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1 Introduction

Understanding how product development organizations manage

the knowledge associated with the architecture of the product they

design has been recognized as a critical challenge for established

firms facing architectural innovation @1#. This paper presents a

method that allows engineering managers to identify modular and

integrative systems within a product, based on how systems share

design interfaces. Furthermore, by studying the coupling between

the product architecture and the development organization we en-

hance our understanding of the differences in designing modular

versus integrative systems. The results of this work highlight the

importance of identifying design interfaces during the project

planning stage so that corresponding design teams are managed

efficiently during project execution.

We are particularly interested in the development of complex

products, such as automobiles, computers, or aircraft engines. The

general approach when developing complex products is to decom-

pose the product into systems, and if the systems are still too

complex, decompose these into smaller components @2–4#. In the

organizational domain, design teams in complex product develop-

ment are commonly organized around the architecture of the prod-

uct. In most technical products we have observed a clear mapping

between the product architecture and the development organiza-

tion which designs it @4#. However, little research has focused on

understanding the effects on team dynamics involved with design-

ing various types of architectures.

Product Architecture Literature. Ulrich @5# defines product

architecture as ‘‘the scheme by which the function of a product is

allocated to physical components.’’ A key feature of product ar-

chitecture is the degree to which it is modular or integral. In

modular architectures functional models of the product map one-

to-one to its physical components. On the other hand, in integral

architectures a large subset of the product’s functional models

map to a single or small number of components.

Other researchers have investigated the implications of product

modularity on various aspects of product development. Newcomb

et al. @6# study the effects of product modularity on product life

cycle. Other researchers have studied the relation between product

architecture and product portfolio definition @7–9#. The link be-

tween product architecture and supply chain has been addressed in

the operations and management science literature @10–14#. Few

other researchers have studied how product modularity may affect

testing strategies of design alternatives @15,16#.
In the engineering design field a large stream of research has

focused on methods and rules to map functional models to physi-

cal components. Researchers have developed several architecting

rules to map function to physical modules @17–20#. Other ap-

proaches view the functional model of a system as being de-

scribed by an abstract functional decomposition that may, but do

not need to, have a direct mapping onto physical decomposition of

assemblies and subassemblies @21–24#.
Ulrich and Eppinger @25# claim that the product architecture is

also the scheme by ‘‘which the chunks1 @of a product# interact.’’ In

complex products, the chunks of physical components are com-

plex systems as well. They also argue that the challenge of estab-

lishing the architecture of these systems ‘‘is essentially identical to

the architectural challenge posed at the level of the entire prod-

uct.’’ @@25#, pp. 183# However, we believe that the challenge of

establishing the architecture of systems ~the chunks! is com-

pounded by the fact that components have design interfaces not

only with other components within the system but also with com-

ponents that belong to other systems that comprise the product

~see Fig. 1!.
By using established concepts in the current product architec-

ture literature we can categorize systems as modular or integral

based on how their corresponding components share design inter-

faces ~within the system!. However, we also need to categorize

systems according to how they share design interfaces with other

systems as a result of the product architecture. Hence, at the sys-

tem level in order to define system modularity we need to specify

whether we are looking at the system internally, as an indepen-

dent entity, or externally, as an entity that interacts with other

systems comprising the product.

We introduce here the concepts of modular and integrative sys-

tems, from an external perspective, that is, based on the existence

of design interfaces between components of the same product that

belong to different systems. We define modular systems as those

whose design interfaces with other systems are clustered among a

few physically adjacent systems, whereas integrative systems are

those whose design interfaces span all or most of the systems that
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1Chunks refer to the physical building blocks in which the components of a

product are organized. We will use the term systems instead.
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comprise the product due to their physically distributed or func-
tionally integrative nature throughout the product. Note that inte-
grative systems may span design interfaces with other systems not
only due to physical proximity ~e.g., the main shaft system of an
aircraft engine spatially interfaces with the fan, compressor, dif-
fuser, and turbine systems! but also due to functional dependency
with other components ~e.g., engine external plumbing design is
defined by material transference needs of internal engine compo-
nent requirements across all systems!.

Based on these definitions we can argue that a ‘‘hypothetically
perfect’’ modular system would be one whose components do not
share design interfaces with components that belong to other sys-
tems. Moreover, such a perfect modular system could potentially
exhibit an integral architecture internally depending on how its
components share design interfaces among themselves. On the
other hand, a ‘‘hypothetically perfect’’ integrative system would
be one whose components are completely physically distributed
throughout the product resulting in components that share inter-
faces with all the systems that comprise the product, even if it
exhibits a modular architecture internally. Examples of ~real!
modular systems can be the engine block of a car, the micropro-
cessor system of a computer, and the fan system of an aircraft
engine. Examples of ~real! integrative systems are the chassis of a
car, the rotors, cases and airfoils of a compressor system, and the
fuel system of an aircraft.

Distinguishing modular and integrative systems can play a criti-
cal role in planning the interactions of development teams. Some
engineering teams may not be fully aware of or motivated to
address the design interfaces and needs for system-level interac-
tion. In this context, one of the hypotheses we test in this paper is
that team interactions with design teams that develop integrative
systems are more likely to be predicted by design interfaces than
are team interactions between design teams that develop modular
systems.

Product Development Organizations. From an organiza-
tional viewpoint, complex development projects usually involve
the efforts of hundreds or even thousands of team members. A
single team does not design the entire product at once ~it is too
complex!. Rather, many teams develop the components, or sys-
tems, and work to integrate all of these components to create the
final product @2,4,26,27#. We call modular design teams those
which design modular systems while integrative design teams are
those which design integrative systems.

An important challenge faced by development organizations is
product integration @28#. Design teams face two important levels
of integration during the development of complex products:

• Function-level integration takes place within each cross-
functional design team when they have to coordinate efforts
in order to design their respective components.

• System-level integration takes place across design teams in

order to integrate the components ~designed by each team! to
assure the product works as an integrated whole.

