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Abstract

Over the past decade, high-throughput studies have identified many novel transcripts. While their 

existence is undisputed, their coding potential and functionality have remained controversial. 

Recent computational approaches guided by ribosome profiling have indicated that translation is 

far more pervasive than anticipated and takes place on many transcripts previously assumed to be 

non-coding. Some of these newly discovered translated transcripts encode short, functional 

proteins that had been missed in prior screens. Other transcripts are translated, but it might be the 

process of translation rather than the resulting peptides that serve a function. Here, we review 

annotation studies in zebrafish to discuss the challenges of placing RNAs onto the continuum that 

ranges from functional protein-encoding mRNAs to potentially non-functional peptide-producing 

RNAs to non-coding RNAs. As highlighted by the discovery of the novel signaling peptide Apela/

ELABELA/Toddler, accurate annotations can give rise to exciting opportunities to identify the 

functions of previously uncharacterized transcripts.
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Introduction

Over the past decade, advances in high-throughput sequencing technologies have led to the 

identification of a large number of previously unknown transcripts [1-7]. While their 

existence is undisputed, their biological functions are largely unclear. Their lack of an 

obvious, long protein-coding open reading frame (ORF) and the lack of clear homologs in 

other organisms led to the initial assumption that most of these transcripts were non-coding, 

i.e. not translated into a protein. While one recent genome-wide coding prediction study 
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supported the non-coding nature of the vast majority (~99%) of annotated lncRNAs [8], 

recent advances in assessing translation genome-wide have revealed much more widespread 

translational activities than anticipated. In particular, the development of ribosome profiling, 

a technique that allows the mapping of ribosome occupancy at sub-codon resolution [9-11], 

has revolutionized the genome-wide identification of translated sequences and revealed 

ribosome association with hundreds of predicted non-coding and un-annotated transcripts 

[12-19]. These transcripts have emerged as a previously unrecognized source of short 

proteins in essentially all organisms, ranging from bacteria [20, 21], yeast [9, 12, 18, 22] and 

plants [23-31] to flies [17, 32-37] and vertebrates [10, 11, 13-15, 38-44]. Here, we review 

the challenges and opportunities of annotating coding and non-coding transcripts. We use 

recent gene annotation studies in zebrafish to highlight widely applicable approaches and the 

lessons learned from these studies.

Challenges in gene annotation

Annotating typical protein coding genes is usually straightforward because their transcripts 

stand out by containing one long and often conserved ORF. This feature has been used in 

most classical, automated gene annotations, and correctly identifies the majority of known 

protein-coding ORFs. Many automated annotation algorithms have employed an ad hoc 

100-amino-acid threshold on the length of protein-coding ORFs [1, 3, 45-47]. However, 

many proteins are smaller than 100 amino acids (e.g. several ribosomal proteins [48] and 

yeast mating factors [49]), and recent studies from plants [23, 31, 50-55], insects [33, 34, 37, 

56-59] and fish [14, 39] (Box 1) show that uncharacterized yet functionally important small 

proteins had been missed using ORF threshold approaches [14, 15, 43-45, 60]. The small 

size of these proteins has also hampered their identification through homology searches or 

random mutagenesis screens.

The translational landscape is a continuum—Attempts to distinguish between genes 

that encode non-coding RNAs versus mRNAs that generate functional proteins are further 

complicated by recently emerging evidence for the pervasive nature of translation [9, 10, 

12-18, 43, 44]. This situation is analogous to the concept of pervasive transcription [5, 7], 

where the majority of the genome is transcribed, but many of the resulting RNAs may be 

non-functional. Similarly, the phenomenon of pervasive translation implies that not all 

newly identified peptides are functional. In fact, a large fraction of translation products 

appears to be highly unstable and degraded within minutes after production [61]. Thus, 

translation of ORFs could in some cases be neutral, or alternatively, it could be the 

translation process itself rather than the resultant peptide that serves a function (Fig. 1). 
Precedent for regulatory functions of translated ORFs whose generated proteins do not have 

a function comes from studies of ORFs that control the expression of downstream coding 

ORFs (e.g. GCN4 upstream ORF (uORF) - [62, 63]), balance protein-isoform levels (e.g. 

C/EBP ORFs - [64, 65]) or regulate mRNA stability via nonsense mediated RNA decay 

(NMD) (e.g. CPA1 uORF [66], [18, 67]). The translational landscape is thus emerging as a 

continuum ranging from mRNAs that encode functional proteins to non-coding RNAs, with 

a transition zone of RNAs that produce peptides that might not be functional (see Figure 1). 

