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Abstract. There has been considerable interest in identifying biologically 
relevant genes from temporal microarray gene expression profiles using linear 
and nonlinear measures. The present study uses two distinct approaches 
namely: classical order zero-crossing count (ZCC) and Lempel-Ziv (LZ) 
complexity in identifying non-random patterns from temporal gene expression 
profiles. While the former captures the linear statistical properties of the time 
series such a power-spectrum, the latter has been used to capture nonlinear 
dynamical properties of gene expression profiles. The results presented 
elucidate that ZCC can perform better than LZ in identifying biologically 
relevant genes. The robustness of the findings are established on the given gene 
expression profiles as well as their noisy versions. The performance of these 
two techniques is demonstrated on publicly available yeast cell-cycle gene 
expression data. A possible explanation for the better performance of the ZCC 
over LZ complexity may be attributed to inherent cyclic patterns characteristic 
of the yeast cell-cycle experiment. Finally we discuss the biological relevance 
of new genes identified using ZCC not previously reported. 

Keywords: Gene expression, Time series, Zero-crossing count, Lempel-Ziv 
complexity. 

1   Introduction 

Microarrays have proven to be useful tools in capturing simultaneous expression of a 
large number of genes in a given paradigm. These high-throughput assays provide 
system-level understanding of the given paradigm. Recently, microarrays have been 
used to generate temporal expression profiles. Such profiles capture the 
transcriptional activity of genes as a function of time, hence their dynamics. There has 
been considerable interest in developing appropriate techniques to understand 
functional relationships and network structures from temporal gene expression 
profiles (see [1] and references therein). These include global analysis techniques 
such as PCA, hierarchical clustering and self-organizing maps (see [2] and references 
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therein). As pointed out by [3], such techniques treat the expression across the time 
points as independent entities, hence immune to the temporal structure/dynamics. 
Such global analyses may also be susceptible to inherent transcriptional delays. 
Therefore, it might be necessary to explore alternate techniques that are sensitive to 
the temporal structure of the data. Temporal expression profiles of biologically 
relevant genes orchestrating a specific paradigm follow characteristic and reproduci-
ble patterns. This in turn supports their inherent non-random nature. While genetic 
networks are undoubtedly nonlinear dynamical systems, these dynamical nonlineari-
ties need not necessarily manifest in the external recording such as microarray 
expression profiles. This can be attributed to noisiness and nonlinearities at the 
measurement and dynamical levels [4]. On a related note, nonlinear dynamical 
systems can also give rise to simple cyclic/periodic behavior (limit cycle) for certain 
choice of the system parameters which can be modeled as linear stochastic processes. 
Therefore, measures sensitive to linear as well as nonlinear statistical properties have 
been used to investigate patterns in gene expression profiles. In the present study, we 
compare the performance of two measures in identifying biologically relevant genes, 
namely. (a) zero-crossing count (ZCC), [5] which is related to the linear statistical 
properties of temporal data such as power-spectrum and (b) Lempel-Ziv (LZ) 
complexity measure, [6,7] which is sensitive to linear as well as nonlinear dynamical 
properties in the given data. We show that ZCC can prove to be a better choice than 
LZ complexity in identifying biologically significant genes. The better performance 
of ZCC may be due to inherent cyclic patterns in the yeast cell-cycle data. Such 
patterns can be modeled as linear stochastic processes with Gaussian innovations. 
Therefore, measures sensitive to the linear correlation structure may be sufficient to 
describe them. 

Techniques such as power-spectral analysis which capture the linear statistical 
properties of the stationary time series are a natural choice for investigating experimental 
time series [8]. Power-spectrum is related to the auto-correlation function (Wiener-
Khinchin theorem) which in turn is used to estimate the optimal process parameters of 
linear stochastic processes (Yule-Walker equations) [9, 10]. Alternatively, auto-
correlation function is sufficient statistics for describing normally distributed linear 
stochastic processes. Uncorrelated noise is characterized by a flat power-spectrum 
representing equal power across all frequencies. A significant skew in the power-
spectrum towards lower-frequencies is indicative of correlation or non-random signatures 
in the given time series. These in turn may be indicative of biologically relevant genes. 
Classical spectral estimation may not be possible due to the small length of the temporal 
gene expression profiles. However, the spectral properties of a given time series can also 
be captured by zero-crossing count [5]. The latter overcomes some of the caveats 
encountered in classical spectral estimation and its interpretation is fairly straight 
forward. In the present study, biologically relevant genes will be identified from ZCC. In 
order to establish statistical significance, ZCC estimates on the given data are compared 
to those obtained on random shuffled surrogates. The random shuffled surrogates 
represent uncorrelated counterpart of the given data. 