This paper focuses on understanding the system-level integra-
tion efforts faced by both modular design teams and integrative
design teams. In particular, we seek to better comprehend how
modular and integrative design teams face barriers imposed by
architectural system and organizational boundaries. We also want
to investigate whether design teams must apply greater effort to-
ward addressing certain types of design interfaces.

2 Our Research Approach

We summarize our research method in three steps. First, we
capture the product architecture and identify modular and integra-
tive systems. Second, we capture the development organization,
and third, we compare the product architecture with the develop-
ment organization to study the impact of system modularity on
team interactions.

1. Capture the product architecture. By interviewing design
experts who have a deep understanding of the architecture of the
product, we identify how the product is decomposed into systems,
and these further decomposed into components. We then ask them
to identify the design interfaces between the components required
for their functionality. Lastly, we identify modular and integrative
systems by analyzing how design interfaces between components
that belong to different systems are distributed throughout the
product.

2. Capture the development organization. We first identify
the design teams responsible to develop the product’s compo-
nents. We then survey key members of each team to capture the
frequency and importance of the technical interactions between
them, and thus assess the integration effort of the development
organization.

3. Compare the product architecture and the development
organization. We compare the design interfaces with the team
interactions in order to study how the product architecture drives
technical communications in the development organization. More
specifically, we study how modular and integrative systems differ
in the way they drive the system-level integration efforts of the
development organization.

3 An Example

We apply our approach to the design of a large commercial
aircraft engine ~Pratt & Whitney PW4098!. The project chosen
was a complex design that exhibited explicit decomposition of the
engine into systems, and these into components. Furthermore, the
design project involved the development of both modular and in-
tegrative systems. The engine was decomposed into eight systems,
and these further decomposed into 54 components. Figure 2 ex-
hibits a cross-section diagram of the engine which highlights the
eight systems that comprise the engine and Table 1 shows the
decomposition of the engine into systems and the systems into
components.

On the organizational side, the development team was orga-
nized according to the architecture of the product, with 54 cross-
functional teams assigned to design the 54 engine components. In
addition, there were six design teams responsible for system inte-
gration who were not responsible for the design of any of those
components.

The direct mapping between the architecture of the engine and
the organizational structure facilitated the implementation of our
approach. For more details of the project description and the data
collection process refer to Rowles @29#.

Capturing the Product Architecture. The engine studied
was decomposed into eight systems. Each of these systems was
further decomposed into five to ten components each ~see Table
1!.

After documenting the general decomposition of the product,
we proceeded to identify the design interfaces between the 54

Fig. 1 Internal and external system design interfaces
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components of the engine. Researchers in engineering design
@30,31# have modeled functional requirements of product designs
in terms of exchanges of energy, materials, and signals between
elements. Building upon the methodology presented by Pimmler
and Eppinger @3# we identified five types of design dependencies
between the 54 components which comprise the engine. The five
types are explained below, along with an example of each type.
Note that some interface relationships are symmetric, while others
are not.

• Spatial dependency indicates that physical adjacency is
needed for alignment, orientation, serviceability, assembly, or
weight. For example, the clearance between the tips of the
high-pressure turbine ~HPT! blades and the HPT blade outer
air seals ~BOAS! must be minimized for optimum perfor-
mance. Note that in this example the dependency is symmet-
ric as the blades spatially depend on the seals and vice versa.

• Structural dependency indicates the existence of a functional
requirement for transferring design loads, forces or contain-
ment. For example, the HPT casing geometry is dependent on
HPT blade loads and trajectory for containment capability,
even though the parts are not adjacent to one another. How-
ever, blades are not structurally dependent on the casing
~asymmetrical dependency!.

• Energy dependency indicates a functional requirement re-
lated to transferring heat energy, vibration energy, electrical
energy, or noise. For instance, when studying the energy de-
pendency between fan blades and fan exit guide vanes we
found that abatement of fan flutter and noise ~produced by the
fan blades! drives the airfoil and platform design of both the
fan and the fan exit guide vane. Both airfoil counts and axial
spacing are designed to optimize fan vibration and noise,
which results in a symmetrical dependency.

• Material dependency indicates a functional requirement re-
lated to transferring air, oil, fuel, or water. For example, fuel
nozzles are dependent on fuel from the fuel control, and air
from the diffuser, but not vice-versa ~asymmetrical dependen-
cies!.

• Information dependency indicates a functional requirement
related to transferring signals or controls. For example, oil
system controls such as the fuel/oil cooler valve and oil tank
valve are dependent on oil temperature and pressure sensors
~symmetrical dependencies!.

Design dependencies were captured by interviewing design ex-
perts who had a deep understanding of the product architecture
but were not directly involved in the design of the engine. More-
over, for each design dependency we asked design experts to as-

sess the criticality of each dependency using a five-point scale as
suggested by Pimmler and Eppinger @3#. Table 2 shows the scale
used during the data collection. Note that the scale used captures
not only desired and required dependencies ~the positive ones! but
also undesired and detrimental dependencies ~the negative ones!.
An example of a negative dependency would be the undesired
transfer of energy ~vibration! from the LPT vanes to the LPT
blades. However, the blades and vanes are positively co-
dependent for proper inlet and exit gas conditions to achieve op-
timum aerodynamic efficiency. Hence, an important challenge
these two design teams face is how to manage these conflicting
design interfaces that are critical in opposing directions.

We mapped the design-interface data into a square ~54354!
design interface matrix. ~The design interface matrix can be de-
scribed as a special form of design structure matrix ~DSM!. For a
formal introduction to DSM refer to Steward @32# and Eppinger
et al. @33#.! The identically labeled rows and columns of this ma-

Fig. 2 Large commercial aircraft engine

Table 1 Engine decomposition into systems and components

System Components

Fan • Fan containment case
• Fan exit guide vanes & cases
• Fan blades
• Fan hubs
• Fan stub shafts
• Spinners & Nose caps
• Fan blade platforms

Low-Pressure Compressor
~LPC!

