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Abstract

Background: Currently available microRNA (miRNA) target prediction algorithms require the presence of a

conserved seed match to the 5’ end of the miRNA and limit the target sites to the 3’ untranslated regions of

mRNAs. However, it has been noted that these requirements may be too stringent, leading to a substantial

number of missing targets.

Results: We have developed TargetS, a novel computational approach for predicting miRNA targets with the

target sites located along entire gene sequences, which permits finding additional targets that are not located in

the 3’ un-translated regions. Our model is based on both canonical seed matching and non-canonical seed pairing,

which discovers targets that allow one bit GU wobble. It does not rely on evolutionary conservation, so it allows

the detection of species-specific miRNA-mRNA interactions and makes it suitable for analyzing un-conserved gene

sequences. To test the performance of our approach, we have imported the widely used benchmark dataset

revealing fold-changes in protein production corresponding to each of the five selected microRNAs. Compared to

well-known miRNA target prediction tools, including TargetScanS, PicTar and MicroT_CDS, our method yields the

highest sensitivity, while achieving a comparable level of accuracy. Human miRNA target predictions using our

computational approach are available online at http://liubioinfolab.org/targetS/mirna.html

Conclusions: A simple but powerful computational miRNA target prediction method is developed that is solely

based on canonical and non-canonical seed matches without requiring evolutionary conservation of the target

sites. Our method also expands the target search space to different gene regions, rather than limiting to 3’UTR

only. This improves the sensitivity of miRNA target identification, while achieving a comparable accuracy with

existing methods.

Background
MicroRNAs (miRNAs) are endogenous approximately

22 nucleotide RNA molecules that play important gene-

regulatory roles in plants and animals [1]. These small

RNA molecules exert their regulatory effects on target

gene mRNAs by inhibiting protein translation and/or

promoting mRNA degradation. They are one of the

most abundant classes of gene-regulatory molecules in

mammals [2], with more than two thousand distinct

miRNAs having been confidently identified in human

[3]. It has been estimated that at least 30% and perhaps

as many as 60% of mRNAs are subject to post-transcrip-

tion miRNA-mediated regulation [4]. It has also been

shown that a single miRNA can modulate the expres-

sion levels of several hundred to thousands of different

mRNAs [5]. Therefore, to fully understand the roles

miRNA play in regulating different biological processes,

one essential step is to determine which mRNAs are tar-

geted for miRNA regulation.

In the past decade, dozens of miRNA target prediction

programs for mammalian genomes have been developed,

including TargetScanS [4,6-8], PicTar [9], MicroT_CDS

[10,11], miRanda [12,13], RNAhybrid [14], MirTarget2

[15], TargetMiner [16] and others [17-21]. The majority
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of these algorithms are based on the assumption that

miRNAs target recognition requires conserved Waston-

Crick pairing to the 5’ region of the miRNA centered on

nucleotides 2-7, which is known as the miRNA “seed”.

This notion has resulted in a biased focus on special

types of seed-matched sites within the 3’ untranslated

regions (3’UTRs) of targeted mRNAs [22,23]. However,

many experimental results show that some “non-seed”

miRNA target sites are highly biologically functional

[24-26]. These non-seed sites contain single mismatches,

GU wobbles, insertions or deletions in the seed-match

regions. Besides the seed match “rule”, most of the exist-

ing computational methods rely on evolutionarily con-

servation of putative target sites for target identification.

However, there is no evidence showing that target sites

must be evolutionarily conserved [24]. Identification of

mRNAs and proteins that are upregulated upon inhibi-

tion or the removal of an endogenous miRNA demon-

strate that non-conserved targeting is even more

widespread than conserved targeting [5,27]. In addition,

we note that most investigations into metazoan miRNA

regulation have been focusing on searching for target sites

in 3’UTRs. However, experiments have shown that target-

ing can occur in the 5’ untranslated regions (5’ UTRs) and

the open reading frame (ORF) as well [28]. Recently,

Hafner et al. found that of the exonic target regions, 50%

of target sites correspond to coding sequences (CDSs),

compared with only 46% to 3’UTRs [29]. Chi et al. also

applied a high-throughput approach for isolating Argo-

naute-bound target sites, indicating that target sites in

CDSs are as numerous as those located in 3’UTRs [30].

In this article, we introduce a simple but powerful

miRNA target prediction method that is solely based on

canonical seed pairing and non-canonical seed matches.

