ars + 
Shared with PL vs NL*       
DN65557_c3_g6_i1 1212 transposase IS5 ssgr IS903 family 410.84 3.48E-13 Ars + 
DN81462_c0_g1_i1 1386 porin 404.19 2.16E-16 Ars + 
DN39876_c1_g1_i1 2783 molecular chaperone 390.68 3.59E-13 Ars + 
DN57009_c0_g1_i1 2209 16S rRNA (cytidine(1402)-2 -O)-methyltransferase 358.24 1.72E-15 Ars + 
DN58358_c0_g1_i6 941 SsrA-binding protein [Arsenophonus sp. ENCA] 342.03 1.74E-16 Ars + 
DN24426_c0_g1_i1 1562 tRNA dihydrouridine synthase 245.81 4.04E-08 Ars + 
DN65557_c3_g2_i2 458 IS5 IS1182 family transposase 202.59 4.04E-08 Ars + 
DN30853_c1_g1_i1 1341 porin 187.86 5.95E-08 Ars + 
DN65502_c3_g3_i9 416 dehydration responsive 150.89 1.96E-19 Ars + 
DN59119_c2_g1_i1 833 primosomal replication N 147.41 1.48E-06 Ars + 
DN65557_c20_g1_i1 657 50S ribosomal L28 147.15 1.66E-05 Ars + 

DN59212_c1_g10_i1 266 
conserved hypothetical protein [Asaia platycodi 
SF2.1] 142.03 1.95E-11 Ars + 

DN39355_c0_g1_i1 502 heat-shock 136.56 1.20E-03 Ars + 
DN29545_c0_g1_i1 3434 molecular chaperone 132.99 2.91E-05 Ars+ 
DN39355_c0_g2_i1 1045 heat-shock 130.53 1.78E-03 Ars + 
DN59518_c3_g1_i2 1451 elongation factor Tu 122.45 1.93E-05 Ars+ 
DN65557_c3_g1_i1 548 hypothetical protein 118.33 1.66E-05 Ars + 
DN65267_c1_g8_i8 14797 pre translocase subunit 108.87 4.08E-05 Ars + 
DN65557_c3_g2_i1 621 IS5 IS1182 family transposase 99.51 1.00E-03 Ars + 
DN47916_c0_g1_i1 679 50S ribosomal L21 98.36 8.92E-05 Ars + 
DN89639_c0_g1_i1 1333 Z-ring-associated 98.01 2.48E-05 Ars + 

DN59119_c5_g1_i1 543 
50S ribosomal protein L9 [Arsenophonus sp. 
ENCA] 95.01 5.28E-04 Ars + 

DN55229_c0_g2_i1 1100 50S ribosomal L13 94.63 8.15E-04 Ars + 

DN90989_c0_g1_i1 909 
conjugal transfer pilus assembly protein TraU 
[Arsenophonus nasoniae 93.91 0.00645 Ars + 

DN81995_c0_g1_i1 451 murein lipo 90.05 2.46E-06 Ars + 
DN58932_c3_g2_i1 1379 transcriptional regulator 87.78 1.23E-05 Ars + 
DN59518_c3_g1_i1 6816 elongation factor G 83.92 2.52E-03 Ars + 
DN58538_c2_g5_i6 266 Quinone oxidoreductase [Escherichia coli O25b:H4] 83.39 3.67E-16 Ars + 
DN61866_c2_g7_i3 425 daphnid bacterial-ribosomal-RNA- possible 74.05 2.00E-13 Ars + 
DN59518_c5_g1_i1 12763 DNA-directed RNA polymerase subunit beta 73.46 0.00404 Ars + 
DN89650_c0_g1_i1 633 peroxidase  72.07 0.00156 Ars + 
DN53747_c0_g2_i1 3313 Secretion system effector C ( ) like family 69.57 2.11E-02 Ars + 
DN73782_c0_g1_i1 1464 enoyl-[acyl-carrier- ] reductase 69.42 0.005532 Ars + 
DN55356_c0_g1_i1 6136 30S ribosomal S1 67.79 1.28E-02 Ars + 
DN54817_c0_g2_i1 3605 signal recognition particle 66.85 4.96E-03 Ars + 
DN59212_c1_g8_i2 320 3,4-dihydroxy-2-butanone-4-phosphate synthase 64.68 5.81E-12 Ars + 
DN61866_c2_g7_i2 501 daphnid bacterial-ribosomal-RNA- possible 63.32 3.10E-13 Ars + 
DN65557_c3_g2_i3 684 IS5 IS1182 family transposase 62.57 0.013421 Ars + 
DN1534_c0_g1_i1 863 lipoyl synthase 57.64 0.0218 Ars + 
DN40593_c0_g1_i1 1448 flavodoxin 56.99 2.33E-02 Ars + 
DN60979_c0_g3_i2 295 hypothetical protein ALO80_101181 23.75 0.00407 Ars + 
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Table 2.9, continued 