The big challenge for the future will be to unravel the biological significance of the 

translational continuum: Which of the short peptides are functional? To which extent does 
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translation serve regulatory functions, and to which extent is it just neutral? Future 

experimental studies will be required to confirm or adjust the predicted position of each 

ORF on the translational landscape.

Lessons from transcript annotation studies in zebrafish

The annotation of the zebrafish genome has moved at a rapid pace [13-15, 68-73] and offers 

interesting case studies for distinguishing coding from non-coding RNAs. Five studies in 

zebrafish have specifically investigated the coding potential of transcripts, focusing either on 

identifying non-coding transcripts [68, 69], testing and revising previous non-coding RNA 

predictions [13] or identifying uncharacterized protein-coding genes [14, 15] (see Box 2 for 

details, Fig. 2).

Distinguishing coding from non-coding transcripts by computational 
analysesy—Two studies used computational tools to predict hundreds of putative 

lncRNAs expressed during zebrafish embryogenesis [68, 69]. Both studies were based on 

the genome-wide identification of transcription units followed by computational filtering 

pipelines aimed at distinguishing coding from non-coding sequences. While Ulitsky & 

Shkumatova et al. [68] employed the Coding Potential Calculator (CPC [74]; see later), 

Pauli & Valen et al. [69] used a combination of PhyloCSF (phylogenetic codon substitution 

frequency [75]; see later), Blast and an ORF cutoff. The unexpectedly small overlap 

between the two predicted lncRNA sets (29 putative lncRNAs (~5%)) exemplifies the 

pitfalls of employing purely computational filtering pipelines.

While the implementation of computational approaches is relatively straightforward, 

optimizing thresholds to obtain both high specificity and high sensitivity is challenging. For 

example, CPC is a support vector machine classifier that uses six sequence features to 

discriminate between coding and non-coding transcripts [74]. Three features score the extent 

and quality of the longest in-frame ORF within a transcript (size, coverage and integrity 

(start-stop)); the remaining three features use BLASTX to assess the likelihood that putative 

homologous protein sequences are present in other organisms (number of hits, significance 

of hits, frame distribution of hits). CPC has been shown to reliably distinguish coding from 

non-coding sequences in other studies [74], but it was not a stringent predictor for non-

coding transcripts in Ulitsky & Shkumatova et al. [68]; subsequent analyses using ribosome 

profiling suggested that 20-43% of the predicted putative lncRNAs are indistinguishable 

from protein-coding mRNAs [13-15].

PhyloCSF is a conservation-based method relying on the observation that proteins are 

primarily conserved at the amino acid level rather than the nucleotide level [75]. The fact 

that multiple codons can code for the same amino acid allows some nucleotide substitutions 

to occur (synonymous changes), but restricts substitutions that would disrupt the amino acid 

sequence (non-synonymous changes). This feature is the basis of a number of methods -- 

which have progressively become more sophisticated -- from pairwise sequence 

comparisons to modeling the phylogenetic relationship between multiple species [15, 

75-80]. PhyloCSF outperforms several other similar methods and can identify unknown 

protein-coding ORFs encoding peptides as short as 13aa [75, 81]. The combination of 
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PhyloCSF and BLAST in Pauli et al. resulted in a low number (<10%) of false-positives 

(protein-coding genes that were incorrectly predicted to be non-coding) [69] as revealed by 

ribosome profiling based re-classification [13-15]. However, some conserved lncRNAs (e.g. 

megamind and cyrano) were filtered out, because they scored high with PhyloCSF.

Non-coding RNA annotations can be improved by ribosome profiling—Because 

of the limitations of computational pipelines in discriminating coding potential, a subsequent 

study revisited the lncRNA predictions from [68, 69] experimentally by ribosome profiling 

[13]. Single-nucleotide mapped ribosome protected fragments were used to develop the so-

called Translated ORF Classifier (TOC) (Box 2), which can distinguish bona-fide coding 

ORFs from ORFs within 5’UTRs (leaders) and 3’UTRs (trailers). TOC also revealed that 

many of the translated ORFs in “non-coding” RNAs are more similar to uORFs than to 

canonical proteins (Figure 2). This discovery introduced the concept of “leader-like 

transcripts” [13] (see also [82]). Leader-like transcripts are characterized by ribosome 

profiles that resemble the uORF-containing 5’ leaders of classical protein-coding genes. 5’ 

leaders can have one or several translated small ORFs, generating products as short as a 

single amino acid (ATG-stop). Although ribosome profiling experiments and mass-

spectrometric peptide detection indicate that peptides can be generated from leader-like 

transcripts and uORFs, the peptide sequence is rarely conserved, and the generated peptides 

are generally thought to be non-functional [10, 12, 13, 15, 16, 40, 42-44, 83-85].