Our method does not require stringent seed pairing or

evolutionary conservation in searching for human

miRNA target sites. In addition, we perform our search

on the entire gene sequence (including promoters,

5’UTRs, CDSs, and 3’UTRs) rather than limiting the

search space to the 3’UTRs only. We assessed our

method based on a set of miRNA targets identified by

the pSILAC method [5]. It is found that, without apply-

ing complicated scoring schemes and considering evolu-

tionary conservation of the target sites, our method

successfully yielded the largest number of true targets

while achieving a comparable level of accuracy, among

all the methods we compared.

Results and discussion
Comparison of signal-to-noise ratios

The five types of seed matches used in our study are illu-

strated in Figure 1. We used the miRWalk dataset to calcu-

late the signal-to-noise ratios for each type of seed match

located in different gene regions (see Methods section for

details). Figure 2 compares the signal-to-noise ratios of the

five types of seed matches in different gene regions. The

weights for each seed match type were then calculated and

listed in Table 1. It can be seen that seed matches located

in 3’UTRs have the highest signal-to-noise ratios, followed

by those in CDSs and 5’UTRs, while the seed matches in

the Promoter regions have the lowest values. We can see

that the signal-to-noise ratio of type 2t8A1 in 3’UTRs is

the highest, with 2t8A1 > 2t8 > 2t7A1 > 2t7 in 3’UTRs,

which is consistent with previous conclusions [23]. The

results also show that the signal-to-noise ratio of type

1t8GU is even higher than 2t7 in 3’UTRs, indicating that

the 1t8GU seed matches in 3’UTRs may represent impor-

tant biologically functional sites. This observation is also

consistent with what has been shown in previous studies

[20,24,31]. Except the seed match type 1t8GU, all of the

other types of seed matches in 3’UTRs have larger signal-

to-noise ratios than their counterparts located in other

gene regions.

In CDSs, type 2t8 has the most significant signal-to-

noise ratio, while the ratios for seed type 2t8 > 2t7A1 >

2t7, which is similar as those calculated for 3’UTRs.

However, type 2t8 is more significant than 2t8A1 and

1t8GU is more significant than 2t7A1, deviated from

what we have seen in 3’UTR. These results together

demonstrate that the mechanism underlying miRNA

target recognition and regulation in CDSs may be differ-

ent from that in 3’UTRs.

In 5’UTRs, type 1t8GU has the most significant signal-

to-noise ratio, while the order of other types of seed

matches is similar as that in CDSs. This indicates that

the GU wobble pair may play a much more important

role in 5’UTRs relative to its effects in other gene

regions.

For promoters, the order of the signal-to-noise ratios

of four different canonical seed matches is similar to

that in 3’UTRs, while 1t8GU type has the second high-

est ratio. Type 2t7 has the lowest ratio close to 1. These

show that promoters are the least effective regions, but

they cannot be ignored [32].

A recent study has shown that miRNA binding sites in

CDSs mediate smaller regulation than 3’UTRs binding,

and there may be possible interactions between targets

sites in CDSs and 3’UTRs [33]. Another recent research

study has also demonstrated that miRNA targets sites in

CDSs can effectively inhibit translation while sites

located in 3’UTRs are more efficient at triggering

mRNAs degradation [34].

The proportion of five types of seed matches in each

of the four gene regions are given in Table I. For the 50

random shuffled mRNA sequences, the distributions of

the seed matches are similar among different regions,

whereas, the proportion of seed match type 2t8A1 in

3’UTRs is much higher than that in other regions, based
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on the miRWalk data. Since type 2t8A1 is the most rig-

orous seed match type, it suggests that miRNA targets

in 3’UTRs have more selection pressure.

Comparison with other computational target

identification methods

To verify the robustness of our method, we applied it on an

independent benchmark dataset obtained by the pSILAC

method [5] and evaluated how our target predictions corre-

late with the results in the pSILAC dataset. To achieve a

comparable predicted number of targets with other well-

known methods such as TargetScanS and PicTar, we set

the cut-off values �Gduplex
cutoff

= −15.0 kcal/mol and

��Gcutoff = −10.0 kcal/mol, respectively.

