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Abstract: Identifying the mode numbers in whispering-gallery mode

resonators (WGMRs) is important for tailoring them to experimental

needs. Here we report on a novel experimental mode analysis technique

based on the combination of frequency analysis and far-field imaging for

high mode numbers of large WGMRs. The radial mode numbers q and

the angular mode numbers p = ℓ-m are identified and labeled via far-field

imaging. The polar mode numbers ℓ are determined unambiguously by

fitting the frequency differences between individual whispering gallery

modes (WGMs). This allows for the accurate determination of the geometry

and the refractive index at different temperatures of the WGMR. For future

applications in classical and quantum optics, this mode analysis enables

one to control the narrow-band phase-matching conditions in nonlinear pro-

cesses such as second-harmonic generation or parametric down-conversion.

© 2014 Optical Society of America

OCIS codes: (230.5750) Resonators; (140.4780) Optical resonators.
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15. C. Marquardt, D. Strekalov, J. Fürst, M. Förtsch, and G. Leuchs, “Nonlinear optics in crystalline whispering

gallery resonators,” Opt. Photon. News 24, 38-45 (2013).

16. D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whispering-

gallery-mode resonator,” New J. Phys. 16, 053025 (2014).

17. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb

generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

18. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared

frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).

19. J. Fürst, D. Strekalov, D. Elser, A. Aiello, U. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a

whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
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Introduction

The outstanding properties of whispering-gallery mode resonators (WGMRs) [1, 2] have en-

abled breakthroughs in various fields such as single-particle sensing [3, 4], coupling to single

atoms [5, 6], narrow-band optical filtering [7] and lasing [8], optomechanical effects [9, 10],

and WGMR-enhanced nonlinear optics [11–16] being the basis for frequency comb genera-

tion [17, 18] and quantum optics [19, 20].

WGMRs support a discrete set of eigenmodes, the so called whispering-gallery modes

(WGMs). Most WGMR experiments could benefit from the knowledge of mode numbers for an

exact quantification of their parameters. In sensing experiments with WGMRs, for instance, ex-

act information on the spatial overlap of the WGM and the probe particle is advantageous [3].

In nonlinear optics, information on spectral properties, in addition to the spatial overlaps is

needed to address and quantify conversion channels [14, 21].

There are straight forward analytical [22] and numerical methods to calculate the mode struc-

ture in WGMRs that are only slightly larger than the wavelength. Numerical studies in large

WGMRs, however, pose a significant problem as even with today’s computational possibilities

full three dimensional modeling is extremely difficult. A complete description for the far-field

emission patterns from spheroidal WGMRs, as being experimentally investigated in this work,

is still an open question in the field. In addition, the high number of experimentally accessible

modes in large WGMRs makes mode analysis a very challenging task.

Several experimental methods for mode analysis have been studied in the past, such as near-

field probing [23–27], far field imaging [28–32] and investigating the spectral response of these

resonators [26, 33–35]. Regarding the breakthrough experiments mentioned earlier in the text,

an experimental characterization of a macroscopic-size WGMR mode structure has only been

achieved in the context of optical sum-frequency generation [16] on the basis of sideband spec-

troscopy [35]. This technique requires an optical probe coupled to the mode of interest at a

wavelength that may not be available. Furthermore, finding the mode of interest, e.g. the signal

or idler down-converted mode, with the probe laser is experimentally challenging.

The spatial structure and the resonance frequency of each WGM is characterized by a unique

set of numbers, i.e. the polar, the azimuthal, and the radial mode number ℓ, m, and q, respec-

tively. The full information on these mode numbers is in principle contained in the far-field

images of the outcoupled modes [28], and in the frequency spectrum [33]. The exact identifica-

tion of WGMs can be extremely difficult in practice using only one of these approaches.

Here we present a combination of these techniques that allows for a complete identification

of all significantly coupled WGMs of a large scale (millimeter-sized) WGMR. First, we de-

termine the radial mode numbers q and the angular mode numbers p = ℓ-m via an analysis of

the observed far-field emission patterns. Then knowing these two numbers we unambiguously

find the polar mode numbers ℓ by fitting the frequency spectrum. This fitting results in a very
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accurate determination of the product of the refractive index n times the major radius R of the

resonator. Prior knowledge of either n or R allows the determination of the other parameter. This

detailed characterization of the properties of the WGMR and the mode structure is important

for WGMRs to become a versatile standard for classical and quantum optics.