Ribosome profiling identifies uncharacterized protein-coding genes—In 

addition to the “leader-like” transcripts containing uORF-like ORFs, ribosome profiling also 

revealed hundreds of uncharacterized, bona-fide proteins in un-annotated or non-coding 

transcripts [14, 15]. Building on the study by Chew et al. [13], Pauli et al. [14] used TOC 

and adopted a broad annotation strategy to identify ~400 un-annotated protein-coding genes 

in zebrafish (Fig. 2). Bazzini et al. [15] focused on identifying short peptides (<100 aa) and 

employed two approaches, a translation-independent, PhyloCSF-based method (micPDP) 

and a translation- dependent metric called “ORFscore” (see Fig. 2). ORFscore is based on 

the property of translating ribosomes to translocate in discrete one-codon/three-nucleotide 

steps. This feature, known as “phasing”, results in an unequal distribution of RPFs over the 

three nucleotides of each codon [9, 86, 87], and has previously been used for detecting 

frame-shifts in protein-coding ORFs [87]. ORFscore identified 303 putative protein-coding 

transcripts, including 190 loci predicted to encode small polypeptides (20–100 aa). MicPDP 

predicted 63 conserved zebrafish smORFs, 40 of which had not been found by ORFscore. 

Interestingly, about half of the predicted smORFs from Bazzini et al. [15] are derived from 

repetitive element-containing transposons.

The studies in zebrafish highlight the challenges in transcript annotation: classification 

schemes are diverse and difficult to directly compare and most methods tend to be biased 

towards capturing specific subgroups of transcripts. For example, a pipeline that works well 

for finding conserved lncRNAs like megamind and cyrano [68] might not be efficient in 

filtering out protein-coding genes [13-15]. Conversely, a pipeline that effectively filters out 

the majority of protein-coding transcripts might also miss conserved lncRNAs [69]. 
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Moreover, in the absence of other lncRNA-specific features, lncRNA identification remains 

solely based on the lack of protein-coding features.

Best practices in transcript annotation

Based on the studies in zebrafish, the most powerful classification can be achieved by 

combining tools from two domains: experimental evidence of translation and evolutionary 

conservation (Fig. 3). Both of these domains come with shortcomings: experimental 

evidence relies on high-quality data and the putative peptide being translated at the time of 

sample collection; sequence conservation can only identify conserved ORFs, and relies 

either on sufficient genome or transcriptome alignment data or annotation data from other 

organisms. Because these two approaches are complementary, results can be aggregated into 

a common prediction, which improves overall transcript classification.

Predicting coding potential by computational approaches—In the absence of 

genome-wide experimental data, coding predictions can be made computationally. One 

strategy that has proven effective is the sequence alignment-based phylogenetic assessment 

of codon substitution frequencies (PhyloCSF) [75] (see above). Even though its predictive 

power scales with the quality of the alignments, PhyloCSF correctly predicted Apela/

ELABELA/Toddler as a protein-coding transcript in zebrafish [69] (Box 1), which lacks 

high-quality alignments over the majority of genomic sequences. However, if alignments are 

of poor quality or missing, PhyloCSF will not perform well in classifying novel transcripts 

by phylogenetic measures. Coding predictions should therefore be complemented by 

approaches that are independent of whole genome alignments. These are either aimed at 

identifying homologous proteins in other species (i.e. BLAST [88]) or use sequence features 

inherent to protein-coding ORFs such as sequence bias, codon composition or ORF length 

(e.g. CPAT (Coding-Potential Assessment Tool [89]). Finally, ORF size thresholds, while 

inherently problematic, can increase the stringency of classification pipelines (e.g. [69]).