Figure 3 shows the ratio of the fraction of predicted

miRNA targets for which protein production was down

Figure 1 Types of seed matches. Five different types of seed matches used in our study, including canonical seed match types 2t8A1, 2t8,

2t7A1 and 2t7, and a non-canonical 1t8GU wobble type.
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regulated in the pSILAC dataset. We compared the per-

formance of our method with that of most well-known

target prediction tools including TargetScanS [8], PicTar

[9] and MicroT_CDS [11]. While both TargetScanS and

PicTar limit target site searching in 3’UTR of mRNAs,

the MicroT_CDS includes CDSs in its target searching.

From the results, we can see that, our method can pre-

dict ~47% more targets than the TargetScanS and

MicroT_CDS, while achieving a comparable accuracy

level of 57%. Although PicTar yielded the highest

Figure 2 Signal-to-noise ratio. Signal-to-noise ratio for five different types of seed matches in four different gene regions.

Table 1 Signal-to-noise ratio, weight and proportion of different types of seed matches in different regions.

2t8A1 2t8 2t7A1 2t7 1t8GU

Number of matches (miRWalk) 1,235 3,105 2,657 7,296 3,734 Promoters

171 628 463 1,594 730 5’UTRs

1,153 3,116 2,729 6,494 3,343 CDSs

2,366 4,103 3,204 6,920 3,797 3’UTRs

Number of matches (Average of 50 times random shuffle) 911 2,639 2,422 7,014 3,068 Promoters

141 489 391 1,415 547 5’UTRs

904 2,331 2,331 5,997 2,655 CDSs

1,069 2,593 2,513 6,060 3,175 3’UTRs

Signal-to-noise ratio 1.355 1.177 1.097 1.040 1.217 Promoters

1.213 1.284 1.184 1.126 1.333 5’UTRs

1.275 1.337 1.171 1.083 1.259 CDSs

2.214 1.583 1.275 1.142 1.196 3’UTRs

Weight 0.293 0.146 0.080 0.033 0.179 Promoters

0.176 0.234 0.151 0.104 0.275 5’UTRs

0.227 0.277 0.141 0.068 0.214 CDSs

1.000 0.480 0.227 0.117 0.161 3’UTRs

Proportion (miRWalk) 7% 17% 15% 40% 21% Promoters

5% 18% 13% 44% 20% 5’UTRs

7% 19% 16% 39% 20% CDSs

12% 20% 16% 34% 19% 3’UTRs

Proportion (Average of 50 times shuffle) 6% 16% 15% 44% 19% Promoters

5% 16% 13% 47% 18% 5’UTRs

6% 16% 16% 42% 19% CDSs

7% 17% 16% 39% 21% 3’UTRs

The number of matches in miRWalk dataset is the real number of each seed match type in each target region. The number of matches from random shuffles is

the average number of each type of seed match over 50 randomly shuffled mRNA sequences. The signal-to-noise ratio is the ratio of these two numbers. The

weight is then calculated via the equation (1). The proportion is the percentage of a specific seed match type in each target region.
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accuracy (64%) among all the methods we compared, it

only identified about one third of the true targets that our

method predicts. If we set more stringent cutoff values to
�Gduplex

cutoff
= −25.0 kcal/mol and ��Gcutoff = −14.0 kcal/mol,

we achieve the same accuracy level of 64% (303/473) as

PicTar with 17% more true positive targets identified, indi-

cating the superiority of our method to PicTar. In the

pSILAC dataset, when we just considered canonical seed

matches in the 3’UTRs, we achieved an accuracy of 62%

(430/692) based on the overlap of predicted target with

the pSILAC data. While adding the 1t8GU non-canonical

seed match, we identify 36 more true positive targets, with

an accuracy of 61% (466/758). As we extended our target

site searching region to include the CDSs, the predicted

targets maintain an accuracy level of 61% (650/1071),

while 184 more true positive targets were identified.

Therefore, we can significantly increase the number of tar-

gets by including the CDSs, while maintaining high predic-

tion accuracy. Continuing to extend the target searching

region to 5’UTRs, we maintained the predicted accuracy at

61% (660/1088), with 10 more true positive targets being

added. Finally, when we extended our target searching

region to include the promoters, the fraction of overlap

reduced to 57% (788/1381); however, it added 128 more

true positive targets as indicated by pSILAC. These results

show that, for miRNA targeting, CDSs and 5’UTRs might

be similarly significant compared to 3’UTRs. The promo-

ters might not be as effective as 3’UTRs, but it is impor-

tant to include these regions to avoid missing a large

number of true positive targets.