The manuscript is structured as follows: section one theoretically describes far-field emission

patterns based on the electric field distributions of WGMs. Section two explains the mode

spectrum of WGMRs via the dispersion relation. After a description of the experimental setup

in section three, experimental results on the characterization of the WGMR, in particular mode

analysis, are presented on the basis of measured emission patterns and frequency spectra in

section four.

1. Theoretical background

1.1. Spatial analysis of whispering-gallery modes

Far-field emission patterns from WGMRs carry information on the internal mode structure.

According to Maxwell’s equations, WGMs in spherically-symmetric resonators are described

by spherical harmonic functions and spherical Bessel functions [36]. For WGMs close to the

equatorial plane and the surface of a spheroidal WGMR, the electric field amplitudes are ap-

proximated by [37, 38] (see Fig. 1):

E ∝ e
− 1

2 (
θ

θm
)

2

·Hp

(
θ

θm

)

· eimφ

︸ ︷︷ ︸

angular part

·Ai

(
u

um
−αq

)

︸ ︷︷ ︸

radial part

, (1a)

θm = (R/ρ)3/4
m−1/2, um = R/21/3m2/3, (1b)

where R is the major radius of the WGMR and ρ the curvature. Analogous to the solution of

Maxwell’s equations in a box with Dirichlet boundary conditions, the WGMs in this spheroidal

geometry are characterized by three integer mode numbers: the polar, the azimuthal, and the

radial mode numbers ℓ ≫ 1,m ≫ 1 and q ≥ 1, respectively (see Fig. 1). The angular mode

number p = ℓ−m = 0,1,2, ... of the WGMs gives the degree of the Hermite polynomials and

therefore the number of field oscillations in θ -direction. θm is the angular size parameter. The

radial part of the electric field in Eq. (1b) is described by the radial size parameter um and the

q-th root αq of the Airy-function Ai(−α).

The spatial structure of a WGM with open boundaries, where evanescent fields are present

in the close vicinity of the WGMR, can be probed by placing a prism with refractive index

nprism > n next to the WGMR. The far-field emission pattern from such a prism is described

as a Fourier transform of the evanescent WGM field at the prism surface. This near-field at the

prism surface can be derived by applying a coupling window [28], i.e. a finite aperture, to the

angular part of Eq. (1). This operation is equivalent to a low-pass filtering for the far-field.

According to Eq. (1), the mode profile in θ -direction contains information on the angular

mode number p. For equatorial WGMs (p=0) (see Fig. 1), the near-fields and therefore the far-

fields show exactly one maximum. For p > 0, the far-fields in θ -direction show two distinct

lobes symmetric around the equatorial plane for large spheres [28]. This is not generally the

case for aspherical resonators. For oblate resonators (R > ρ), these far-field distributions can

also be modeled with two main maxima that are symmetric about this plane. According to the

experimental results for our resonator (R/ρ ≈ 3.8) and p=2, these maxima overlap strongly (see

section three for experimental results). For p=4, they can be resolved. For prolate resonators

(R < ρ), the effect of the coupling window is reduced. In the extreme case of R/ρ ≪ 1, the

width of the WGM in the near-field is much smaller than the width of the coupling window.
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Fig. 1. Spatial structure of WGMs. The coordinate system for the electric field distributions

defined by Eq. (1) is based on the radial distance u of the observation point to the surface of

the WGMR, the polar angle θ , and the azimuthal angle φ . The intensity distributions on the

right-hand side are shown for various radial mode numbers q and angular mode numbers

p=ℓ-m.

Hence, the coupling window does not affect the out-coupling and more detailed features of the

respective WGM mode structure are visible in the far-field.

For equatorial WGMs, the equatorial coupling angle Φ and the divergence ∆Φ are given

by [39]:

sinΦ =
ℓ λ

nprism 2πR
, (2)

∆Φ2 =

√
n2 −1 λ

n2
prism 2πR cos2Φ

. (3)

The equatorial angle Φis in good approximation equivalent to the critical angle of total internal 
reflection of the resonator and the prism material and is independent of the minor radius ρ . A  
measurement of the equatorial angle Φreveals the polar mode number ℓ, which is equal to the 
azimuthal mode number m for equatorial modes. 