Information theoretic approaches have also been popular in capturing patterns in 
gene expression profiles. These include entropy-based approaches [11]. However, 
entropy estimates are governed solely by the probability distribution of the expression 
values, hence immune to the temporal expression profile. For instance a gene 
exhibiting a periodic pattern across 9 time points (001001001) has the same Shannon 
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entropy as gene exhibiting seemingly random pattern (101000100). The latter is 
obtained by randomly shuffling the former. Complexity measures which overcome 
some of the caveats of entropy have recently been proposed to investigate gene 
expression profiles [12, 15, 16]. Traditionally, uncorrelated noise is considered to be 
maximally complex or random. Any deviation from randomness ensures correlation 
and accompanied by a decrease in complexity. From the perspective of gene 
expression analysis, genes with low complexity are hypothesized to be biologically 
relevant. A recent study, proposed several measures of complexity for the analysis of 
temporal gene expression profiles in yeast cell-cycle experiment [12]. Such an 
analysis was carried out in an unbiased manner in the absence of any prior knowledge 
about the given data. The authors successfully identified biologically relevant genes 
in addition to those that exhibited characteristic cyclic behavior [13, 14]. Complexity 
measures have also been successfully used to gain insight into the dynamical aspects 
of genetic networks from the temporal expression profiles [15, 16]. In [15], the 
distribution of the Lempel-Ziv complexity from experimental gene expression profiles 
was compared to those generated from synthetic random Boolean networks (RBN) 
using Kullback-Leibler divergence and Euclidean distance. Subsequently, the 
dynamics of the genetic network governing the paradigm was found to lie in the 
ordered regime or between order and chaos. More recently, a variant of the 
Kolmogorov-complexity (i.e. normalized compression distance) was used to argue in 
favor of criticality in macrophage dynamics. In the present study, Lempel-Ziv (LZ) 
complexity is used identify biologically relevant genes. Unlike ZCC, LZ is sensitive 
to linear as well as nonlinear correlations in the given data. For instance, qualitative 
behavior of LZ complexity has been found to mirror invariants such Lyapunov 
exponents in nonlinear dynamical systems [7, 17]. Periodic time series such as sine-
waves are highly compressible and result in low values of LZ complexity. Ideally, 
uncorrelated noise cannot be compressed hence accompanied by large values of LZ 
complexity. As in the case of ZCC, LZ values obtained on the given data are 
compared to those obtained on random shuffled surrogates in order to establish 
statistical significance. There is no direct relation between LZ complexity and ZCC. 
However, it should be noted that ZCC as well LZ is likely to increase monotonically 
with increasing noise in the given data. Noise being reflected by high-frequency 
components in the power-spectrum. 

2   Methods 

2.1   Spectral Analysis by Zero-Crossing 

Consider a zero-mean normally distributed stationary process Ntxt ...1, = . The 

corresponding binary sequence of the differenced series 
1−−= ttt xxz is generated as  

otherwise  0

0if1

=
>= tt zy  (1) 

Expression (1) essentially quantizes the given input signal
tz onto a coarse-grained 

binary sequence. The sequence yt is subsequently differenced and passed through a 
memoryless nonlinear transform as  

2
1)( −−=∇ ttt yy  (2) 
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A zero-crossing is said to occur if 1=∇ t
. Subsequently, the zero-crossing count is 

given by 

∑
−

=

∇=
1

1
1

N

t
tD  (3) 

The zero-crossing count is related to the linear correlation, hence the power-
spectrum [see 5 and references therein]. For certain class of colored Gaussian noise, 
zero-crossing analysis may be sufficient to describe the process dynamics [5]. 
Examples include cyclic patterns such as those encountered in the Spellman alpha-
factor synchronization yeast cell-cycle experiment. At this point, it might be necessary 
to point out certain resemblance between the zero-crossing analysis and the complexity 
maps proposed in [12]. The first-order crossing