It has been shown previously that evolutionary conserva-

tion of target sites is a very important feature for improv-

ing the accuracy of target identification. To evaluate the

effect of this feature in miRNA target prediction, we sim-

ply imported the conservation score of different seed

match types calculated by phastCons [35] and set a cutoff

value to identify the miRNA targets. The incorporation of

target site conservation information indeed improved the

accuracy of our method with an overlap of 65% (396/605)

in pSILAC dataset, which is the highest accuracy among

the state-of-the-art algorithms we investigated in our

study. However it missed many true targets, no matter

how we relaxed the stringency of the cutoff values

for other features, namely �Gduplex
cutoff

and ��Gcutoff.

Therefore, we chose not to incorporate the evolutionary

conservation information in our method to achieve high

prediction coverage.

In the past decade, machine learning methods have been

widely used to predict miRNA targets [15-18,21,36,37].

Besides the seed type matches and thermodynamic fea-

tures, the most important and widely used features are

structure features [16,37], such as single nucleotide com-

position, di-nucleotide composition, or frequency of base

pair interaction. To compare the different features, we

applied the Random Forests (RF) method [38] to evaluate

the importance of each feature in miRNA target predic-

tion. A set of 81 miRNA-targeting site context specific fea-

tures was extracted. The features were mainly divided into

seed and out-seed regions (the regions immediately con-

nected to the seed matches). Each feature is the weighted

sum of the seed matches located in the 3’UTRs, CDSs,

5’UTRs and promoters. Table 2 lists the importance index

calculated by the Package ‘RandomForest’ in R (http://

www.r-project.org) with the positives (down regulated pro-

teins in response to miRNA overexpression) and negatives

(other proteins measured) identified in the pSILAC data-

set. From the table we can see that the two most impor-

tant features are �Gduplex and ��G, which are consistent

with the conclusion in previously published literature [19].

These two features are also the only two parameters used

Figure 3 Performance comparison of different miRNA target prediction methods. The fraction of predicted targets with down regulated

protein production in the pSILAC dataset.
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in our method TargetS for defining the true miRNA

targets.

We compared the performance of TargetS with that of

the Random Forest (RF) method. To evaluate the

results, we first applied a widely used k-fold cross-vali-

dation (CV) approach on the pSILAC data. The original

sample is randomly partitioned into k equal size sub-

samples. Of the k subsamples, a single subsample is

retained as the validation data for testing the model,

and the remaining k−1 subsamples are used as training

data. The cross-validation process is then repeated k

times, with each of the k subsamples being used exactly

once as the validation data. The k results from the folds

can then be averaged to produce an overall estimation.

The result of 10-fold cross validation on the pSILAC

dataset by RF is shown in the ROC curve (Figure 4).

With the top two features, �Gduplex and ��G as the

Table 2 Importance of different features.