Transcript identifier  

Gene 
length 
(bp) Product description 

Fold 
change P-value  

Upregulated 
on 

Arsenophonus      
Shared with PL vs NL*      
DN54389_c0_g2_i1 230 membrane {ECO:0000313 19.68 1.02E-12 Ars + 
DN63397_c5_g8_i2 356 PG1 homology to Homo sapiens 15.87 4.22E-09 Ars + 

DN59212_c1_g7_i1 309 
conserved hypothetical protein [Asaia platycodi 
SF2.1] 15.74 1.67E-06 Ars + 

DN35650_c0_g1_i1 206 Putative uncharacterized protein 15.54 9.86E-05 Ars + 
DN65067_c1_g4_i1 282 hypothetical protein Abol_046_003 4.36 0.0517 Ars + 
Buchnera      
Unique to PF vs NF*      
DN55094_c0_g2_i1 434 no match -25.62 4.08E-02 Ars - 
Shared with PL vs NL*      
DN60979_c0_g3_i1 294 hypothetical protein ALO39_101110 291.56 1.67E-06 Ars + 
DN63397_c5_g8_i5 2763 ORF16-lacZ fusion 14.65 1.30E-10 Ars + 

DN65502_c3_g3_i2 444 

shikimate dehydrogenase (aroE) gene, complete cds; 
23S ribosomal RNA and 5S ribosomal RNA genes, 
complete sequence; and cysteinyl-tRNA synthetase 
(cysS) gene, partial cds 8.72 3.59E-11 Ars + 

*Abbreviations: P stands for Arsenophonus infected, N stands for uninfected, L is locust host plant, and F 
is fava host plant.  
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Chapter 3: Investigation of relative Arsenophonus abundance changes across two 

host plants 

Introduction 

Microbial partners have played a key role in helping insects adapt to countless 

environments. From the insect host’s perspective, symbionts can be split into primary 

obligate symbionts, which are essential to the function of their hosts and provide 

nutritional supplementation, and facultative symbionts, which are non-essential to host 

function and provide a range of possible functions, including defense against parasitoids, 

heat tolerance, or change in plant usage (Douglas, 2015; Hansen and Moran, 2014; Oliver 

et al., 2010; Su et al., 2013). While obligate symbionts come at a consistent metabolic 

cost to their insect host, the costs associated with facultative symbionts are less stable  

(Douglas, 2015; Hansen and Moran, 2014). Infected hosts can experience a net cost or 

net benefit relative to an uninfected host, dependent on the cost to benefit ratio. The ratio 

itself is not fixed, as costs and benefits shift according to external and internal factors.  

Many facultative symbionts are vertically transmitted from mother to offspring, 

and this transmission process is likely tied to both the cost and benefit of symbiotic 

infection. Fidelity of vertical transmission is often dependent on the size of the bacterial 

population, or bacterial titer, within the host; lower bacterial titer can result in imperfect 

transmission leading to a loss of infection (Hosokawa et al., 2007; Serbus et al., 2011). In 

contrast, higher titer often improves transmission efficiency (Hosokawa et al., 2007), and 

can increase the beneficial phenotypes induced by the symbiont (Iturbe‐Ormaetxe et al., 

2011), but can also impose fitness penalties on the host if titer gets too high, potentially 

even resulting in premature host death (Serbus et al., 2011). Thus, the host-symbiont 



 

34 
 

relationship is a balancing act, with both the host and symbiont trying to optimize costs 

and benefits, potentially by mediating symbiont titer (Hansen and Moran, 2014; Oliver et 

al., 2014).  

Balancing selection works to keep facultative symbionts at intermediate titers, but 

various environmental conditions can influence the cost to benefit ratio, changing the 

optimization point for both organisms and thus influencing titer (Oliver et al., 2014). The 

external environmental conditions of the insect host habitat and internal insect physiology 

can affect symbiont titer. The insect host can act as a “environmental conduit” in which 

host sex, life stage, and genotype can greatly affect symbiont titer (Leclair et al., 2016; 

Parkinson et al., 2017; Zhang et al., 2016). Therefore, it is reasonable to believe that the 

internal environment of an insect host can be affected the nutritional content received 

from its diet resulting in changes in symbiont titer. I hypothesize, from knowledge of 

previous studies investigating facultative symbiont titer, when the insect host feeds on 

different host plants, that there is selection for higher titer of facultative symbionts on 

certain host plants (Enders and Miller, 2016; Ghanim and Kontsedalov, 2009; Oliver et 

al., 2010; Pan et al., 2013).  