All computational methods have the limitation that they rely on the fulfillment of certain 

conditions, ranging from the availability of well-aligned genomes for multiple species to 

conservation or sequence bias of the peptide sequence. These conditions might not always 

be met, and in cases where they are, they might not be exclusive to proteins. These concerns 

will become less relevant as genome and transcriptome annotations increase in number and 

quality. Several projects (e.g. the Drosophila modENCODE project [90]) are directed 

towards sequencing multiple related organisms to obtain comparable datasets that will 

facilitate evolutionary comparisons for predicting functional elements. Filling these 

“phylogenetic discovery gaps” will increase the sensitivity in the search for short peptides.

Predicting coding potential based on experimental evidence of translation—
Ribosome profiling is currently the ‘state of the art’ experimental approach to assess 

translation genome-wide. Due to its high-throughput nature it needs to be performed and 

analyzed with caution because not all sequencing reads originate from a translating 

ribosome. The predominant contaminant in sequenced ribosome profiling data is ribosomal 

RNAs, but other ncRNAs such as tRNAs, miRNAs and snoRNAs can result in sequenced 

reads. Perhaps even more confounding, structured parts of RNA, RNA degradation products 
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and RNA protected by non-ribosomal proteins could give rise to noise on both mRNAs and 

non-coding RNAs [11, 82]. Differences in sample preparation can also give rise to 

dissimilarities of ribosome profiles over certain regions and thus result in distinct gene 

classifications. For example, several ORFs that are classified as protein-coding based on 

ribosome profiling experiments performed according to one protocol [15] appear to lack 

ribosome-protected fragments using an alternative protocol [13, 14] and vice versa.

Combining experimental and computational approaches—In light of these 

experimental limitations, the best results for transcript classification are obtained by 

combining ribosome profiling data with computational methods specifically targeted at 

distinguishing ‘real’ translation from noise. Building on the evidence for translation that the 

ribosome profiling assay provides, these analyses outperform those that are merely based on 

genomic and meta-genomic features by providing a relatively unbiased view of translated 

regions. Using specifically developed algorithms that can handle the noise inherent to 

ribosome profiling assays, the likelihood of each ORF's translational capabilities can be 

assessed. Several methods have been developed that capture features of translating protein-

coding ORFs, including context of the translated ORF within the transcript (TOC [13, 14] 

and RRS [82]) and phasing of ribosome protected fragments (ORFscore [15]). The newest 

addition to these methods is the fragment length organization similarity score (FLOSS) [16]. 

This method takes advantage of the observation that sequenced reads not originating from 

actively translating ribosomes tend to have a different read-length distribution. Comparison 

of read lengths within a candidate ORF to read lengths in canonical proteins assesses the 

likelihood of an ORF to be coding. Together, these features allow the distinction of bona-

fide protein-coding ORFs from translated uORFs/leader-like ORFs, untranslated ORFs and 

– at least in theory - reads originating from non-ribosomal sources.

Candidate translated ORFs can be confirmed by several approaches. Gene-by-gene 

approaches include the epitope-tagging of putative proteins and mass-spectrometric (MS) 

validation (e.g. [14, 15]). MS has become a powerful technology also for large-scale and de-

novo identification of unknown peptide products [40, 42-44]. It therefore complements 

ribosome profiling. One caveat of MS-based peptide prediction is that lack of MS-evidence 

should not be taken as evidence against a protein being produced, since MS has an inherent 

bias towards detecting certain peptides but not others, and some proteins might be extremely 

short-lived [61].

Prospects

Function of pervasive translation—The presence of ribosomes on ORFs that do not 

share the features of canonical protein-coding ORFs poses a number of questions: Are these 

peptide products functional or simply translational noise? Or does the act of translation itself 

have a function? The process of translation might serve regulatory roles, e.g. by 

destabilizing the transcript by triggering non-sense mediated decay (NMD) or – in case of 

uORFs - by modulating translation of a downstream protein-coding ORF. Pervasive 

translation might also provide a pool of neutral gene products that selection can act upon. In 

analogy to the proposed idea of de-novo gene birth as a function for pervasive transcription 

[91], pervasive translation might generate a peptide that provides a selective advantage 
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under certain conditions. Evolutionarily younger protein-coding genes might have non-

coding homologs in syntenic positions in other organisms [92]. This process could be 

viewed as reverse pseudogenization, in which a protein-coding gene loses its coding 

function and for which the XIST RNA provides a prominent example [93]. The uncertainty 

as to the function of this novel population of translated ORFs raises ample opportunities for 

future studies. What is the extent of small ORFs encoding functional peptides, and what are 

their functions? What is the extent of regulatory versus neutral translation? To which extent 

can we computationally predict whether a translated ORF is likely to function as a peptide? 