1−−= ttt yyδ  shares resemblances to the 

map
1Δγ proposed recently in [12]. On a similar note the maps

2Δγ  and
3Δγ in [12] share 

resemblance to the expressions 2
tδ ))(i.e.( 1−−= ttt yy δδδδ  and 3

tδ ))(i.e.( 2
tδδ  for higher 

order crossings obtained repeated application of the difference operator (high-pass 
filter) [5]. On closer observation, we note subtle differences in their definitions. The 
complexity maps [12] use (i) ranks of the values as opposed to the sign of the mean-
subtracted values (1). (ii) Discontinuous memoryless function as opposed to 
continuous memoryless function (2). While the maps in [12] capture the complexity of 
the given process, ZCC captures the spectral characteristics of the process. 

2.2   Lempel-Ziv Complexity 

Lempel-Ziv complexity (LZ) [6] and its extensions [7] have been used widely to 
understand the dynamics in biomedical [18, 19] and genomic signals [15]. An elegant 
implementation of the LZ algorithm for binary sequences was proposed in [7]. In the 
present study, binary sequence of the expression profiles was generated by 
thresholding about the mean. The objective of the LZ algorithm is to reconstruct the 
given sequence s of length n, using two fundamental operations, namely: copy and 
insert by parsing it from left to right. This information in turn is used for estimating 
the algorithmic complexity of that. The working principle of the LZ algorithm is 
shown below for completeness. Prior to the discussion of the example we introduce 
the notation v(s) in the following example corresponds to the vocabulary set [6]. 
Consider s = 00, then v(s) represents all possible words that can be reconstructed from 
s when scanning from left to right, i.e. v(s) = {0, 00}. It is important to note that while 
0 can be generated from v(s), 1 cannot be generated from v(s).  
 
Consider a period 3 sequence s0 = 001001001……. as before 
 

(a) The first digit 0 is unknown hence have to be inserted, resulting in c(n) 
= 1 and s* = 0. 
(b) Consider the second digit 0. Now s = 0, q = 0; sq = 00; sqπ = 0; 
q∈v(sqπ); therefore copying is sufficient resulting in no change in the 
complexity i.e. c(n) = 1 and s* = 0.0 
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(c) Consider the third digit 1. Now s = 0, q = 01; sq = 001; sqπ = 00; 
q∉v(sqπ); therefore insertion is required, resulting in c(n) = 2 and s* = 0.01.  
(d) Consider the fourth digit 0: s = 001; q = 0; sq = 0010; sqπ = 001; 
q∈v(sqπ); therefore copying is sufficient, resulting in c(n) = 2 and s* = 0.01.0 
(e) Consider the fifth digit 0: s = 001; q = 00; sq = 00100; sqπ = 0010; 
q∈v(sqπ); therefore copying is sufficient, resulting in c(n) = 2 and s* = 
0.01.00 
(f) Consider the sixth digit 1: s = 001; q = 001; sq = 001001; sqπ = 00100; 
q∈v(sqπ); therefore copying, is sufficient resulting in c(n) = 2 and s* = 
0.01.001 
 

It is important to note that subsequent addition of symbols from s does not change 
c(n). This can be attributed to the inherent periodicity of the sequence s. Since s* does 
not end in a dot (.) we add one to the complexity, resulting in c(n) = 3. In the present 
study, we consider the normalized complexity measure (γ) given by the expression  

)(
)(

nb

nc=γ ,
n

n
nb

2log
)( where =  (4) 

The normalized complexity (γ) tends to unity in the asymptotic limit for sequences 
whose Shannon entropy is unity [6, 7]. 