1.2. Spectral analysis of whispering-gallery modes

An understanding of the mode spectrum of WGMRs requires a discussion of the dispersion

relation [36,38,40] on the basis of frequency differences between individual WGMs. Using the

dispersion relation [36, 40], we connect the mode numbers ℓ, q, and p = ℓ−m to the resonant

optical frequency νℓ,q,p:

νℓ,q,p =
c

2πnR
︸ ︷︷ ︸

1/x

· ℓ+αq

(
ℓ

2

)1/3

+ p

(√

R

ρ
−1

)

− χ ·n√
n2 −1

+
1

2

√

R

ρ

+
3α2

q

20

(
ℓ

2

)−1/3

+O ℓ−2/3
)
]

, (4)

with p and
√

R/ρ of the order of one. Depending on the polarization, the parameter χ is

1 for TE modes and 1/n2 for TM modes. The wavelength-dependent refractive index of the

WGMR is n. This renders the right-hand side of Eq. (4) frequency dependent.The q-th root of

the Airy function αq > 0 can be approximated as αq = [3π/2(q− 1/4)]2/3.The scaling factor
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x = (2πnR)/c appears as a refractive index dependent and thus frequency-dependent normal-

ization factor. The spectrum around a certain WGM at frequency νℓ,q,p is found by evaluating

frequency differences:

∆νℓ,q,p(∆ℓ,∆q,∆p) = νℓ+∆ℓ,q+∆q,p+∆p −νℓ,q,p (5)

to other WGMs at frequencies νℓ+∆ℓ,q+∆q,p+∆p. Due to the material dispersion, Eq. (4) is an

implicit function of the frequency. Hence, the correct description of the frequency differences

requires a full numerical approach.

For a better qualitative understanding of the relevant quantities for the formation of the fre-

quency spectrum, we can give analytic expressions using first order approximations. For this,

we define a dispersive scaling factor xd by including the slope of the refractive index ∂n
∂ν at the

frequency νℓ,q,p as:

xd = x ·
(

1+
νℓ,q,p

n

∂n

∂ν

∣
∣
∣
∣
νℓ,q,p

)

, (6)

Small contribution of the polarization dependent term χ ·n/
√

n2 −1 in Eq. (4) are omitted.

In the following, we model the frequency spectrum on the basis of changes in the respective

mode numbers ℓ,q, and p. This discussion is illustrated in Fig. 2. The free spectral ranges FSRℓ,q

originate from steps in the ℓ number and depend only on ℓ and q:

∆νℓ,q,p(∆ℓ= 1,0,0)≡ FSRℓ,q ≈
1

xd

[

1+
αq

6

(
2

ℓ

) 2
3

]

. (7)

For increasing polar mode numbers ℓ, found for example at higher optical frequencies, WGMs

are located closer to the WGMR surface. This increases the effective radius for these WGMs

and decreases the FSRq,ℓ. In contrast, an increase in the radial mode number q leads to the field

shifting away from the surface, which decreases the effective radius and increases the FSRℓ,q.

The spacings between different radial WGMs:

∆νℓ,q,p(0,∆q,0)≈ 1

xd

(
αq+∆q −αq

)
(
ℓ

2

) 1
3

(8)

can exceed the FSRℓ,q by orders of magnitude and depend only on ℓ and q. Within the spectral

observation window, modes with a different radial number q will also have a different polar

number ℓ′ (see Fig. 2).

The spacings between WGMs with different angular mode numbers p:

∆νℓ,q,p(0,0,∆p)≈ 1

xd

(√

R

ρ
−1

)

∆p , (9)

are determined solely by the ratio of the radii R/ρ and independent on q and ℓ. Eq. (9) has

been used extensively in the context of frequency comb generation [18]. For R/ρ ≈ N2 where

N = 1,2,3..., the spacings can match multiples of the FSRℓ,q given by Eq. (7), which can lead

to degenerate frequencies νℓ,q,p = νℓ+p·(N−1),q,0. The case of a spherical resonator (N=1), which

exhibit degenerate mode families, is well known. According to Eq. (9), spheroidal resonators

may have sufficient symmetry to support degenerate mode families.

The frequency spectrum depends on a variety of parameters of the WGMR and the environ-

ment, such as temperature, material, pressure, and geometry. Each of these parameters can be

used independently to tailor the frequency spectrum.
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Fig. 2. Illustration of a WGMR mode spectrum. As for all resonators, the free spectral range

is the characteristic mode spacing for one mode family. Here, we show two mode families

(dashed and solid lines), whose respective free spectral ranges (FSRℓ,1 
= FSRℓ′,2, see Eq.

(7)) are determined by geometric dispersion. In addition to equatorial WGMs {q ≥ 1,p =
0}, each mode family contains non-equatorial WGMs {q ≥ 1,p 
= 0} at an offset frequency

given by Eq. (9). Within a given spectral observation window, the frequency differences of

the WGMs belonging to different mode families allow to unambiguously identify the polar

mode number ℓ.