• LPC airfoils
• LPC stator
• LPC drum
• LPC splitter
• LPC liner
• Bleed BOM
• Intermediate case

High-Pressure Compressor
~HPC!

• HPC blades
• HPC inner shrouds & seals
• Variable Vanes
• HPC fixed stators/cases
• HPC rubstrips & spacers
• HPC disks & drums
• Giggle tubes & blade locks

Combustion Chamber ~CC! • Burner
• Diffuser
• Tobi duct
• Diffuser tubes
• Fuel nozzle

High-Pressure Turbine
~HPT!

• HPT blades
• HPT 1V
• HPT 2V
• HPT rotor
• HPT case & blade outer air seal BOAS

Low-Pressure Turbine
~LPT!

• LPT shaft
• LPT case
• TEC
• LPT vanes
• LPT blades
• LPT OAS/Ducts insulation

Mechanical Components • Mainshaft
• Gearbox
• Breather valve
• Oil pump
• Internshaft seal
• PMA
• Mech. Components of oil system

Externals and Controls • External Tubes
• 2.5 Bleed Butterfly
• Externals/Controls air systems
• Externals/Controls oil system
• External/Controls fuel/drain
• Harness
• Ignition
• Electrical Controls
• Mechanical Controls
• Sensor Controls
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trix correspond to the 54 components of the engine, and their
~original! sequencing follows the physical arrangement of the sys-
tems within the product ~The 54 components are listed in the
second column of Table 1.! Each off-diagonal cell of the design
interface matrix contains a five-component vector corresponding
to the five types of design dependencies which categorize each
design interface.

For graphical simplicity, Fig. 3 displays only the binary form of
the design interface matrix of the engine studied. The off-diagonal
elements of the binary matrix are marked with an ‘‘X’’ when a
given component has at least one design dependency with another
component. Reading across a row corresponding to a particular
component indicates the other components upon which it depends
for functionality. The diagonal elements of the matrix are mean-
ingless and are shown to separate the upper and lower triangular
portions of the matrix.

The nonreciprocal ~asymmetric! nature of some design depen-
dencies was captured during the data collection as we asked the
respondents how a given component depends on the other ones.
The structural and material dependency examples described above
show typical cases of asymmetrical dependencies found in the
design interfaces of the aircraft engine. This results in a design

interface matrix that is not completely symmetric with respect to
the diagonal. Previous work in functional modeling
@21,30,34,35,36# suggests the possibility of non-reciprocal design
dependencies. Asymmetrical dependencies can be associated with
some assembly functions such as hold and support. For instance,
the frame of a gearbox may depend structurally on the weight of
the gears to support, but not vice versa. Some design dependen-
cies can be asymmetrical due to functional constraints. For in-
stance, the diameter of the shaft of an electric motor might be
constrained to the internal diameter of the bearings to be used
~asymmetrical spatial dependency in which the shaft depends on
the bearing as its dimensions are fixed!, which in turn usually
depends on the loads transmitted from the shaft ~resulting in an
asymmetric structural dependency!.

For consistency between the physical product and the design
interface matrix, we first sequence the design interface matrix
following the spatial arrangements of the systems throughout the
engine. More specifically, we sequence the matrix following
theairflow through the engine ~from left to right in Fig. 2!. The
important point about sequencing the design interface matrix is to
cluster components that belong to the same system together so
that system boundaries could be easily identified. At the compo-

Fig. 3 Design interface matrix

Table 2 Design dependency criticality

Level of design
dependency criticality Description Measure

Required Dependency is necessary for functionality 12
Desired Dependency is beneficial, but not absolutely necessary for

functionality
11

Indifferent Dependency does not affect functionality 0
Undesired Dependency causes negative effects, but does not prevent

functionality
21

Detrimental Dependency must be prevented to achieve functionality 22
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nent level ~i.e., within each system!, rows and columns were ar-
bitrarily ordered. We highlight system boundaries with boxes
along the diagonal of the design interface matrix. Marks inside the
boxes represent design interfaces between components of the
same system, whereas marks outside the boxes indicate interfaces
between components of different systems ~cross-boundary design
interfaces!. Light boxes throughout the matrix enclose the cross-
boundary design interfaces between any two given systems.

Identifying Modular and Integrative Systems. As men-
tioned above, modularity at the system level can be categorized
from an internal viewpoint by studying the design interfaces
within the system, or from an external perspective by studying the
design interfaces across systems. In this paper we are interested in
the latter categorization.

We define modular systems as those systems whose cross-
boundary design interfaces are concentrated among a few other
systems ~usually spatially contiguous systems!. On the other hand,
we define integrative systems as those systems whose design in-
terfaces are scattered among components in ~almost! all the sys-
tems that comprise the product. An example of a modular system
is the low-pressure compressor ~LPC! whose components share
design interfaces with components of the fan and high-pressure
compressor ~HPC! systems located adjacent to the LPC. An ex-
ample of an integrative system is the main shaft system ~which is
a subsystem of the mechanical components systems! which has
design interfaces with components of all other systems in the
engine.

Our approach to identify modular and integrative systems is
facilitated when the design interface matrix is sequenced to reveal
the system boundaries. In order to do so, we must sequence com-
ponents that belong to the same system together. Then, we suggest
re-ordering the matrix so that the systems sharing a larger number
of design interfaces across systems are sequenced last so that the

matrix can be divided in two sections, the first columns and rows

corresponding to modular systems and the last ones assigned to

integrative systems. In our example, the systems with more cross-

boundary design interfaces were the externals and controls, me-

chanical components, and high-pressure compressor systems. Fig-

ure 4 shows the re-ordered design interface matrix exhibiting the

high-pressure compressor system sequenced third-last in the

matrix.