Features Importance

number of all kinds of seed matches 23.28

�Gduplex 79.11

∆∆G 78.01

frequency of outseed A composition 67.96

frequency of outseed C composition 47.08

frequency of outseed G composition 49.72

frequency of outseed U composition 59.65

frequency of outseed AA composition 60.37

frequency of outseed AC composition 50.38

frequency of outseed AG composition 52.15

frequency of outseed AU composition 62.19

frequency of outseed CA composition 52.26

frequency of outseed CC composition 47.73

frequency of outseed CG composition 36.09

frequency of outseed CU composition 48.86

frequency of outseed GA composition 50.30

frequency of outseed GC composition 46.81

frequency of outseed GG composition 50.71

frequency of outseed GU composition 51.48

frequency of outseed UA composition 55.21

frequency of outseed UC composition 49.67

frequency of outseed UG composition 53.42

frequency of outseed UU composition 53.22

frequency of seed A composition 23.54

frequency of seed C composition 19.62

frequency of seed G composition 9.80

frequency of seed U composition 18.49

frequency of seed AA composition 3.72

frequency of seed AC composition 6.82

frequency of seed AG composition 3.41

frequency of seed AU composition 7.42

frequency of seed CA composition 10.57

frequency of seed CC composition 6.14

frequency of seed CG composition 0.35

frequency of seed CU composition 7.80

frequency of seed GA composition 1.01

frequency of seed GC composition 9.82

frequency of seed GG composition 0.92

frequency of seed GU composition 5.35

frequency of seed UA composition 12.01

frequency of seed UC composition 5.67

frequency of seed UG composition 9.15

frequency of seed UU composition 8.86

frequency of seed AU nucleotide base pairing 28.55

frequency of seed UA nucleotide base pairing 15.95

frequency of seed GC nucleotide base pairing 7.54

frequency of seed CG nucleotide base pairing 19.06

frequency of seed GU nucleotide base pairing 3.21

frequency of seed UG nucleotide base pairing 6.05

Frequency of seed AU-AU Bi-Di-nucleotide base pairing 3.75

Frequency of seed AU-UA Bi-Di-nucleotide base pairing 6.80

Table 2 Importance of different features. (Continued)

Frequency of seed AU-GC Bi-Di-nucleotide base pairing 3.59

Frequency of seed AU-CG Bi-Di-nucleotide base pairing 5.80

Frequency of seed AU-GU Bi-Di-nucleotide base pairing -

Frequency of seed AU-UG Bi-Di-nucleotide base pairing 2.64

Frequency of seed UA-AU Bi-Di-nucleotide base pairing 10.61

Frequency of seed UA-UA Bi-Di-nucleotide base pairing 5.95

Frequency of seed UA-GC Bi-Di-nucleotide base pairing -

Frequency of seed UA-CG Bi-Di-nucleotide base pairing 7.86

Frequency of seed UA-GU Bi-Di-nucleotide base pairing 0.33

Frequency of seed UA-UG Bi-Di-nucleotide base pairing 2.08

Frequency of seed GC-AU Bi-Di-nucleotide base pairing -

Frequency of seed GC-UA Bi-Di-nucleotide base pairing 7.14

Frequency of seed GC-GC Bi-Di-nucleotide base pairing -

Frequency of seed GC-CG Bi-Di-nucleotide base pairing 3.37

Frequency of seed GC-GU Bi-Di-nucleotide base pairing -

Frequency of seed GC-UG Bi-Di-nucleotide base pairing 1.89

Frequency of seed CG-AU Bi-Di-nucleotide base pairing 12.21

Frequency of seed CG-UA Bi-Di-nucleotide base pairing 4.91

Frequency of seed CG-GC Bi-Di-nucleotide base pairing 7.55

Frequency of seed CG-CG Bi-Di-nucleotide base pairing 7.72

Frequency of seed CG-GU Bi-Di-nucleotide base pairing 2.55

Frequency of seed CG-UG Bi-Di-nucleotide base pairing 2.33

Frequency of seed GU-AU Bi-Di-nucleotide base pairing 1.02

Frequency of seed GU-UA Bi-Di-nucleotide base pairing 3.04

Frequency of seed GU-GC Bi-Di-nucleotide base pairing 0.95

Frequency of seed GU-CG Bi-Di-nucleotide base pairing 0.23

Frequency of seed UG-AU Bi-Di-nucleotide base pairing 2.33

Frequency of seed UG-UA Bi-Di-nucleotide base pairing 1.72

Frequency of seed UG-GC Bi-Di-nucleotide base pairing -

Frequency of seed UG-CG Bi-Di-nucleotide base pairing 3.50

Number of all kinds of seed matches is the sum of all the 5 different seed

match types in all different 4 regions. All other features are the properties of

each single miRNA-mRNA seed match site. The importance is calculated by

the Random Forests method based on the miRWalk dataset as positive

training data and its relative random shuffle pairs as negative training data.
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input features, the performance of RF is comparable

with PicTar, MicroT_CDS and TargetScanS, while our

method TargetS is shown to significantly outperform all

the methods we compared based on the assessment of

sensitivity and specificity.

Moreover, we note the performance of RF was evaluated

based on the CV approach. The comparable performance

of RF may be simply an artifact, due to the potential data

overfitting effect caused by the CV. To better evaluate the

performance of RF, we trained it using the experimentally

verified miRNA-mRNA pairs in miRWalk as the positive

training set, and the sequences generated by random shuf-

fling as the negative training set. The trained model was

then tested on the independent pSILAC dataset. The per-

formance of RF decreased compared to other methods

when an independent dataset was used for testing instead

of performing CV on the same dataset (Figure 5). The dis-

advantage of machine learning methods lies on its require-

ment of a reliable negative training dataset, which is not

currently available for most miRNAs. To overcome this

problem, our TargetS method adopted a simple strategy to

calculate the signal-to-noise ratio for seed matches using

the experimentally verified miRWalk dataset. The ratios

vary among different seed match types as well as their

gene locations, and are used as the basis for assigning dif-

ferent weights for the parameters used in our method.