The aim of this study is to investigate how the titer of a beneficial facultative 

symbiont changes across different environments (i.e. host plants). Specifically, the 

facultative symbiont Arsenophonus has been shown to improve cowpea aphid (Aphis 

craccivora) fitness on the host plant Robinia pseudoacacia, black locust, relative to 

uninfected aphids, but to decrease aphid performance on Vicia faba, fava, and Medicago 

sativa, alfalfa (Wagner et al., 2015). Thus, aphids receive a net benefit from 

Arsenophonus infection when feeding on locust, but a net cost when on the other plants.  
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Using this system, I hypothesize that Arsenophonus titer will be higher when the 

aphid is maintained on locust (where the symbiont is more beneficial), and lower when 

the host aphid is maintained on fava (where the symbiont is less beneficial). To address 

this hypothesis, I performed three separate experiments. In the first experiment, I 

evaluated symbiont titer in laboratory aphid colonies that were switched to locust after 

years of maintenance on fava, where the symbiont conferred no advantage to the aphid 

host. In the second experiment, I collected new aphid colonies off locust in the field and 

monitored symbiont titer over time when maintained long term on locust versus fava.  

Finally, in the third experiment I evaluated symbiont titer of aphids collected directly 

from different host plants in the field to test whether Arsenophonus titer differed across 

host plants under natural conditions. 

Methods 

Experiments were conducted with clonal colonies of the cowpea aphid, Aphis 

craccivora. Each genetically uniform colony had been initiated with a single individual 

collected in North America (Table 3.1). Insects were reared on either fava or locust as 

host plants. Plants were seeded at 2-4 seeds per 10 cm pot in Promix potting media, 

grown in a greenhouse with supplemental light to ensure 16L:8D daylength. Locust seeds 

were scarified in boiling water, then planted 24 h later (Aliero, 2004). All plants were 

watered 3 times a week, and grown for 2-3 weeks prior to adding aphids. Aphids were 

caged and maintained at ambient laboratory temperature (22 + 4ºC) under full spectrum 

lights for 16L:8D. They were caged in 3.78 L plastic jars with mesh panels for 

ventilation, and subsets of aphids were transferred to fresh plants every 2 weeks.  
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Experiment 1: To evaluate whether host plant affected Arsenophonus titer, I first 

used laboratory colonies that had been maintained for up to 6 years on fava prior to 

experimentation, and evaluated whether titer increased in these colonies if the aphids 

were switched to locust. I used 3 genetically distinct aphid clones: LE, LW, and AL 

(Table 3.1). Clone nomenclature is consistent with previous studies (e.g. Wagner et al. 

2015). Both LE and LW were naturally infected with Arsenophonus, whereas AL was 

experimentally transinfected with Arsenophonus via hemolymph microinjections 

(Wagner et al. 2015). Before the start of and during the experiment, aphids from each 

colony were tested for Arsenophonus infection using diagnostic PCR (Table 3.2; Wagner 

et al. 2015). I set up 6 replicate jars from each clone on fava and 6 on locust, for a total of 

36 aphid colonies as experimental units. Each colony was maintained on its host plant for 

4 months.  

Five fourth instar aphids were collected and pooled from each colony for DNA 

extraction, using DNeasy® Blood and Tissue Kit (Qiagen, Valencia, CA). I extracted 

DNA according to manufacturer's protocols, except reagent volumes were halved for the 

cell lysis step, and I used WS Gencatch™ DNA Purification Buffer (Epoch Life Science 

Inc., Missouri City, Texas) as a supplemental buffer. DNA concentration for each sample 

was first assessed using a Thermo Fisher scientific nanodrop 2000 spectrophotometer 

(Waltham, MA, USA) and then normalized to 5-10 ng/ul using AE Buffer (DNeasy 

Blood and Tissue Kit, Qiagen) as done in previous symbiont studies (Enders and Miller 

2016, Martinez et al. 2014). To quantify Arsenophonus abundance, I used quantitative 

PCR to estimate the relative abundance of the Arsenophonus MN cell division protein 

(ftsK) in relation to aphid elongation factor 1⍺ (Ef1⍺), both of which are single copy 
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genes. Primer sequences and cycling conditions are detailed in Table 3.2. All qPCR 

reactions were performed in 10µL volume on the StepOnePlus™ Real-Time PCR System 

(Waltham, MA, USA) using QuantiTect® SYBR® Green PCR Kit, with 500 nmol/L of 

each primer and 5-10 ng input DNA. All primers produced a single unique melt peak. 

Individual samples were run in triplicate along with a negative control without DNA 

template (Enders and Miller 2016).  

 The aphid host gene Ef1⍺ was used to standardize differences in endosymbiont 

concentrations among individual extractions on the same qPCR plate by multiplying each 

sample Ct by a correction factor (CF = maximum Ef1⍺ Ct/sample Ef1⍺ Ct) (Enders and 

Miller 2016, Martinez et al. 2014). Relative endosymbiont abundance (RA) was 

calculated through 2-ΔCt; where ΔCt   = Ct (endosymbiont gene) – Ct (Ef1⍺). RA was log 

(x+1) transformed, to better fit assumptions of normality and equal variance. All RA 

analyses were conducted using SAS software (v. 9.4, SAS Institute Inc., Cary, NC). The 

SAS command PROC GLM was used to compare RA in a fully factorial model with 

type III errors, with host plant and aphid clone as fixed factors. For clone, post hoc 

multiple comparisons were performed using Tukey HSD tests on least squared means. 