By visually inspecting the design interface matrix we observe

that the first five systems are those in which cross-boundary de-

sign interfaces are primarily clustered among adjacent systems

~modular systems!. On the other hand, it is clear that the externals

and controls system has a significantly large number of cross-

boundary design interfaces well distributed among the other sys-

tems ~integrative system!. The question becomes: where do we

draw the line to separate modular systems from integrative sys-

tems? Are the mechanical components and the high-pressure com-

pressor modular or integrative systems?

In order to answer these questions we compare the frequency

distribution of cross-boundary design interfaces of the mechanical

components and the high-pressure compressor systems against the

externals and controls system. Hence, we assume that the exter-

nals and controls system is an integrative system and we use it as

our basis of comparison to determine whether the two other sys-

tems in question are modular or integrative. In general, we should

statistically test whether the difference in the proportions of cross-

boundary design interfaces between any two given systems is

large enough to be attributed to a difference in system modularity

rather than just random variation in the data. Hence, when com-

paring a modular system and an integrative system’s frequency

distribution of cross-boundaries design interfaces the difference

should be statistically significant.

Fig. 4 Re-ordered design interface matrix
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Figures 5, 6 and 7 show the number of cross-boundary design
interfaces of the externals and controls system, the mechanical
components system and the high-pressure compressor ~HPC!, re-
spectively. By visually inspecting these three frequency distribu
tions we can observe that the first two frequency distributions are
very similar to each other but different than the third one. This
visual inspection allows us to conjecture that both externals and
controls system and mechanical components system are integra-
tive systems whereas the high-pressure compressor is a modular
system. To formally test that the difference in frequency distribu-
tions of cross-boundary design interfaces is due to system modu-
larity rather than just random variation in the data we perform a

chi-square (x2) test analysis on these frequency distributions.

Chi-square (x2) tests are commonly used in analysis of fre-
quencies. Analysis of frequencies are characterized by ~1! data
consisting of counts or frequencies, and ~2! implied or stated hy-

potheses which determine the expected frequencies with which we
can compare the actual frequencies2 @37#. In this analysis we as-
sume that the cells in each of the matrices shown in this paper are
statistically independent. Using log-linear network analysis Sosa
@38# shows that such an assumption does not affect the results of
the analysis presented in this paper.

Table 3 shows the results of the chi-square test performed to
test the null hypothesis that ‘‘the frequency distribution of design
interfaces of the externals and controls system is statistically
equivalent to the frequency distribution of the high-pressure com-

pressor system’’. The test resulted in a x2 equal to 41.857 which is
greater than the critical value of 11.070 ~for a50.05 and five
degrees of freedom!. This result allows us to reject the null hy-
pothesis stated above. The expected values shown in Table 3 are
determined based on the frequency distribution of the design in-
terfaces of the externals and controls system. That is, according to
the null hypothesis stated above, the expected fraction of design
interfaces between the high-pressure compressor and the other
systems is equal to the fraction of design interfaces between the
externals and controls and the other systems.3 The actual values
are the number of design interfaces of the high-pressure compres-
sor system with each of the other systems. Similar results were
found when comparing the frequency distribution of cross-system

2Chi-square (x2) statistic is computed as @Observed value2Expected

value]2/Expected value
3 Fraction design interfaces external and controls, system i

5

Number of design interfaces external and controls, system i

(all other systems number of design interfacesexternal and controls, system k

Fig. 5 Frequency distribution of design interfaces of the exter-
nals and controls system

Fig. 6 Frequency distribution of design interfaces of the me-
chanical components system

Fig. 7 Frequency distribution of cross-system design inter-
faces of the high-pressure compressor „HPC… system

Table 3 Chi-square test results—Comparing externals and
controls system with high-pressure compressor system

System

Expected fraction of
design interfaces

based on
Ext/Controls

Expected
number of

design interfaces
of HPC†

Actual number
of design
interfaces
of HPC x2

FAN 11.04% 6.403 8 0.398
LPC 19.63% 11.385 30 30.436
CC 20.86% 12.099 5 4.165

HPT 10.43% 6.049 5 0.182
LPT 9.82% 5.696 2 2.398
MC 28.22% 16.368 8 4.278
Total 100.00% 58.000 58 41.857

†The fraction of design interfaces between the external and controls system and the

fan system is 18 out of a total of 163 design interfaces, that is, 11.04%. Hence, the

expected number of design interfaces between the HPC system and the fan system,

under the null hypothesis, is the 11.04% of a total of 58 design interfaces, that is,

6.403. The rest of the expected values are determined in a similar way.

Table 4 Chi-square test results—Comparing externals and
controls system with mechanical components system

System

Expected fraction of
design interfaces

based on
Ext/Controls

Expected
number of

design interfaces
of Mech. Comps.†

Actual number
of design

interfaces of
Mech. Comps. x2

FAN 13.24% 6.088 9 1.393
LPC 23.53% 10.824 7 1.351
HPC 13.97% 6.426 8 0.385
CC 25.00% 11.500 13 0.196

HPT 12.50% 5.750 2 2.446
LPT 11.76% 5.412 7 0.466
Total 100.00% 46.000 46 6.237

†The fraction of design interfaces between the external and controls system and the

fan system is 18 out of a total of 136 design interfaces, that is, 13.24%. Hence, the

expected number of design interfaces between the mechanical components system

and the fan system, under the null hypothesis, is the 13.24% of a total of 46 design

interfaces, that is, 6.088. The rest of the expected values are determined in a similar

way.
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design interfaces of the externals and controls system and the
other five modular systems. ~For more details refer to Sosa @38#.!

We found that the design interfaces of the externals and con-
trols system and the mechanical components system are similarly
distributed among the first six modular systems. Table 4 shows the
results of the chi-square test performed to test the null hypothesis
that ‘‘the frequency distribution of design interfaces of the me-
chanical components system and the externals and controls sys-
tem are statistically equivalent’’. Note that the expected values are
determined following the same method used in Table 3. The test

resulted in x2 equal to 6.237 which is smaller than the critical
value of 11.070 ~for a50.05 and five degrees of freedom!. We
cannot, therefore, reject the null hypothesis of no difference in the
frequency distribution of design interfaces for the two systems.