2.3   Random Shuffled Surrogates 

Resampling techniques are encouraged in literature for establishing statistical 
significance where the null distribution is unknown. Resampling without replacement 
is used widely within the context of correlated data analysis [20, 21]. Such an 
approach retains certain statistical properties of the given empirical sample in the 
surrogates. For the same reason these surrogates are termed as constrained 
realizations [21]. In the present context, the objective is to argue in favor of 
correlation in the given gene expression profile, i.e. the statistics considered namely: 
D1 (3) and γ (4) are sensitive to correlation in the given data. Therefore, the objective 
is the reject the null that the given data is uncorrelated noise. The surrogates under the 
above null are generated by randomly shuffling (RS) the temporal expression profile 
of that gene. The constraint here is on retaining the distribution of the gene expression 
profile in the surrogates. Alternatively, the distribution of the gene expression profile 
is treated as a nuisance variable [21]. The discriminant statistics (3) and (4) are 
sensitive to the temporal structure, hence are expected to exhibit a significant 
discrepancy between the empirical sample and the surrogate counterpart in the case of 
correlated expression profiles. More importantly, estimates of (3) and (4) on the 
surrogate realizations will be higher than those estimated on the empirical sample for 
correlated gene expression profiles. Therefore, a one-sided test is sufficient to 
establish statistical significance. In the present study, the number of surrogates were 
chosen as (ns = 99) corresponding to a significance level α = 1/(99+1) = 0.01 [21]. It 
is important reiterate that the null is rejected only when the estimate of (3) and (4) is 
lesser than each of the 99 surrogate realizations.  
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3   Data 

In order to establish reproducibility and direct comparison, we have used the same 
data sets as those investigated recently by [12] using a battery of complexity 
measures. The final list of genes was obtained from the Ahnert et al., (personal 
communication). The authors in [12] identified 150 genes as top-ranked by one of 
their proposed complexity measures )/( 3Δγfk . 52 of these 150 genes were listed as 

biologically relevant either by Spellman (104 genes, http://genome-www.stanford.edu  
/cellcycle/data/rawdata/-Knowngenes.doc) or Simon (140 genes, http://web.wi.mit. 
edu/young/cellccycle/-Table of Regulated genes). Their set of 150 genes also included 
genes not listed in either Spellman (104) or Simon (140).  

 

LIST OF 133 GENES: Since identifying the missing data is not one of the objectives 
of the proposed study, we first eliminate all genes whose values are missing even at a 
single time point in the Spellman alpha-factor synchronization yeast cell-cycle 
experiment (6178 genes across 18 time points) [14]. The reduced set consisted of 
4491 genes. Therefore, all subsequent discussions will be restricted to this set of 4491 
genes. Spellman et al., 1998 [14] identified 104 genes as well-documented through 
extensive literature survey. Out of these 104 genes, 72 genes had values across all 18 
time points (i.e. overlapped with the list of 4491 genes). The ORFs of these 72 genes 
were subsequently identified. In a related study, Simon et al., 2001 [13] identified 140 
genes as being relevant to yeast cell-cycle. The gene IDs of these 140 genes were 
retrieved by comparing their ORFs to those spotted on the array. Only 125 of the 140 
identified had gene IDs. Out of these 125 genes, 93 genes had values across all 18 
time points (i.e. overlapped with the set of 4491 genes). Thus in essence we have 72 
out of the 104 genes from study [14] and 93 out of the 140 genes from study [13]. The 
union of the above sets resulted in 133 genes relevant to yeast cell-cycle.  
 

LIST OF 40 GENES: The performance of the measures (3) and (4) are also 
determined using the set of 40 genes as ground truth from Ahnert et al., (personal 
communication). Of the 52 genes identified by Ahnert et al., 2006 40 had values 
across all 18 time points (i.e. overlapped with the 4491 genes).  

 
The objective of the present study is to determine the effectiveness of the measures 
(3) and (4) on retrieving biologically relevant genes from the set of 4491 genes. Of 
interest is to investigate the false-positive and false-negative rates using the 133 genes 
and 40 genes as ground truths. The effect of noise on the performance of the two 
measures (3), (4) is also investigated. Finally the usefulness of the ZCC (3) in 
identifying new genes not previously reported in either Simon [13] or Spellman [14] 
is discussed. The temporal expression profiles of the 4491 genes were mean-
subtracted prior to the analysis. The present study also assumes the gene expression 
profiles to be generated from stationary stochastic processes. 

4   Results 

Prior to investigating the gene expression profiles we demonstrate the effectiveness of 
the proposed measures in quantifying regularity in patterns across synthetic linear and 
nonlinear dynamical processes.  
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4.1   Synthetic Data 

Periodic sine-wave 
Consider a periodic sine-wave given by )2sin()( 1ωπfts = with (f1 = 2, N = 200), Fig 1a. 