Experiment 2: As a separate investigation of host plant effect on Arsenophonus 

titer, I conducted a yearlong timeseries experiment comparing Arsenophonus titer 

between aphids feeding on locust versus fava using 3 newly initiated aphid colonies. The 

three new aphid clones (LO, LC, and LP) were initially collected from infested locust 

trees (Table 3.1). Individual aphids from each location were set up on fava leaves 

embedded in 1% agar in 35 mm Petri dishes. Once progeny were produced, aphids from 

each dish were tested for Arsenophonus infection using diagnostic PCR (Table 3.2; 



 

38 
 

Wagner et al. 2015). Once Arsenophonus infection was validated, genetically identical 

sisters from each clone were subdivided to initiate three replicate sub-colonies on locust, 

and three sub-colonies on fava. Experimental design, rearing methods and Arsenophonus 

quantification methods were the same as the previous experiment. RA was log (x+1) 

transformed and was evaluated in the 1st, 2nd, 6th, 8th, 10th, and 12th months of rearing. I 

compared titer using a fully factorial fixed effects model in SAS (SAS software, Version 

9.4 of the SAS System for Windows Copyright© 2002-2012 SAS Institute Inc., Cary, 

NC, USA.) with the command PROC GLIMMIX. My design was unstructured to 

account for the unequally spaced timepoints, with treatment (fava or locust), and aphid 

clone (LO, LC, and LP), also included as factors. Post hoc multiple comparisons were 

performed using Tukey HSD tests on least squared means. 

Experiment 3: My final experiment evaluated Arsenophonus titer in cowpea aphid 

specimens collected from five separate host plants (Robinia pseudoacacia, Vicia faba 

Acacia retinodes, Leucanthemum paludosum and Rosa hybrida) in the field. The samples 

came from a previous survey evaluating facultative symbiont infection prevalence in 

world populations of cowpea aphids and only specimens that previously tested positive 

for Arsenophonus, via diagnostic PCR, were used in the present study (Brady et al., 2014) 

(Table 3.3). Up to 5 randomly chosen specimens were used per population; some host 

plants were represented by multiple aphid populations from different locations. Because 

these samples were older and possibly degraded, they were diagnostically screened for 

the aphid CO1 gene, to ensure the sample retained sufficient quality for qPCR (Table 

3.2). All DNA, as with both experiment 1 and 2, was assessed for concentration and then 

diluted to 5-10 ng/µl. Arsenophonus quantification methods were the same as previous 
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experiments, except that each DNA extraction came from an individual adult aphid, 

rather than a pool of 5 aphids. As with both other experiments, RA was log (x+1) 

transformed. For statistical analysis, I used PROC GLM in SAS, with host plant as a 

factor comparing Arsenophonus titer across the five host plants.  

Results 

Experiment 1: When I evaluated differences in endosymbiont titer between host 

plants for the three lab clonal lines, I found that there was greater Arsenophonus 

abundance on locust compared to fava (F1,30 = 8.12, P < 0.01, Table 3.4, Fig. 3.1). 

Arsenophonus abundance was 40% higher on locust compared to fava. The three aphid 

clones also varied in Arsenophonus titer (F2,30 = 22.70, P < 0.001, Table 3.4, Fig. 3.1). 

Post hoc multiple comparisons indicated that the transinfected clone had much lower 

Arsenophonus titer compared to its naturally-infected counterparts (Fig. 3.1). 

Arsenophonus abundance was 12.5-fold greater in the naturally infected colonies 

compared to the transinfected colony. Arsenophonus titer was not affected by the 

interaction between host plant and clone (F2,30 = 1.44, P = 0.2528, Table 3.4, Fig. 3.1) 

Experiment 2: Arsenophonus titer on locust was greater than on fava (F1,70 = 8.39, 

P < 0.01), and changed over time (F5,70 = 2.46, P < 0.05, Table 3.6, Fig. 3.2). The host 

plant by time interaction term was marginally significant, showing a trend that 

Arsenophonus titer might be affected by the interaction between host plant and time (F5,70 

= 2.25, P = 0.0589, Table 3.6). There was no main effect of clonal line on Arsenophonus 

titer (F2,70 = 2.54, P = 0.0865, Table 3.6, Fig. 3.2), but there was an interaction of clone 

with time, indicating variation of titer among clones across timepoints (F10,70 = 3.10, P < 

0.01, Table 3.6).  
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Experiment 3: Finally, when I compared Arsenophonus titer among populations 

of aphids collected from different host plants in the field, I found titer varied significantly 

(F4, 37 = 3.47, P < 0.05). Titer was significantly higher in aphids collected from Acacia 

retinodes than any other host plant (Fig. 3.3). Titer did not differ significantly among 

aphids collected from the other plants. 