These results confirm our initial conjecture regarding systems
modularity, that is, the mechanical components and externals and
controls are integrative systems while the high-pressure compres-
sor and other five systems are modular systems.

Capturing the Development Organization. The organiza-
tion responsible for the development of the aircraft engine was
divided into sixty design teams. Fifty-four design teams were
grouped into eight system design groups according to the archi-
tecture of the engine described above. Each of those teams was
responsible for developing one of the 54 components of the en-
gine. The remaining six design teams were system integration
teams, which had no specific hardware associated with them and
whose main responsibility was to assure that the engine worked as
a whole. Examples of the system integration teams are the rotor-
dynamics team and the secondary flow team. The six system in-
tegration teams were excluded from the analysis presented in this
paper because they did not design either modular or integrative
systems. Moreover, Sosa @38# shows that the presence of these
teams did not influence the results presented in this paper.

We capture the system-level integration effort of the organiza-
tion ~both within groups and across groups! by documenting the
technical interaction between the design teams involved in the
development process. We surveyed at least two key members from

each design team and asked them to rate the criticality and fre-
quency of their interactions with each of the other teams during
the detailed design phase of the engine’s development project.
This method is similar to the approach illustrated by Eppinger @4#.

We organize the team-interaction data in a square ~54354!
team-interaction matrix ~see Fig. 8!. The labels of the rows and
columns of this matrix contain the names of each of the design
teams. For comparison, we must sequence the matrix to match the
sequence of the design interface matrix. The binary team interac-
tion matrix shows off-diagonal cells marked with an ‘‘O’’ to indi-
cate each non-zero team interaction revealed. Reading across a
particular row indicates with which other teams the surveyed team
interacted.

It is important to emphasize that we documented coordination-
type communications only. Morelli et al. @39# identified three
types of technical communication in development organizations:
coordination-type, knowledge-type and inspiration-type. Since we
were interested in capturing the integration effort of the develop-
ment organization we focused our surveys upon the coordination-
type interactions which took place during the design process to
address task-related issues. Since we captured the interactions re-
ported from the respondent’s point of view, the matrix exhibits an
asymmetric structure with respect to its diagonal.

As shown in Fig. 8, associated with the six modular systems are
corresponding six groups of design teams. Similarly, the two in-
tegrative systems have their two corresponding groups of design
teams. The highlighted boxes along the diagonal indicate the or-
ganizational boundaries between the eight design groups. Marks
inside the boxes indicate within-boundary team interactions,
which we associate to within-boundary system-level integration
effort. On the other hand, marks outside the boxes indicate cross-
boundary team interactions, which we associate to cross-boundary
system-level integration effort.

Comparing the Product Architecture with the Development
Organization. The one-to-one assignment of the 54 compo-
nents to the 54 design teams allows the direct comparison of the
design interface matrix with the team interaction matrix. Figure 9

Fig. 8 Team interaction matrix
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shows how, by merging the design interface matrix with the team
interaction matrix, we obtain the resultant matrix. Note that in
order to generate a valid resultant matrix both design interface
matrix and team interaction matrix have to be sequenced identi-
cally. In our example, we use the original design interface matrix
shown in Fig. 3.

The resultant matrix is exhibited in Fig. 10 and the four pos-
sible outcomes for each cell on that matrix are shown in Fig. 11.
The number of cases in each category is given in parentheses. As
expected, the majority of the cells ~90% of the cells! are the cases
where known design interfaces were matched by team interactions
~349 ‘‘#’’ cells!, and the cases with no design interfaces with no

corresponding reported team interactions ~2219 blank cells!. The
unexpected cases accounted for 10% of the cells; those were the
cases when known design interfaces were not matched by team
interactions ~220 ‘‘X’’ cells!, and the cases when reported team
interactions were not predicted by design interfaces ~74 ‘‘O’’
cells!.

Sosa @38# presents detailed analyses to test some of the hypoth-
eses that explain the existence of the unexpected cases ~‘‘X’’ and
‘‘O’’ cells of Fig. 11!. The analysis presented in this paper focuses
on the effects of system modularity on the communication pat-
terns of design teams. By analyzing the resultant matrix, we in-
vestigate the effects of architectural system and organizational
boundaries, and the effects due to the types of design interfaces on
the development of modular and integrative systems.

4 Analysis

Effects of System Boundaries. System boundaries are the
result of product decomposition and are defined by the way com-
ponents are grouped into systems. Similarly, organizational
boundaries are defined by the way the design teams are grouped
into system teams. Boundaries are highlighted in the resultant

Fig. 9 Comparing design interfaces and team interactions

Fig. 10 Resultant matrix. Legend: X: Design interface with no team interaction; O: Team interaction with no design
interface; #: Both design interface and team interaction; *: Diagonal elements „meaningless….

Fig. 11 Results of the resultant matrix
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matrix by the boxes along the diagonal. Cells inside the boxes
represent the interactions within ~organizational and system!
boundaries while cells outside the boxes represent the interactions
across boundaries. System boundaries impose architectural
knowledge barriers which inhibit design experts’ understanding of
certain design interfaces. This results in some team interactions
that are not predicted by design interfaces. Indeed, Sosa @38#
shows that team interactions within system boundaries are more
likely to be predicted than team interactions across system bound-
aries. In this paper we are interested in testing the hypothesis that
cross-boundary team interactions with integrative design teams
are more likely to be predicted by design interfaces than are cross-
boundary team interactions between modular design teams.

We use the sample formed by the 423 team interactions ~‘‘#’’

and ‘‘O’’ cells from Fig. 11! to test whether the way design inter-

faces predict team interactions is statistically equivalent for modu-

lar and integrative design teams. The chi-square tests shown in

Table 5 resulted in a x2 equal to 0.483 for the cases within system

boundaries, which is well below the critical value of 3.841 ~for

a50.05 and one degree of freedom!. On the other hand, for the

team interactions across system boundaries the x2 equaled 9.566,

which is well above the critical value.