While computational algorithms can greatly improve gene annotations, ultimately, the 

questions regarding functionality of coding or non-coding gene products will need to be 

addressed by functional studies (see Box 1 and 2).

Challenges of gene annotation—The case of Apela/ELABELA/Toddler demonstrates 

that important peptides are yet to be discovered and that carefully guided computational 

classification based on experimental data can find these hidden gems (Box 1). Annotation is 

best viewed as a gradual process (Fig. 3) where every piece of evidence adds to the final 

picture, culminating in the eventual identification of the gene's function(s). Currently, the 

field has many tools for gene annotation, but frequent mis-classifications indicate that there 

is ample room for improvement. A particular challenge for future tools will be to integrate 

information from a variety of both experimental and computational sources to predict the 

coding potential of uncharacterized transcripts. Independent lines of evidence will increase 

the power of predictions and facilitate rapid annotation of the complete set of genes in new 

organisms. Functional characterization, carried out on a gene-by-gene basis, is still the final 

bottleneck. However, identifying a gene's function is what really matters, and every step in 

the gene annotation pipeline contributes a piece of information towards this ultimate goal.
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Box 1 The case of Apela/ELABELA/Toddler – an embryonic peptide 
mistaken for a non-coding RNA

The meandering path towards the eventual discovery of Apela as a novel embryonic 

signal that activates the GPCR APJ/Apelin receptor to promote mesendodermal 

migration highlights the challenges in accurately predicting the coding potential of 

unknown transcripts. Apela (also named Ende [94], ELABELA [39] and toddler [14]) was 

initially identified as an embryonically expressed transcript of unknown function in two 

independent screens [94, 95]. Detailed expression analyses demonstrated enrichment in 

endodermal tissues during mouse embryogenesis (hence its initial name “Ende” 

(Endoderm expressed)) [94]. However, the coding potential of this gene remained an 

open question. It was speculated that this transcript might be either non-coding or encode 

a potential peptide of 80 amino acids based on the longest ORF contained within the EST 

under investigation [94]. After its initial discovery as an embryonically expressed 

transcript, Apela was “rediscovered” several times in genome-wide annotation pipelines, 

resulting in opposing coding predictions even within the same model organism. It was 

predicted to be either a non-coding RNA in mESCs [96] and in zebrafish [68] or protein-

coding in the same cell type and species [10, 13, 69]. The reasons for these discrepancies 

in coding predictions were the distinct computational [68, 69, 96] and experimental [10, 

13] classification pipelines. In the case of Apela, either ribosome profiling-based 

identification of translated regions [10, 13] or classification guided by phylogenetic 

conservation [69] was sufficient to correctly annotate this gene as coding. Experimental 

studies eventually revealed that a different and shorter ORF than originally proposed [94] 

is translated, giving rise to a 58-aa (in mammals: 54-aa) peptide [14, 39]. The existence 

of this short peptide has by now been confirmed through several lines of evidence: 

antibody detection [39], mass spectrometry [14], Alkaline-Phosphatase and GFP fusions 

[14, 39], biological activity of an in vitro synthesized Apela peptide fragment [14], loss-

of-function phenotypes by mutagenesis of the coding ORF [14, 39], and most 

compellingly by rescue of the mesendodermal mis-migration phenotypes in apela 

mutants by wild type but not by frame-shifted apela mRNA [14].
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Box 2 Studies in zebrafish

1) Identifying non-coding transcripts

Ulitsky and Shkumatava et al., 2011 [68]: This study predicted 567 putative lncRNA 

genes, including conserved lncRNAs such as megamind and cyrano. Previously un-

annotated intergenic loci were defined by the boundaries of transcription units provided 

by H3K4me3 chromatin marks outlining the transcriptional start sites, and 3P-Seq 

defining the polyadenylation sites. The requirement of such “start-end” signatures 

increased the confidence in gene calls as compared to purely RNA-Seq-based transcript 

assemblies, which can contain truncated and lowly expressed transcripts. Thus, single 

exon genes were included in the prediction. Distinction between coding and non-coding 

transcripts relied mainly on a computational tool called Coding Potential Calculator 

(CPC [74]; see main text).