Discussion 

Overall in both experiment 1 and 2, I found that Arsenophonus titer was higher on 

locust compared to fava. This effect was not completely consistent over time in 

experiment 2: I observed a marginally significant host plant by time effect, and visual 

inspection of the data shows that the effect of titer differences between plants seemed to 

diminish over time (Fig. 3.2). For some timepoints, titer on fava spiked compared to 

locust (Fig. 3.2). In contrast, in experiment 1, which consisted of only time point, titer 

was higher from aphids on locust, even though these lab colonies had spent many years 

on fava before I initiated the experiment. This result suggests that even if fava generally 

selects for lower Arsenophonus titer, titer may remain responsive to host plant, and able 

to increase when the environment changes. It is also worth noting that titer in experiment 

1 was lower relative to experiment 2. In contrast to both experiments 1 and 2, for 

experiment 3 the symbiont titer in aphids collected from host plants in the field showed 

no difference in titer when comparing aphids from locust versus fava, only a trend for 

greater titer on locust compared to fava, and the absolute titer values for both plants were 

low (Fig. 3.3).  

Through amplification of single copy gene fragments with qPCR we can measure 

relative Arsenophonus abundance. This allows us to provide an estimate of endosymbiont 
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(Arsenophonus) gene copy number, in relation to a single copy host gene (Martinez et al. 

2014). However, this method estimates relative genome abundance and not exact number 

of bacterial cells (Martinez et al. 2014). Every value is a comparison of the number of 

symbiont genome copies to a single host copy. This relative quantity is useful, however, 

as most endosymbionts cannot be cultured (Douglas, 2015; Hansen and Moran, 2014), 

and it allows us to compare microbial population sizes across treatments.  

Using relative symbiont abundances, we can compare our Arsenophonus values to 

other microbial populations. In comparison to Arsenophonus abundances found in other 

experiments (Enders and Miller, 2016; Ghanim and Kontsedalov, 2009), some of my 

values fell into a comparable range of 0.1 to 0.5, many of my values were much lower 

than 0.1, and a few were much higher, ranging from 1.0 to 6.0. When relating my 

Arsenophonus relative titer values to other facultative symbiont, obligate symbiont, and 

pathogen titers there is a shift in scale. Other facultative symbionts often have RA values 

that range from 1 to 50 (Leclair et al., 2016; Pan et al., 2013). Amongst obligate 

symbionts, relative titer is even higher, ranging from 10 to 100 copies on average (Enders 

and Miller, 2016; Leclair et al., 2016; Vogel and Moran, 2011) and greater than 1000 in 

some cases (Parkinson et al., 2017). Pathogen titer varies over a wide range, from 1 to 

800, averaging much higher than facultative symbionts (Blomquist and Kirkpatrick, 

2002; Frost, Willis, and Groves, 2011; Glaser and Meola, 2010; Serbus et al., 2011; 

Serbus et al., 2015). These comparisons, amongst different microbial populations, show 

that the range of Arsenophonus titer values found among our experiments is inclusive of 

the range of Arsenophonus titers found in other studies, but more variable.  
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In experiment 1, two of the lab colonies, LW and LE, were originally collected 

from locust and were naturally infected with Arsenophonus whereas the third clone, AL, 

was originally collected from alfalfa and was not naturally infected with Arsenophonus.  

The AL infection had been generated by hemolymph transinfection (Wagner et al. 2015), 

and had been stably maintained in the lab for several years. The transinfected colony did 

show higher titer on locust and lower titer on fava, but titer on either plant was much 

lower (2-3 orders of magnitude) than the two naturally infected colonies (Fig. 3.1). Even 

though titer in the transinfected line was extremely low, it was still better on locust 

compared to fava suggesting that maintaining lines on locust may help promote retention 

of the symbiont. Unfortunately, this insight came a little too late for the transinfected AL 

line, from which the Arsenophonus infection was lost shortly after this experiment ended. 

The eventual loss of the transinfected colony is congruent with other transinfection 

studies, as host background can influence infection establishment and retention (Chang 

and Wade, 1994; Fujii et al., 2001; Russell and Moran, 2005). 

In experiment 2, Arsenophonus titer was generally higher on locust, but not 

always. At some timepoints, the pattern would reverse because symbiont titer spiked on 

fava in comparison to its locust counterpart. The variability in Arsenophonus titer among 

clones and timepoints implies that there were uncontrolled factors affecting titer in our 

experiment. One possibility is that there was nutritional quality variation among both 

plants. Among pea aphid clones, it has been shown that there are fitness differences based 

on aphid clonal genotype along with differences in amino acid composition among host 

plants of different species (Sandstrom and Pettersson, 1994). The amino acid composition 

of fava may be providing a more ideal amino acid profile distribution at some timepoints 
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than others, allowing greater aphid growth (Douglas, 1993; Liu et al., 2013; Sandstrom 

and Pettersson, 1994).   