In principle, accurate knowledge about the scaling factor x, i.e. the fundamental value n ·R,

together with an absolute frequency measurement of one WGM can provide a way to deter-

mine mode numbers ℓ, q, and p of this particular WGM. This can be experimentally challeng-

ing due to the limited knowledge of the geometry and the refractive index of the WGMR. In

contrast, the experimental study presented in the following two sections is based on relative

frequency measurements. First, we obtain the mode numbers q and p from a spatial mode anal-

ysis. Using this knowledge, we show a complementary analysis of the frequency differences

∆νℓ,1,0(∆ℓ,∆q,∆p) from the fundamental WGM to higher-order WGMs to obtain the WGMR

properties, such as the scaling factor x, the major radius R, and minor radius ρ . In this analysis,

ℓ is exactly determined by a fitting procedure.

2. Experimental setup

The experimental setup shown in Fig. 3 allows spatial and spectral characterization of WGMs.

The macroscopic WGMR is manufactured from a congruent 5.3% MgO-doped lithium niobate

wafer, such that the optic axis is aligned with the symmetry axis of the resonator (z-cut [14]).

The major and the minor radius of the disk are measured to be R = 1.594± 0.006 mm and

ρ = 0.423± 0.006 mm with a microscope leading to a scaling factor of x ≈ 1/(13.4GHz).
The WGMR is mounted in an oven whose temperature is stabilized to a millikelvin level. The

light source for probing the whispering-gallery resonator is a continuous wave laser at 532nm

(Nd:YAG Prometheus, Innolight) with a Hermite-Gauss TEM00 mode. Its polarization is paral-

lel to the optic axis of the WGMR (TE mode).

Evanescent coupling to the disk is achieved by focusing the beam onto the inner surface of

a diamond prism under an angle of total internal reflection (see Fig. 3). The transverse cou-
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pling angle was adjusted by maximizing coupling to equatorial modes. All light coming from

the coupling point is collimated and sent to a photo detector. At the resonance frequencies of

individual WGMs, light can be coupled to the WGMR. Tuning the laser frequency over more

than an FSR, this configuration can be used for the spectral analysis.

WGMR

532 nm

temperature
control

photodetector 

Φ

frequency
sweep

Nd:YAG SHG

optic axis

ρ

horizontal shift

v
er

ti
ca

l 
sp

li
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camera
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Fig. 3. Illustration of the experimental setup showing the spectral and spatial mode analysis

detection.

At the in-coupling prism, the emission pattern from the WGMR destructively interferes with

the directly reflected spatial mode of the laser source. We use a second diamond prism for

out-coupling to investigate the modes independently from this interference. The light emerging

from the second prism is sent to a CCD camera placed at a distance of 1.4 cm from the coupling

point, which gives us in a good approximation the far-field emission pattern.

3. Experimental results

In our mode analysis technique, we combine the information from far-field emission patterns

and from the frequency spectrum. In the first subsection mode numbers q and p are obtained

from an analysis of the far-field emission patterns. In the second subsection a complementary

analysis of the frequency differences ∆νℓ,1,0(∆ℓ,∆q,∆p) from the fundamental WGM to higher-

order WGMs is performed to obtain the WGMR properties and the polar mode numbers ℓ.

3.1. Far-field imaging

As a first step, we tune the pump laser frequency over 14 GHz and record the WGMR spectrum

with a photodetector. It is known from sensing with WGMRs that objects within the evanescent

fields, in this case the coupling prism, can induce a shift of the resonance frequencies [3,4]. To

avoid this effect, the experiment is carried out in the under-coupled regime of the fundamental

WGM. The measured frequency spectrum is shown in Fig. 4(a). The numbers {q,p} of the

modes shown in this figure are not yet determined. To find these numbers, we take far-field

images (see Fig. 5(a)) of all WGMs with a reasonably strong coupling within one FSR. With

our coupling optimized for equatorial modes using a TEM00 laser beam, the excitation of modes

with odd p is strongly suppressed (see also [26]). Consequently, we expect to see only even

numbers of p, whose coupling decreases rapidly for higher p. Note that tilting the pump beam

from the equatorial plane excites an increasing number of non-equatorial modes. The spectrum

becomes more dense and less pronounced features of well-coupled modes are visible.