These results do not allow us to reject the null hypothesis that

the portion of unknown design interfaces within system bound-

aries is equivalent for both modular and integrative systems.

Table 6 Chi-square test results—effects of organizational boundaries†

Total

Expected cases
of design
interfaces

matched by
team

interactions

Expected cases
of design

interfaces not
matched by

team
interactions

Actual cases of
design interfaces

matched by
team

interactions

Actual cases of
design interfaces
not matched by

team
interactions

x2 of
cases of design

interfaces
matched by

team
interactions

x2 of
cases of design
interfaces not
matched by

team
interactions

Design interfaces
within organizational
boundaries
~Modular systems!

137 110.9
~81.0%!

26.1
~19.0%!

110
~80.3%!

27
~19.7%!

0.007 0.031

Design interfaces
within organizational
boundaries
~Integrative systems!

94 76.1
~81.0%!

17.9
~19.0%!

77
~81.9%!

17
~18.1%!

0.011 0.046

Total 231 187.0 44.0 187 44 0.018 0.077
Design interfaces

across organizational
boundaries
~Modular systems!

110 52.7
~47.9%!

57.3
~52.1%!

40
~36.4%!

70
~63.6%!

3.070 2.826

Design interfaces
across organizational
boundaries
~Integrative systems!

228 109.3
~47.9%!

118.7
~52.1%!

122
~53.5%!

106
~46.5%!

1.481 1.363

Total 338 162.0 176.0 162 176 4.551 4.189

†Expected values are determined with the pooled data which indicates that 81.0% of the 231 design interfaces within organizational boundaries are matched by team

interactions while 47.9% of the 338 design interfaces across organizational boundaries are matched by team interactions. xwithin-boundaries
2

50.095, xacross-boundaries
2

58.740,

xcritical(0.95,1)
2

53.841.

Table 5 Chi-square test results—effects of system boundaries†

Total

Expected cases
of predicted

team
interactions

Expected cases
of unpredicted

team
interactions

Actual cases of
predicted team

interactions

Actual cases of
unpredicted

team
interactions

x2 of
predicted team

interactions

x2 of
unpredicted

team
interactions

Design interfaces
within system
boundaries
~Modular systems!

124 111.5
~89.9%!

12.5
~10.1%!

110
~88.7%!

14
~11.3%!

0.020 0.175

Design interfaces
within system
boundaries
~Integrative systems!

84 75.5
~89.9%!

8.5
~10.1%!

77
~91.7%!

7
~8.3%!

0.029 0.259

Total 208 187.0 21.0 187 21 0.049 0.434

Design interfaces
across system
boundaries
~Modular systems!

65 49.0
~75.3%!

16.0
~24.7%!

40
~61.5%!

25
~38.5%!

1.645 5.029

Design interfaces
across system
boundaries
~Integrative systems!

150 113.0
~75.3%!

37.0
~24.7%!

122
~81.3%!

28
~18.7%!

0.713 2.179

Total 215 162.0 53.0 162 53 2.358 7.208

†Expected values are determined with the pooled data which indicates that 89.9% of the 208 design interfaces within system boundaries predict team interactions while 75.3%

of the 215 design interfaces across system boundaries predict team interactions. xwithin-boundaries
2

50.483, xacross-boundaries
2

59.566, xcritical(0.95,1)
2

53.841.
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However, for interactions across system boundaries we were able
to reject the corresponding null hypothesis. Indeed, Table 5 shows
that the portion of unknown design interfaces across modular sys-
tems is statistically significant larger than for integrative systems.
Note that unknown design interfaces are characterized by unpre-
dicted team interactions ~‘‘O’’ cells of Fig. 10!. Specifically,
38.5% of the modular design team interactions across system
boundaries were not predicted by design interfaces whereas only
18.7% of the integrative design team interactions across system
boundaries were not predicted by design interfaces.

Effects of Organizational Boundaries. Organizational
boundaries impose communication barriers which inhibit design
teams interactions @40,41#. However, given the distributed nature
of integrative systems we expect integrative design teams to be
less affected by this type of barrier. Since the design interfaces of
integrative systems are distributed throughout the engine, we an-
ticipate integrative design teams to be more accustomed to cross-
ing organizational boundaries than are modular design teams. In-
deed, we hypothesize that integrative design teams handle a
statistically significant larger portion of design interfaces across
organizational boundaries than do modular design teams.

We use the 569 cases in which design interfaces were identified
~‘‘#’’ and ‘‘X’’ cells of Fig. 11! to test whether both modular and
integrative design teams handle a statistically equivalent portion
of design interfaces. Note that we are implicitly assuming that the
coordination-type communication reflects handling the corre-
sponding design interface.

The chi-square tests shown in Table 6 resulted in a x2 equal to
0.095 for the cases within boundaries, which is well below the
critical value of 3.841 ~for a50.05 and one degree of freedom!.
These results do not allow us to reject the null hypothesis that
design interfaces within organizational boundaries are equally
handled by teams that design modular systems as by teams that
design integrative systems. On the other hand, for the cases across

organizational boundaries x2 equaled 8.740, ~well above the criti-
cal value! which allows us to reject the corresponding null hy-
potheses. Indeed, Table 6 shows that integrative design teams do
handle a statistically significant larger portion of design interfaces
than do modular design teams. Specifically, integrative design
teams matched 53.5% of the cross-system design interfaces while
modular design teams matched 36.4% of their cross-system de-
sign interfaces.

Effects of Types of Design Interface. According to the type

of design dependency, we classify design interfaces into two ma-

jor categories:

• Spatial-type design interfaces, which involve spatial depen-

dencies only.

• Transfer-type design interfaces, which involve structural

and/or energy and/or material dependencies. ~Information de-

pendencies are not included in this analysis because they are

not present in the modular systems.!