Pauli and Valen et al., 2012 [69]: This study predicted 1,133 putative lncRNAs in 859 

loci. RNA-Seq-based transcript assemblies were used as a starting point for identifying 

multi-exonic long non-coding RNAs (lncRNAs) expressed during the first five days of 

zebrafish embryogenesis. Even low-expressed lncRNAs could be identified because of 

the depth of the RNA-Seq libraries. The identification pipeline aimed at discovering 

lncRNAs at high confidence, and thus excluded transcripts that (1) were identified at only 

one developmental stage or by only Cufflinks [97] or Scripture [98], (2) had a high repeat 

content, (3) were single exons, and (4) contained ORFs longer than 300nts. At the heart 

of distinguishing coding and non-coding transcripts was the phylogenetic assessment of 

the codon substitution frequency (PhyloCSF [75]; see main text).

2) Revising non-coding predictions with ribosome profiling

Chew et al., 2013 [13]: This study developed the Translated ORF Classifier (TOC), a 

ribosome profiling based classifier, to distinguish bona-fide coding ORFs from ORFs 

within 5’UTRs (leaders) and 3’UTRs (trailers). TOC employs four metrics to assess the 

coding potential of each ORF within a transcript: (1) ‘Translational Efficiency’ (TE) 

measures the level of translation of a specific ORF (density of RPFs) in relation to the 

expression level of the transcript and has been used in prior studies to evaluate translation 

[9, 10]; (2) ‘Fraction Length’ (FL) is defined as the fraction of the transcript covered by 

the ORF; (3) ‘Inside versus Outside’ (IO) builds on the observation that the ribosome-

protected fraction of bases in a protein coding ORF is much higher than the fraction of 

bases protected outside of the ORF; and (4) the ‘Disengagement Score’ (DS) captures the 

efficiency of ribosome release after encountering a stop codon – a feature characteristic 

of ribosomes translating canonical proteins resulting in few reads over the 3’ UTR. The 

combination of these four metrics resulted in a significantly higher discriminatory power 

than TE alone.

3) Identifying translated and protein-coding transcripts

Pauli et al., 2014 [14]: This study expanded the search for novel protein-coding genes 

within the zebrafish genome and predicted 700 previously non-annotated protein-coding 

transcripts in 399 loci, including 26 loci encoding 28 putative secreted peptides. To 
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screen for confidently translated, un-annotated protein-coding transcripts, ORFs were 

extracted from transcripts that had neither been annotated as coding in the major gene 

sets in zebrafish (Ensembl and RefSeq) nor been aligned from other organisms 

(xenoRefSeq). Each of these ORFs was assessed for its coding potential by an improved 

version of TOC [13] that included a fifth feature, ‘Cover’ (number of bases within an 

ORF that contain single-nucleotide mapped RPFs). Apart from peptides that had not been 

described before in any other organism or that appear to be newly discovered paralogs of 

known peptides, the resultant manually curated list of 700 protein-coding transcripts also 

contains peptides with annotated homologs in other species (see Box 3). 134/700 

transcripts are predicted to encode short (< 100aa) proteins (95 non-redundant small 

ORFs (smORFs)), one of which is the 58-aa long signal Apela/ELABELA/Toddler (Box 
1).

Bazzini et al., 2014 [15]: This study used a ribosome-profiling based strategy similar to 

[13] and [14] to identify translated ORFs, focusing specifically on short (20-100aa) 

protein products. ORFscore (see main text) was used to quantify the coding potential of 

each ORF within a given transcript. Applying ORFscore to 2,450 previously predicted 

non-coding RNAs and un-annotated transcripts [68, 69, 73] identified 303 putative 

protein-coding transcripts, including 214 transcripts in 190 loci predicted to encode small 

polypeptides (20–100 aa). A small fraction of these peptides (6/190) were confirmed by 

mass-spectrometry. This study also introduced a second computational tool, the so-called 

micro peptide detection pipeline (micPDP). MicPDP uses PhyloCSF [75] to identify 

conserved peptides. Of the 63 micPDP-identified conserved zebrafish smORFs, 23 were 

also found by ORFscore. A complete overlap between ORFscore- and micPDP-predicted 

peptides is not expected, since these two approaches are complementary and tailored 

towards active translation and conservation, respectively. The resultant list includes a 

large number of translated ORFs (170 loci) derived from repetitive element-containing 

transposons.
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Box 3 Levels of gene annotation