WGMs with different p numbers are distinguished based on the cross section of the far-

field emission patterns, which is depicted in Fig. 5(b) as an average for WGMs with the same

p but different q. Equatorial WGMs with p=0 show a single-lobe nearly Gaussian emission
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pattern. WGMs with p=2 exhibit a flat-top angular distribution. This distinction is clear enough

to identify the p=0 and p=2 modes in most relevant cases. For WGMs with p=4, a distinct

two-lobe structure appears. A limitation arises for strongly oblate (R ≫ ρ) resonators when

emission patterns coming from p=0 and p=2 WGMs strongly overlap.

The measured emission patterns of the WGMs were fitted with Gaussian functions in hori-

zontal direction. This reveals the information on the central positions (see in Fig. 5(c) for the

associated coupling angles Φ) and 1/e-values of the Gaussian functions, and hence the diver-

gences of the emission patterns. The central position give the information on the q number.

Since the resonance frequencies νℓ,q,p of all WGMs within the spectral observation window

(see Fig. 2) are approximately equal to the pump laser frequency, Eq. (4) implies that larger

radial mode numbers q correspond to smaller numbers ℓ. Hence, an increase in the radial mode

number q results in a decrease in the out-coupling angle Φ for equatorial WGMs according to

Eq. (2). This corresponds to the horizontal shift of the center of the spatial profiles depicted

in Fig. 5(a), which provides the basis for identification of q. This also means that coupling of

modes with different q can be optimized via the coupling angle Φ, which is observed in the

experiment.

Fig. 4. Labeled transmission spectra. Transmission spectra at λ = 532 nm of the macro-

scopic WGMR (major radius R = 1.59 mm) measured at T = 70◦C (a) and T = 57◦C (c).

The radial mode numbers q and the angular mode numbers p = ℓ−m are assigned accord-

ing to the far-field emission patterns (see Fig. 5). Frequencies are specified relative to the

frequency νℓ,q=1,p=0 of the fundamental WGM {q=1,p=0}, which is highlighted in grey.

Non-equatorial WGMs {q ≥ 1,p 
= 0} exhibit a fixed frequency difference to the respective

equatorial WGM {q ≥ 1,p=0} (see Fig. (a) and Eq. (9)). Fig. (b) shows measured (square

markers) and calculated (vertical lines) frequency differences ∆νℓ,1,0(∆ℓ,∆q,∆p = 0) ac-

cording to Eq. (5) for different equatorial WGMs {q ≥ 1,p=0} at different temperatures.

Temperature tuning of these WGMs exhibits different slopes due to their different FSRℓ,q

given by Eq. (7). The frequency spectrum at a given temperature is then directly related to

the polar mode number ℓ (ℓ = m for equatorial WGMs) of the fundamental WGM shown

on the right axis.
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Therefore the analysis of the far-field emission patterns has allowed an assignment of radial

mode number q and angular mode number p in the mode spectrum shown in Fig. 4. The polar

mode numbers ℓ are obtained from an analysis of frequency differences in the mode spectrum,

which is discussed below. With the information on ℓ, q, and p, one can calculate the coupling

angles Φ using Eq. (2). The calculated angles can be compared with the coupling angles in-

ferred from geometry of the setup and the measured central positions of the far-field images. A

constant offset angle is taken as a fitting parameter. The experimental results shown in Fig. 5

are in good agreement with the model. Multiple measurements of one mode were taken to es-

timate the standard deviations for the measured coupling angles, which are presented as error

bars in Fig. 5(c). For high radial mode numbers q, the error bars of adjacent WGMs will start

to overlap. Adjacent WGMs can then no longer be distinguished unambiguously due to statis-

tical variation in the measured central positions. Our assignment of radial mode numbers for

equatorial WGMs up to q = 12 is also confirmed by the frequency analysis described below.

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. a) Far-field emission patterns of various low-order WGMs (see Fig. 4(a) for the

corresponding frequency spectrum). The WGMs {q=2,p=0} and {3,2} exhibit distortions

in the far-field images, which probably originate from their frequency degeneracy to other

WGMs. The horizontal center positions of the intensity distributions shift to the left (to-

wards smaller Φ) for higher radial mode numbers q. b) Averaged vertical cross section for

WGMs with the same p but different q. This gives information on the distribution of the

WGMs in θ -direction, which allows a distinction between different angular mode numbers

p. c) Distinction of different radial mode numbers q of equatorial WGMs (p=0) according

to the coupling angle Φ. Within our spectral observation window, the higher the radial mode

number q, the smaller is ℓ and Φ. The exact polar mode numbers ℓ used for the calculated

out-coupling angles Φ (see Eq. (2)) are derived from an analysis of the spectrum.