Henderson and Clark @1# refer to ‘‘communication filters’’ as

the mechanism for screening the most crucial information. Adapt-

ing this concept to our context, we expect some design teams to

handle a larger proportion of some types of design interfaces than

other ones. Hence, we want to investigate whether there is a dif-

ference in the way modular and integrative design teams handle

these two types of design interfaces.

A subset of 122 design interfaces, which could be categorized

as either spatial-type or transfer-type, were used to answer this

question ~see Table 7!. The chi-square test resulted in a x2 equal

to 4.360 for spatial-type design interfaces, and a x2 equal to 6.035

for transfer-type design interfaces. Both are greater than the criti-

cal value of 3.841 ~for a50.05 and one degree of freedom!. These

results allow us to reject the null hypothesis that spatial-type de-

sign interfaces and transfer-type design interfaces are equally

handled by modular design teams and integrative design teams.

These results allow us to state that teams designing modular

systems have a stronger preference, ability, or willingness, to deal

with spatial-type design interfaces than do teams designing inte-

grative systems. As shown in Table 7, 62.5% of the modular

spatial-type design interfaces analyzed were matched by team in-

teractions, while 29.4% of the integrative spatial-type design in-

terfaces were matched by team interactions. Similarly, we found

that teams that design integrative systems are more likely or will-

ing to deal with transfer-type design interfaces than modular de-

sign teams. Table 7 shows that 45.0% of the integrative transfer-

type design interfaces analyzed were matched by team

interactions, while only 19.5% of the modular transfer-type design

interfaces were matched by team interactions.

Table 7 Chi-square test results—effects due to type of design interfaces†

Total

Expected cases
of design
interfaces

matched by
team

interactions

Expected cases
of design

interfaces not
matched by

team
interactions

Actual cases of
design interfaces

matched by
team

interactions

Actual cases of
design interfaces
not matched by

team
interactions

x2 of
cases of design

interfaces
matched by

team
interactions

x2 of
cases of design
interfaces not
matched by

team
interactions

Spatial-type design
interfaces
~Modular systems!

24 11.7
~48.8%!

12.3
~51.2%!

15
~62.5%!

9
~37.5%!

0.926 0.882

Spatial-type design
interfaces
~Integrative systems!

17 8.3
~48.8%!

8.7
~51.2%!

5
~29.4%!

12
~70.6%!

1.307 1.245

Total 41 20.0 21.0 20 21 2.233 2.127

Transfer-type design
interfaces
~Modular systems!

41 13.2
~32.1%!

27.8
~67.9%!

8
~19.5%!

33
~80.5%!

2.024 0.957

Transfer-type design
interfaces
~Integrative systems!

40 12.8
~32.1%!

27.2
~67.9%!

18
~45.0%!

22
~55.0%!

2.074 0.980

Total 81 26.0 55.0 26 55 4.098 1.937

†Expected values are determined with the pooled data which indicates that 48.8% of the 41 spatial-type design interfaces are matched by team interactions while 32.1% of the

81 transfer-type design interfaces are matched by team interactions. xspatial-type
2

54.360, x transfer-type
2

56.035, xcritical(0.95,1)
2

53.841.
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5 Discussion

By studying the coupling of the architecture of an aircraft en-

gine and the development organization that designed it we have

gained important insights about the difference between designing

modular versus integrative systems. While we cannot claim the

generality of the results before completing similar studies in other

types of products in different industries, we expect to obtain

analogous findings in other projects developing complex systems

and where the development teams are organized according to the

product architecture. The analysis presented in this paper provides

three important results ~subject to further verification! which are

summarized here:

1. When analyzing the effects of system boundaries, we found

a statistically significant larger proportion of unpredicted

team interactions ~‘‘O’’ cells of Fig. 10! associated with

modular systems. Since unpredicted team interactions repre-
sent unrecognized design interfaces, we conclude that design
interfaces across modular systems are more difficult for de-
sign experts to recognize than interfaces with integrative
systems. In the context of the project studied, one of the
practical outcomes of this project was the creation of a new
design team dedicated to handle the critical cross boundary
design interfaces that were unattended before. This newly
created design team was implemented in the design process
of the subsequent engine to be developed.

2. The statistically significant differences in the way integrative
design teams handle design interfaces across boundaries
suggest that these teams are more effective at overcoming
the barriers imposed by organizational boundaries. The dis-
tributed nature of the integrative systems forces these design
teams to overcome organizational barriers in order to handle
design interfaces with all the systems.

3. The existence of various types of design interfaces and the
statistically significant difference in the way they were
handled by modular and integrative design teams provide
empirical support to the notion of ‘‘communication filters’’
introduced by Henderson and Clark @1#. We found that
spatial-type design interfaces are largely addressed in the
design of modular systems while transfer-type design inter-
faces are more likely to be handled in the design of integra-
tive systems.

These results suggest that managers should pay particular atten-
tion to identifying modular and integrative systems so that the
critical design interfaces between modular systems are identified.
Since modular systems may not be perfectly modular, managers
should suspect the existence of cross-boundary design interfaces.
It is important to understand that greater effort is needed to iden-
tify and handle these design interfaces due to the effects of system
and organizational boundaries. Hence, managers should put spe-
cial emphasis on identifying critical cross-boundary design inter-
faces occurring between modular systems to facilitate technical
interactions between the corresponding design teams. On the other
hand, design teams that develop integrative systems appear to be
less vulnerable to organizational and system boundaries due to the
physically distributed nature of the systems they design. Managers
should also identify critical design interfaces of unexpected type
~i.e., transfer-type for modular systems, and spatial-type for inte-
grative systems! in order to facilitate the technical interactions
associated to those design interfaces.

We recommend the method to capture the product architecture
illustrated in this paper in order to identify critical design depen-
dencies during the planning stage of a development project. This
method can be summarized in five steps:

1. Document product decomposition. By interviewing design
experts capture the decomposition of the product into sys-
tems, sub-systems, and components.