The sampling frequency (Fs = 15) was chosen so as to satisfy the Nyquist criterion, 
i.e. Fs > 2f1. Periodic signatures can be modeled as linear stochastic processes such as 
auto-regressive moving average processes (ARMA), hence linear statistical properties 
are sufficient to describe them. However, periodic signatures can also be generated by 
nonlinear dynamical systems (limit cycles). The power-spectrum of the periodic sine-
wave exhibits a dominant frequency, Fig. 1b. The results of the zero-crossing analysis 
(3) and the normalized complexity (4) are shown in Fig. 1c and 1d respectively. The 
statistical measures (3) and (4) of the periodic sine-wave is clearly lesser than those 
obtained on the random shuffled surrogates (ns = 99, α = 0.01) rejecting the null as 
expected, Figs. 1c and 1d.  

 
Chaotic logistic map 
Consider a chaotic logistic map given by xn+1 = 3.8.xn.(1-xn), Fig 1e. Unlike periodic 
sine-wave, chaotic logistic map is nonlinearly correlated and is accompanied by a 
broad-band power-spectrum characteristic of random noise, Fig. 1f. The results of 
zero-crossing analysis (3) and the normalized complexity (4) are shown in Fig. 1g and 
1h respectively. The time series was mapped onto a binary sequence by thresholding 
about the superstable fixed point (0.5). This particular choice has been shown to 
capture the dynamics faithfully [17]. Zero-crossing estimate (3) on the chaotic process 
was considerably higher than those on the random shuffled surrogates failing to reject  
 

 

Fig. 1. Time series generated from periodic sine-wave (left) and chaotic logistic map (right) are 
shown in (a) and (e) respectively. The corresponding power-spectra are shown in (b) and (f) 
respectively. Zero-crossing crossing analysis (c and g) and normalized complexity (d and h) 
estimates of the empirical samples are shown by hollow circles. The histogram of their 
estimates on (ns = 99) random shuffled surrogates are also shown in the corresponding subplots 
(black bars).  
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the null (ns = 99, α = 0.01), Fig. 1g that the given process is uncorrelated noise. The 
one-step auto-correlation estimated using (7) and directly from the data was negative  
failing to provide any meaningful insight into the dynamics. However, analysis using 
the normalized complexity clearly rejected the null, Fig. 1h. Thus the zero-crossing 
analysis may have clear limitations when analyzing from nonlinear processes. 

4.2   Yeast Cell-Cycle Experiment 

Zero-crossing analysis (3) of the 4491 genes (Sec. 3) identified 101 genes as being 
significant (α = 0.01).  A similar analysis using normalized complexity (4) identified 
133 genes as being significant (α = 0.01). Prior to a detailed analysis we investigated 
two genes namely:  YBR010W (Fig. 2a) and YPR150W (Fig.2b) using D1 and γ. The 
choice of these two genes can be attributed to a recent study which investigated their 
biological relevance using a battery of complexity measures [12]. Visual inspection of 
the temporal expression profiles of YBR010W (Fig. 2a) revealed characteristic low-
frequency non-random signatures unlike YPR150W (Figs. 2b). Zero-crossing (D1), 
Fig. 2c, as well as normalized complexity (γ), Fig. 2e, estimates on YBR010W were 
considerably less than those obtained on the surrogate realizations rejecting the null 
that YBR010W is uncorrelated noise. The results of a similar analysis of YPR150W 
using (D1) and (γ) are shown in Figs. 2d and 2f respectively. Both the measures failed 
to reject the null in the case of YPR150W. Earlier studies have reported YBR010W 
(or HHT1) to be actively involved in cell-cycle [13]. In contrast, YPR150W is an 
open-reading frame (ORF) with no documented evidence of its role in yeast cell-
cycle. The performance of the two measures (D1, γ) were subsequently investigated 
by introducing noise in the zero-mean temporal expression profile for a gene x as  
 

 

Fig. 2. Temporal expression profiles of two genes YBR010W and YPR150W are shown in (a) 
and (b) respectively. The corresponding zero-crossing (D1) estimates (circle) along with the 
distribution of the estimates on the 99 random shuffled surrogates (black bars) for each of the 
three genes are shown right below them in (c) and (d) respectively. The results of a similar 
analysis using normalized complexity (γ) for the genes are shown right below them in (e) and 
(f) respectively.  
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Fig. 3. False-negative rate and false positive rate obtained assuming the 133 genes [13,14] as 
ground truth using zero-crossing (D1, solid lines) and the normalized complexity (γ, dotted 
lines) for noise factors (f = 0, 0.10, and 0.20) is shown in (a) and (b) respectively. False-
negative rate and false-positive rate obtained by a similar analysis assuming the 40 genes [12] 
as ground truth is shown in (c) and (d) respectively. 