The experimental 1/e-values of the mode profiles in Φ−direction can now be translated into

angular divergences. The mean value of the measured divergences ∆Φmeasured = 0.60◦ matches

well (within 8%) with the theoretical value ∆Φtheoretical = 0.53◦ (see Eq. (3)). The divergences

are approximately equal for all measured radial modes.
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3.2. Spectral analysis

We use our knowledge of the mode numbers q and p for the spectral analysis. The frequency of

the fundamental WGM {q=1, p=0} is taken as a reference point. In Fig. 4, all other modes were

plotted relative to this fundamental WGM frequency. The measured frequency differences of

the equatorial modes are fitted with calculated frequency differences according to the dispersion

relation given by Eq. (4). For p=0, the dispersion relation depends on the radius R and polar

mode number ℓ as free parameters.

Fig. 6. Evaluation of the measured frequency spectrum (see Fig. 4(a)). a) The mismatch

between measured and computed frequency differences (see Eq. (5)) over a broad range of

ℓ numbers of the fundamental WGM {q=1,p=0}. The frequency mismatches of a selection

of equatorial WGMs are shown. The individual mismatches reach zero at multiple values

of ℓ, however, all together they reach zero at the unique value of ℓ = 41903 in b).

This fit (see Fig. 6) unambiguously yields the polar mode number ℓ=41903 for the funda-

mental WGM, and confirms the assignment of q and p for the other WGMs gained from the

spatial analysis. For p=0, the radius only appears in the scaling factor x in the dispersion re-

lation. Therefore the fitted radius R can only be trusted within the accuracy for the absolute

value for measured frequency differences. A much better accuracy is achieved by evaluating

the fitted polar mode number together with absolute frequency of the pump laser. Taking the

measured frequency νℓ,1,0 = (563.26±0.01)THz of the fundamental WGM determined with a

wavemeter, the fit results in an optical circumference of n ·R = (3.55509±0.00006)mm.

Using the refractive index found from the Sellmeier equation for lithium niobate [41], n =
2.2244± 0.0011, we estimate the large radius to R = (1.5982± 0.0008)mm at 70◦C. This is

consistent with the value measured with the microscope but has a precision improved by an

order of magnitude. Additionally, knowledge of the mode numbers and the frequency spacing

between non-equatorial modes described by Eq. (5) can be used to fit the ratio R/ρ . Together

with the knowledge of R, the fit yields ρ = (0.4223± 0.0011)mm. The measurements of the

radii also agree well with the microscopically measured value. Thermal expansion does not

affect the WGMR radii within the accuracy of the microscope measurement.

In a final step, the spectral characterization is carried out again at a different temperature of

the WGM resonator within the same spectral observation window (see Fig. 4(c)). This results

in a shift of the relative frequencies for all the modes within the spectrum (see Fig. 4(b)). A

change in temperature effectively changes the resonator optical length, both through thermal

expansion and the thermal change in the refractive index of lithium niobate. This changes the
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size parameter x of the resonator. The change in the measured mode spectrum in the fixed

spectral observation window can thus be directly related to a change in the ℓ number for each

mode in the observation window by ∆ℓ= 45. In principle, temperature tuning can also be used

to obtain accurate information on the thermo refractive and thermal expansion coefficient. Due

to experimental uncertainties in the temperature determination, this is not possible here with a

reasonable accuracy. In contrast, we use temperature tuning to demonstrate an efficient method

for tailoring the frequency spectrum by choosing the proper ℓ number at a certain temperature.

4. Conclusions

In summary, we have demonstrated a practical experimental technique to identify mode num-

bers of all significantly coupled WGMs within the spectral observation window by evaluating

far-field emission patterns and frequency differences. This technique takes advantage of geo-

metrical dispersion arising in WGMs due to their curvature. Therefore it is more efficient in

application to small resonators. However, we have shown that the exact determination of the

mode numbers is possible even in relatively large resonators.

Apart from analyzing an unknown mode spectrum, the understanding of the frequency spec-

tra can also be used to specifically tailor WGM spectra. In addition, this measurement technique

allows for accurate measurements of the resonator radii R and ρ times refractive index n. The

determination of the optical circumference n ·R are mainly limited by the uncertainty of the

laser frequency. This can be increased experimentally by orders of magnitude to allow very

accurate measurements of either resonator geometry or refractive index. The large set of accu-

rately characterized WGMs can be employed to select WGMs with specific spatial or spectral

properties on demand for a huge variety of applications in classical and quantum optics.
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