A notable observation, in both the field and lab, is the preference of cowpea 

aphids for the new growth of locust plants.  Younger plant tissues hold greater amino acid 

concentrations than older (Nevo and Coll, 2001), suggesting that the aphids are 

responding to nutritive differences between new growth and old. When collecting aphids 

for DNA sampling in my experiments, I collected them from all areas of both host plants, 

including old growth (low quality) and new growth (high quality) areas. Sometimes my 

samples may have differed in the proportion of aphids from old and new foliage. 

Additionally, locust plants grown in the greenhouse were sometimes stressed enough that 

even fresh growth may have been of low nutritional quality for the aphids. It is likely that 

some of the variation in titer I observed may have reflected the variation in quality among 

plants at different timepoints. However, it should be mentioned that aphids do find 

themselves on stressed host plants in nature, as colonies grow large and overtax the plant, 

so the plant quality used in the experiment may not have had an unrealistic effect on titer. 

Nevertheless, a more consistent plant quality, for both host plants, would be ideal for 

future experiments.  

Sample collection methods from colonies may have also influenced titer. 

Equivalent to a colony life cycle on plants (Dixon, 1977, 1985), our colonies started off at 

low density, and the first generation on a new plant produces larger individuals that are 

less crowded than later generations. Sample collection was conducted on a calendar 

schedule, and usually coincided with uncrowded aphid colonies, but at times they would 

be collected from overcrowded cages. In future efforts, shorter time periods between 
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colony maintenance and sample collection would reduce the chances of collecting from 

overcrowded cages. The standard for aphids collected was non-winged and most samples 

collected were of only non-winged individuals. However, particularly for locust, there 

were sampling points in which I could not collect five 4th instar apterous aphids and 

would supplement with alatoid nymphs. To avoid collection of alatoid nymphs in future 

experiments, larger locust plants of better quality should be used.  

 For experiment 3, wild cowpea aphid populations also showed a difference in 

Arsenophonus titer across host plants, but not between locust and fava. There was a trend 

for greater titer in locust compared to fava populations (Fig. 3.3), but there was again 

quite substantial variation in titer in aphids from both plants, with some locust-collected 

aphids having very low titer (1.21E-7), and at least one collected from fava having 

relatively high titer for Arsenophonus (0.0776). Interestingly, the greatest Arsenophonus 

titer levels were found on the host plant A. retinodes (Fig. 3.3). This data would suggest 

that A. retinodes, particularly compared to Leucanthemum paludosum and Rosa hybrida, 

is a relatively good host plant for Arsenophonus infected aphids to colonize.  

All three host plants, locust, fava and A. retinodes, are from different genera 

within the family Fabaceae (Doyle and Luckow, 2003). Black locust and fava are a part 

of two separate, but closely related, lineages within the larger clade of Hologalegina, 

while A. retinodes is distantly related within the clade of Mimosoideae (Doyle and 

Luckow, 2003). It is possible that the physiology, nutritional and chemical profiles are 

not extremely different among these plants, meaning that Arsenophonus might be 

providing relatively the same benefits across all three host plants. Field aphids disperse to 

new plants like “aerial plankton,” moving away from the plant they are on and trying to 
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establish on whatever plants they land on. For future studies, I would want to address 

how Arsenophonus titer in field Aphis craccivora populations changes across host plants 

from Fabaceae, including these three plants. With a new study, I could factor in the 

nutritional change between plants (in the form of amino acid profiles and nitrogen 

content), and plant secondary phytochemical profiles.   

 Ultimately, Arsenophonus titer was affected by aphid host plant species, but also 

exhibited substantial variation over time, presumably in response to uncontrolled 

variables such as host plant quality and aphid crowding conditions. My experiments show 

that Arsenophonus titer is dynamic, and may contribute to the phenotypic plasticity of 

cowpea aphid across host plants. A clearer understanding of the mechanistic benefit 

Arsenophonus provides might yield insight into the role facultative symbionts may play 

in the evolution of dietary breadth and host plant usage in herbivores. Future experiments 

addressing Arsenophonus titer should control for aphid overcrowding, host plant quality, 

more frequent time point collections, and the addition of uninfected and transinfected 

colonies.  

  



 

46 
 

 

 

Figure 3.1: Relative Arsenophonus abundance in experiment 1, of three clonal aphid lines 

maintained on either fava or locust, as measured using qPCR of the Arsenophonus gene 

ftsK relative to the aphid EF1-alpha gene. The x in the figures represents the mean, while 

the middle line in each box is the median. The top and bottom of each box are the 1st and 

3rd quartile values respectively. The whiskers of the plot represent maximum and 

minimum values.  
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Figure 3.2: Relative Arsenophonus abundance in experiment 2. Mean ± SE relative 

Arsenophonus abundance in three clonal aphid lines (LC, LO, LP) maintained over a 12-

month period on either locust or fava host plants.  Arsenophonus abundance was 

measured using qPCR, comparing the bacterial gene ftsK relative to the aphid EF1-alpha 

gene. 
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Figure 3.3: Relative Arsenophonus abundance in aphids collected from different host 

plants in the field, for experiment 3 measured using qPCR, comparing the bacterial gene 

ftsK relative to the aphid EF1-alpha gene. The x in the figures represents the mean, while 

the middle line in each box is the median. The top and bottom of each box are the 1st and 

3rd quartile values respectively. The whiskers of the plot represent maximum and 

minimum values. Sample size per host plant indicated along the x-axis.  Columns with 

different letters differed significantly at α = 0.05.  
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Table 3.1: Initial collection dates and locations of the aphid clonal colonies. 