Annotation of a gene is a continuous process that usually progresses through several 

iterations of computational predictions and experiments (Fig. 3), culminating in the 

determination of its function. These different levels of gene annotation make it difficult 

and diffuse to define the exact time of gene ‘discovery’, and raise the question at which 

point a transcript should be considered ‘annotated’. Discovery claims in gene 

identification and annotation are further complicated by the frequent disagreements in 

coding predictions between classification pipelines. Many transcripts are predicted as 

coding by one algorithm, but non-coding by another, and often only functional data can 

resolve discrepancies in gene annotations. A good example for a gene with contradicting 

annotations that have finally been resolved by zebrafish knockout studies is the recently 

confirmed protein-coding gene apela/elabela/toddler [14, 39] (see Box 1). Another factor 

that can confound discovery claims is the ‘hidden layer’ of gene annotations. Gene 

annotations are constantly changing, but updates can take a long time to be incorporated 

into public databases. For example, Ensembl's RNA-Seq-based protein-coding 

predictions for zebrafish [73] have not yet been incorporated into the Ensembl zebrafish 

genome build that is by default visible on the Ensembl website. Further complications for 

discovery claims arise from variable degrees of genome annotations across organisms. 

What is ‘novel’ (non-annotated or mis-annotated) in one organism might have been 

annotated in a different organism. Homology-based search algorithms like BLAST are 

often used to uncover potential homologs in other species, but the interpretation of 

BLAST-based search results requires caution. First, BLAST does not distinguish between 

orthology and paralogy. Thus, a BLAST hit of a known, functionally characterized gene 

could suggest that the gene in question is either an ortholog or a new paralog of the 

known gene. Distinguishing between these two possibilities requires further analyses 

such as reciprocal BLAST/BLAT searches. Paralogy is indicated if there is a gene in the 

same organism that has higher similarity to the BLAST hit than the gene in question. 

Second, BLAST searches usually include a category of genes that has only been 

predicted to be coding based on computational algorithms (i.e. BLAST hits like 

‘predicted protein’, ‘hypothetical protein’) and might therefore be of limited 

trustworthiness (see main text). For example, amongst the 28 putative signaling peptides 

that had not been previously annotated as coding in zebrafish [14], 23 have BLAST hits 

in other organisms. However, only 6 peptides appear to be orthologs to annotated genes 

(e.g. otospiralin-like). The remaining hits are uncharacterized (6) or predicted (6) genes 

and novel paralogs of known genes (5) (e.g. new paralog of interferon 1, new paralog of 

cocaine- and amphetamine-regulated transcript (CART)). Apela falls into the class of 5 

peptides that had no annotated or predicted homologs in other organisms. However, it 

could be claimed to have been “discovered” at least three times, by 1) the detection of its 

transcript [94], 2) the discovery of its coding potential and translated ORF [10, 13, 69] 

and 3) the characterization of its function [14, 39].
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Figure 1. A continuum from protein-coding to non-coding RNAs
Protein-coding transcripts (blue) and non-coding RNAs (ncRNAs, red) are at either end of 

the spectrum of translation. The transition zone in between is populated by transcripts with 

translated ORFs whose peptide products might not be functional. Illustrated here are only 

transcripts that are functional or potentially functional (non-functional transcripts are not 

included).
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Figure 2. Overview of zebrafish transcript annotation pipelines
Outline of five zebrafish transcript annotation pipelines with their input data, strategies of 

classification and output data. Two pipelines focused on identifying non-coding transcripts 

[68, 69], one on testing and revising previous non-coding RNA predictions [13] and two on 

identifying uncharacterized protein-coding genes [14, 15]. Single asterisk (*): an ORF 

threshold < 30aa was used for transcripts mapping to genomic regions without alignments 

[69]. Double asterisk (**): 435 lncRNAs from [68] with sense overlapping transcripts in the 

Embryonic Transcriptome from [69]. smORF, short ORFs encoding a peptide < 100aa. For 

details see main text and Box 2.
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Figure 3. Levels of gene annotation
At the most basic level the presence of a gene is indicated by evidence of expression of the 

locus or by computational prediction of its locus (top). The next level of annotation is the 

determination of a transcript's exon-intron structure, which is usually followed by the 

prediction of its coding potential (middle). The ultimate level of annotation is reached by 

discovering a gene's function (bottom). The computational methods (left) and experimental 

approaches (right) that can be used to reach each level of gene annotation are outlined.
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