Conclusions
In this paper, we have proposed a simple and novel

computational method for miRNA target prediction

(TargetS), which searches for miRNA target sites in

either the 3’UTRs, CDSs, 5’UTRs or promoters. As men-

tioned, our method does not rely on evolutionary con-

servation, thus allowing the detection of species-specific

interactions and making it suitable for analyzing un-con-

served genomic sequences. We also include a non-cano-

nical seed pairing type, namely the GU wobble pair as

an alternative targeting criterion. The comparison

results of TargetS with other methods were based on

the independent pSILAC dataset, indicating that TargetS

finds a significantly larger number of true miRNA tar-

gets at an accuracy level comparable with TargetScanS,

Figure 4 ROC curve for Random Forest method. The ROC curve for Random Forest obtained by 10-fold cross-validation on pSILAC dataset is

shown with the results from other target prediction methods. The �Gduplex and ��G were used as input features for Random Forest.
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PicTar and MicroT_CDS. We have developed a web-

based tool that can easily access the human miRNA tar-

get prediction results from our TargetS method, with

the miRNA name and/or gene name as the input. The

user-friendly website is now available at: http://liubioin-

folab.org/targetS/mirna.html. With the advent of large-

scale sequencing and new crosslinking methods, more

direct information of miRNAs and their targets’ regula-

tion will be obtained. Together with the information

obtained from reliable computational prediction meth-

ods, the mechanism of miRNAs and their roles in regu-

lating different important biological processes and

molecular pathways can be further investigated. We

hope such mechanistic insights will help us understand

the progression of different types of diseases, and will

lead to novel therapeutic strategies associated with miR-

NAs and their targets’ regulation.

Materials and methods
Data

miRBase: The mature miRNAs sequences are down-

loaded from miRBase database [3]. There are more than

30,000 reported miRNAs entries, including 2,557 entries

for human in the latest version (Release 20, 2013).

miRWalk: This dataset hosts experimentally verified

miRNA-mRNA interactions as well as the information

of genes, pathways, organs, diseases, cell lines, OMIM

disorders and literature on miRNAs [39]. It includes

60,269 verified pairs of human miRNA-gene interactions

that consist of 655 unique miRNAs and 3,028 unique

genes.

pSILAC: A set of miRNA target genes identified by

pSILAC (pulsed stable isotope labeling with amino acids

in cell culture) method [5]. It measured changes in

synthesis of several thousand proteins in response to

miRNA transfection or endogenous miRNA knockdown

for five miRNAs (hsa-miR-1, hsa-miR-16, hsa-miR-155,

hsa-miR-30a and hsa-let-7b). This dataset has been

widely used as a benchmark for evaluating computa-

tional miRNA target prediction programs and can be

downloaded from http://psilac.mdc-berlin.de

Sequence

The sequences of the promoters, 5’UTRs, CDSs and

3’UTRs for each gene in human have been downloaded

from the UCSC Genomes database [40] using the UCSC

Table Brower, version GRCh37/hg19. When there are

multiple sequences available for a single gene (e.g. multiple

Figure 5 ROC curve of independent testing. The ROC curve for Random Forest with all the 81 features listed in Table 2. The model was

trained on miRWalk dataset and tested on the independent pSILAC dataset.
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UCSC IDs corresponding to a single gene name), the long-

est sequence was chosen for further analysis.

Parameters considered in miRNA target prediction

Previously published methods [1,19,23] have shown that

the most important features for miRNA target genes are 5′

seed matches of miRNA and thermodynamic stability of

the miRNA-target duplex. We considered both features in

our method when scoring each miRNA-mRNA pair.

For the first important feature, the types of canonical

seed matches include 2t8A1 (requires Watson-Crick

pairing to the 5’ region of the miRNA on nucleotides 2 to

8 and the first nucleotide of target mRNAs being ade-

nine), 2t8 (seed paring from position 2 to 8 in the 5’

region of the miRNA), 2t7A1 (seed paring from position

2 to 7 with position 1 of target mRNA being adenine)

and 2t7 (seed matches from position 2 to 7). However,

many experimental results have shown that some ‘non-

seed’ target sites such as single mismatches, GU wobbles,

insertions or deletions in the seed-match regions are

highly biologically functional as well [20,24,31]. Since

insertions or deletions do not have a fixed format and it’s

hard to measure the significance of the signal, we just

considered one non-canonical type of seed match,

namely 1t8GU type (seed paring on positions 1 to 8

while allowing 1 GU wobble pair). So we have included

five types of seed matches: 2t8A1, 2t8, 2t7A1, 2t7 and

1t8GU in our method (Figure 1).