Clonal 
Line 

Host 
plant of 
origin 

Infection 
status 

Means of 
symbiont 
infection 

Collection 
location 

Date of 
collection 

Experiment  1     
LW Locust Ars + Naturally 

infected 
37⁰57’N 
84⁰23’W 

Sept 2011 

LE Locust Ars + Naturally 
infected 

37⁰57’N 
84⁰43’W 

Sept 2011 

AL Alfalfa Ars + Transinfected 38⁰04’N 
84⁰39’W 

Aug 2011 

Experiment 2     
LO Locust Ars + Naturally 

infected 
39⁰07’N 
84⁰29’W 

July 2016 

LC Locust Ars + Naturally 
infected 

45⁰02’N 
93⁰30’W 

Aug 2016 

LP Locust Ars + Naturally 
infected 

46⁰36’N 
94⁰18’W 

Aug 2016 
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Table 3.2: Primers, PCR and qPCR cycling conditions, and references used for symbiont 

diagnostics, symbiont housekeeping and aphid housekeeping genes. 

Target 
Organism 

Target 
Gene 

Primer 
Name 

Primer Sequence 5’ to 3’ References PCR/qPCR Cycling 
Conditions 

PCR      

Arsenophonus 23s Ars23sF 
Ars23sR 

CGTTTGATGAATTCATAGTCAAA 
GGTCCTCCAGTTAGTGTTACCCAAC 

Brady and 
White 
2013 

95°C for 2 min, then 35 
cycles consisting of 
92°C for 30 sec, 60°C 
for 30 sec, and 72°C for 
30 sec 

qPCR      

Arsenophonus ftsK ftskF 
ftskR 

TCAAGGTGGCGCTGAATCTT 
CGGGCTTACCTCTAGCTTTCC 

Enders 
and Miller 
2016 

95°C for 2 min, then 35 
cycles consisting of 
92°C for 30 sec, 52°C 
for 30 sec, and 72°C for 
30 sec 

PCR      

Aphis 
craccivora 

CO1 LCO1490 
HCO700 

GGTCAACAAATCATAAAGATATTGG 
TCAGGGTGACCAAAAAATCA 

Breton et 
al. 2006 

95°C for 2 min, then 35 
cycles consisting of 
92°C for 30 sec, 50°C 
for 30 sec, and 72°C for 
1.5 min 

qPCR      

Aphis 
craccivora 

EF1α EF1aF 
EF1R 

CGCACCTGGTCACAGAGATT 
TGCTCACGGGTTTGTCCATT 

Enders 
and Miller 
2016 

95°C for 2 min, then 35 
cycles consisting of 
92°C for 30 sec, 52°C 
for 30 sec, and 72°C for 
1 min 
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Table 3.3: The collection location, number of samples, and host plant of origin for the 

field collected adult cowpea aphids.  

Location, 
Nationality 

Location, 
Region 

# Samples  Host plant of origin 

Greece Poligono 5 A. retinodes 
China Beijing 3 R. pseudoacacia (locust) 
Iran Mashhad 5 R. pseudoacacia (locust) 
Serbia Mt. Dukat 5 R. pseudoacacia (locust) 
Spain Astorga 5 R. pseudoacacia (locust) 
USA Reno 3 R. pseudoacacia (locust) 
Algeria Ghardaia 3 V. faba (fava) 
Algeria Biskra 5 V. faba (fava) 
China Langfang 3 L. paludosum 
France Antibes 5 R. hybrida 
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Table 3.4: ANOVA table experiment 1.  

Factor (s) ss d.f. ms F Value P 
Host plant 7.483 1 7.483   8.12 0.0078 
Clone 41.82 2 20.91 22.70 <0.0001 
Host plant x Clone 2.654 2 1.327   1.44 0.2528 
Error 27.64 30 0.921   
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Table 3.5: Statistical table for GLIMMIX output in experiment 2. 