2. Identify design dependencies. Capture the various types of

design dependencies ~spatial, structural, material, energy,

and information! among the product’s components and

document the level of criticality of each of them ~required,

desired, indifferent, undesired, and detrimental!.
3. Construct design interface matrix. Construct a design de-

pendency matrix for each dependency type. Each cell of

these matrices should contain the level of criticality of the

corresponding design dependency. Sequence the matrices by

clustering components of the same system together. Then,

aggregate all design dependency matrices into one binary

matrix for compact representation ~similar to the design in-

terface matrix constructed in our example, Fig. 3!. Outline

the system boundaries so that cross-boundary design inter-

faces are easily determined.

4. Identify modular and integrative systems. By visually in-

specting the design interface matrix identify the systems

with larger proportion of cross-boundary design interfaces.

If necessary, re-sequence the matrix ~at the system level! so

that potentially integrative systems occupy the last rows and

columns of the matrix. Clearly separate modular versus in-

tegrative systems. Perform chi-square analysis of frequen-

cies for the cases where it is not clear whether it is a modular

or integrative system.

5. Highlight critical cross boundary design interfaces. By

examining the aggregated level of criticality of each design

interface highly critical design interfaces across systems can

be identified. Additionally, determine the type of depen-

dency ~spatial-type or transfer-type! of those critical design

interfaces. This step is particularly important to be carried

out between modular systems, as we learned that technical

interactions across their design teams are more difficult to

manage.

In general, however we believe engineering managers should

be able to apply the insights provided in this paper without carry-

ing out any detailed analysis. They only need to know which

systems are modular and which are integrative ones, based on

their expertise and understanding of the types of interfaces each

system has. Then, this paper suggests key factors that they need to

‘‘watch out for’’ while planning and managing the process.

It is important to mention that a significant portion of design

interfaces were not addressed by team interactions ~the ‘‘X’’ cells

in the resultant matrix!, yet components involved in these inter-

faces still got designed and the entire system worked as a whole.

Some of the effects that explain the existence of these ‘‘unex-

pected’’ cases are ~refer to Sosa @38# for details!:

• Design escapes. These design interfaces, indeed, do not get
addressed in the design phase, but they are addressed in the
test and refinement phase resulting on unplanned design it-
erations. In some cases design escapes are found during cus-
tomer use as well, which is expensive in terms of product life
cycle cost and customer satisfaction.

• Noncritical design interfaces. Some design interfaces are
desired, or undesired, but not required, nor detrimental, for
component functionality. These noncritical interfaces are less
likely to be addressed by design teams. In many of these
cases design teams assume the state of the interface instead of
interacting directly with the corresponding design team.

• Carry-over effect. Some design interfaces did not change
with respect to previous engine generation and design teams
could have known about it, therefore no team interaction was
needed. We observed few instances of this effect, but not
enough to be statistically significant.

• Design interface standardization. Some design interfaces
may be considered standard for certain product designs and
teams know about it. In our example, and probably similarly
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for other such complex products, we observed very little of
this effect due to the multi-dependent nature of the design
interfaces.

• Predefined design interfaces. Some design interfaces are
specified within interface control documents, boundary con-
ditions, or product design requirements. Design teams assume
that the other team involved in such interface will meet the
predefined criteria, or will initiate an interaction otherwise.

• Indirect team interactions. Some design teams do not inter-
act directly, however technical information related to their
design interfaces flows indirectly via other design teams with
which they interact.

• Measurement errors. Lastly, there are two kinds of mea-
surement errors that could have happened during the data
collection. First, there is the possibility that some of the de-
sign experts we interviewed might have erroneously reported
to us certain design interfaces that are really not present in the
current engine design. Hence, no team interactions were re-
quired in these cases. Second, some team interactions that
indeed took place during the design process to address the
corresponding design interfaces might not have been reported
during the survey. This could have happened because the re-
spondent was not aware of other team members’ interactions
or simply forgot to report them.

6 Conclusions and Future Work

The research method presented in this paper provides a useful
approach to investigate the coupling of the product architecture
and the development organization. Our research method can be
summarized in three steps: 1! capture the product architecture by
documenting design interfaces, 2! capture the development orga-
nization by documenting team interactions, and 3! couple the
product architecture with the development organization by com-
paring design interfaces with team interactions. This method is
particularly applicable to projects where the architecture of the
product is well understood and the development team is organized
around the product architecture.

In addition to the research method itself, this paper makes three
important contributions:

• First, we extend the product architecture literature by intro-
ducing the concepts of modular and integrative systems based
on the way components share design interfaces with compo-
nents across systems ~rather than within systems!. Indeed, we
illustrate how to formally identify modular and integrative
systems by analyzing the frequency distribution of design
interfaces across system boundaries.

• Second, we propose a structured method to capture the archi-
tecture of complex products whose decomposition is known
in advance. This method can be used by managers wishing to
predict technical team interactions that would require special
managerial attention during the execution of a development
project.

• Third, we enhance our understanding of the difference be-
tween designing modular versus integrative systems by
studying the moderating effects of systems modularity. We
present limited empirical evidence showing that the effects of
system and organizational boundaries, and the effects due to
the type of design dependencies, are different for modular
systems versus integrative systems. These results highlight
the importance of distinguishing modular and integrative sys-
tems during the planning stage of a development effort so that
critical technical interactions can be managed more effec-
tively during the project execution stage.

The type of analysis illustrated here may outline the study of
other issues related to the coupling of product architecture and
organizational structure. A challenge for future research work is to

extend this method to explore the evolution over time of both
design interfaces and team interactions for several generations in a
product family.

This study takes advantage of the direct mapping of the product
architecture and the development organization in the project stud-
ied. What if this were not the case? Which types of barriers are
most severe ~organizational or system barriers!? Is an organiza-
tional design that mirrors the architecture of the product an opti-
mum one? Studying various mappings of product architectures
to development organizations may help answer these research
questions.
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