The second important feature of targeting is thermo-

dynamic stability. The binding energy between miRNA

and the target mRNAs gained to form the miRNA-tar-

get duplex, �Gduplex is an important base measurement

of duplex stability. The lower the free energy gained

from the formation of miRNA-target duplex, the stron-

ger the binding structure is and the more likely it sug-

gests a true target binding. Kertesz et al. (2007) also

found that the accessibility energy, ��G, which is the

difference between the free energy, �Gduplex, and the

free energy required to unpair the target-site nucleotides

to make the target accessible to the miRNA, �Gopen,

has a strong correlation with the measured degree of

miRNA-mediated translational repression [19]. So we

took both the �Gduplex and ��G to measure thermody-

namic stability of target binding in developing our

method. The binding energy was calculated by RNAhy-

brid [41]. For each miRNA-mRNA pair, we calculated
�Gduplex using the miRNA sequence and 58 nucleotides

flanking the seed match sites in the mRNA sequences,

including the seed match sites, the 30 and 20 nucleo-

tides immediately connected to the 5’ and 3’ of seed

match, respectively, while �Gopen was calculated based

on the 58 nucleotides in the mRNA sequence. We cal-

culated the �Gduplex and ��G for all seed matches

found in each miRNA-mRNA pair.

Summarizing the free energy and the accessibility energy

for each miRNA-mRNA pair

When summarizing the free energy (�Gduplex)and the

accessibility energy (��G) for each miRNA-mRNA pair,

we took into account all seed matches located in the entire

mRNA sequence. Since different seed match types have

been shown to correlate with different targeting efficacy

(e.g. 2t8A1 > 2t8 > 2t7A1 > 2t7 in 3’UTR) [23], we pro-

posed to assign different weights to each seed match

according to their types and their location in the mRNA

sequence. We first calculated the signal-to-noise ratio for

each type of seed match located in different regions

according to the miRWalk dataset. The miRNA sequences

were extracted from miRBase, and the target mRNA

sequences were downloaded from the UCSC Genome

Browser. Based on the verified miRNA-mRNA pair in the

miRWalk dataset, we counted the number of seed matches

for each of the five different types in different gene

regions, and then we randomly shuffled the mRNAs

sequence 50 times and computed the average numbers of

each type of these seed matches over 50 random shuffles.

The seed match type 2t8A1 in 3’UTRs regions yielded the

highest signal-to-noise ratio, so it was assigned a standard

weight of 1. The weights of other seed match types were

calculated as (1).

Wij =
SNRij − 1

SNR2t8A1 3’UTRs − 1
(1)

Where Wij indicates the weight of the seed match type i,

located in the gene region j. SNRij is the signal-to-noise

ratio of type i seed match in gene region j and

SNR2t8A1 3’UTR is the signal-to-noise ratio of type 2t8A1 in

3’UTRs. Then we calculated the summarized �Gduplex

and ��G for each miRNA-mRNA pair, as (2) and (3),

respectively.

Total �Gduplex =

n∑

i=1

m∑

j=1

Wij* �Gduplex (2)

Total ��G =

n∑

i=1

m∑

j=1

Wij* ��G (3)

Where �Gduplex is the binding energy of a miRNA-

mRNA duplex. A weight of Wij is assigned if the pair

contains the seed match of type i and the seed match is

located in the gene region j. In our method, we consid-

ered five types of seed matches in each of the four gene

regions (the promoter, 5’UTR, CDS, 3’UTR), so we have

n = 5 and m = 4. Similarly, the accessibility energy

(��G) gained for seed match of type i located in the

region j is assigned the weight of Wij as well.

Then we set two cutoff values, �Gduplex
cutoff

and

��Gcutoff . When the summarized �Gduplex and ��G

Xu et al. BMC Bioinformatics 2014, 15(Suppl 7):S4
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are both less than their respective cutoff values, we label

the mRNA as a putative target of the miRNA.
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