Factor (s) d.f. Total d.f. F value P 
Host plant 1 70 8.39 0.0050 
Clone 2 70 2.54 0.0865 
Time  5 70 2.46 0.0409 
Host plant x Clone 2 70 1.13 0.3289 
Host plant x Time 5 70 2.25 0.0589 
Clone x Time  10 70 3.10 0.0026 
Host plant x Clone x Time  10 70 1.81 0.0741 
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Chapter 4: Conclusions and future directions 

 My thesis has explored the mechanistic basis for how the facultative symbiont 

Arsenophonus facilitates the use of the host plant Robinia pseudoacacia (locust) in the 

cowpea aphid, Aphis craccivora (cowpea aphid). Using RNA-seq of the de novo 

assembled Aphis craccivora-Arsenophonus-Buchnera reference transcriptome, I looked 

at differential expression of genes relative both host plant (locust and fava) and infection 

(Arsenophonus infected and uninfected aphids). In comparing Arsenophonus infected 

aphids on locust to Arsenophonus infected aphids on fava, I only found five differentially 

expressed genes, none of which were from Arsenophonus. Perhaps the only gene of 

consequence from this comparison was ompA from the obligate symbiont Buchnera, a 

membrane bound porin protein that allows passage of small molecules like amino acids. 

This gene was upregulated in infected aphids feeding on fava, suggesting that there might 

be increased nutritional need on fava, if ompA is being used for increased amino acid 

transport. As a control, uninfected aphids on locust were compared to uninfected aphids 

on fava, to identify differentially expressed genes related to host plant use but not related 

to Arsenophonus. I found differential expression of 44 genes. Two upregulated aphid 

genes on locust were maltase A3-like, which metabolizes glucose, and tropomyosin 

isoform X10, a filament protein involved in muscle contractions. In this control 

comparison, there was also one differentially expressed Buchnera gene, serine 

acetyltransferase, which is a part of the pathway that catalyzes the amino acid serine to 

cysteine and can be involved in B-vitamin production. The differential expression of 

these genes suggests that Aphis craccivora and its primary symbiont may experience 

some nutritional differences while feeding on locust versus fava. Finally, with an 
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expectation of over representation of Arsenophonus genes, I compared Arsenophonus 

infected aphids to uninfected aphids across each host plant. I found 75 and 56 

differentially expressed genes for locust and fava respectively. Most of these genes were 

from Arsenophonus, 71 and 50 for locust and fava respectively. There were 49 genes 

found in common between aphids on both host plants, most of which were from 

Arsenophonus and were bacterial maintenance genes. However, two standout 

Arsenophonus genes were lipoyl synthase and 3,4-dihydroxy-2-butanone-4-phosphate. 

Both were highly upregulated, and connected to production of intermediate products used 

in B-vitamin pathways. Unique to the locust comparison, beta-ketoacyl-[acyl-carrier-] 

synthase I was another highly upregulated Arsenophonus gene that is involved in B-

vitamin production pathways. Suggestively, an Arsenophonus version of the gene serine 

acetyltransferase was found highly upregulated on the locust comparison. These 

expressed Arsenophonus genes would suggest that the facultative symbiont may play a 

role in B-vitamin production. Future studies should explore the transcriptional response 

of Aphis craccivora, with Arsenophonus, on locust and fava under different conditions, 

like nitrogen fertilizer in the soil, drought stress, and heat stress, to understand how the 

Arsenophonus infected cowpea aphid responds to each host plant respectively. The 

concept of Arsenophonus B-vitamin production should also be explored, through 

experimental manipulation, to identify if it is indeed the mechanism linked to host plant 

facilitation of locust.  

 With my second study, I investigated how Arsenophonus titer changed between 

aphids fed on locust (the host plant where Arsenophonus provides an advantage) and fava 

(the host plant where Arsenophonus does not provide an advantage). Within this study I 
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ran three separate experiments. In my first experiment, I measured titer in three lab 

colonies fed on either locust or fava. Two of the colonies use were naturally infected with 

Arsenophonus and the third had been transinfected via hemolymph injection. 

Arsenophonus titer was greater on locust compared to fava, and was higher in naturally 

infected than the transinfected clone. The second experiment used three new aphid 

colonies, collected from aphids feeding on locust in the field, and monitored the long-

term changes in Arsenophonus titer for aphids feeding on both locust and fava. Here, I 

similarly found greater Arsenophonus titer on locust compared to fava, but the effect 

seemed to diminish over time and titer occasionally spiked on fava compared to locust. 

The titer fluctuations over time imply that Arsenophonus function might vary temporally. 

Each aphid clone had its own distinct fluctuations in titer as well. Finally, my third 

experiment measured Arsenophonus titer in aphids collected directly from different host 

plants in the field. Arsenophonus titer was not greater on locust compared to fava, 

although there was a trend toward higher values on locust than fava. For one host plant, 

Acacia retinodes, Arsenophonus titer was greater compared to the titer of all the other 

plants. This implies that Acacia retinodes may be another host for which Arsenophonus 

infection could be beneficial for A. craccivora.  

There are two routes future studies should pursue. The first is to more thoroughly 

investigate the changes in Arsenophonus titer over time. The experiment should control 

for overcrowding and plant quality, and colonies should be sampled more frequently. The 

second would be to explore how Arsenophonus titer from aphids in the field relates to a 

broader range of host plants from the family Fabaceae. In congruence with measuring the 
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titer, it would be useful to evaluate nutritional plant secondary phytochemical changes 

among plants. 
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