(yt = xt + f.et), where et is i.i.d Gaussian noise. Introducing noise to the observed 
expression falls under measurement noise ubiquitous in microarray studies. 

Assuming the 133 genes identified by the union of 140 genes and 104 genes [13, 14] 
whose values are known across all time points as the ground truth.  
Zero-crossing analysis (D1) identified 37 of the 133 biologically relevant genes (i.e. 
31/133 ~ 23%). The normalized complexity (γ) identified only 7 out of the 133 genes 
(i.e. 7/133 ~ 5%). These have to be compared to those of [12], who identified 52 
genes from an union set of 195 genes (52/195 ~ 26.7%) using complexity measure 
k(f/d3). The discrepancy in the number of genes between [12] and the present study 
(133) can be attributed to the fact that we considered only genes whose expression 
values are known across all time points. The false-positive rate (FPR) and false-
negative rate (FNR) for the normalized complexity (γ) and zero-crossing analysis (D1) 
across noise factors (f = 0, 0.10, 0.20) is shown in Figs. 3a and 3b respectively. From 
Fig. 3a it is evident that the FPR and FNR of the normalized complexity are 
considerably higher than that of the zero-crossing analysis.  

Assuming the 40 genes from (52) [12] whose values are known across al the time 
points as the ground truth. 
It should be noted that these 40 genes are present in the union set of 133 genes 
discussed above. While zero-crossing analysis (D1) identified (24/40) genes, the 
normalized complexity (γ) identified only (4/40) genes from [12]. The FPR and FNR 
for the two measures assuming these 40 genes as the ground truth across noise factors 
(f = 0, 0.10, 0.20) is shown in Figs. 3c and 3d respectively. The results are similar to  
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Fig. 4. Six genes YDL018C, YHL050C, YHR005C, YIL129C, YLR455W and YMR029C 
identified by D1 and not present in the list of 133 genes. The estimate of D1 on the gene 
expression profile (circle) and their (ns = 99) random shuffled surrogates (black bars) are shown 
in each of the subplots. 

those obtained for the 133 genes with considerably higher FNR and FPR for (D1) 
compared to γ.  
 

New genes discovered by the zero-crossing analysis 
As noted earlier, out of the 101 genes detected as being statistically significant by 
zero-crossing analysis, 37 exhibited overlap with the documented 133 genes. The 
remaining 64 genes consisted of YDL018C (ERP3) [22], YHL050C, YHR005C 
(GPA1) [23], YIL129C (TAO3) [24, 25], YLR455W (Uncharacterized ORF) [26], 
YMR029C (FAR8) [27], see Fig. 4. YDL018C or ERP3 had been shown to be 
involved in the G1/S phase of the cell cycle [22]. YHL050C is an uncharacterized 
open-reading frame but we believe its non-random nearly periodic pattern is 
compelling for us to hypothesize it as a likely candidate in yeast cell cycle regulation. 
There has been evidence [23] on the role of YHR005C (GPA1, G-protein alpha 
subunit 1) on the mating-factor mediated cell cycle arrest. YIL129C (TAO3) is a 
member of the RAM (Regulation of Ace2p activity and cellular Morphogenesis) [24] 
signaling network which governs cell separation, integrity and progression [25]. 
There has been evidence of YLR455W being involved in S-phase of the cell-cycle 
[26]. YMR029C (FAR8) has been documented to be involved in G1 cell cycle arrest 
in response to pheromone [27]. 

5   Discussion 

There has been considerable interest in understanding temporal gene expression 
profiles using suitable techniques. Biologically relevant genes are hypothesized to 
exhibit non-random and reproducible temporal expression profiles. Understanding the 
correlation in these patterns has been of great interest. The present study investigated 
two distinct measures namely: zero-crossing count and the normalized Lempel-Ziv 
complexity in identifying biologically relevant genes from their expression profile. 
While the former is sensitive to only the linear correlation, the latter is sensitive to 
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linear as well as nonlinear correlations in the given data. These techniques implicitly 
assume that the given temporal expression profiles are sampled from a stationary 
process. From the results presented, it is evident that zero-crossing count which 
mimics the spectral content of the given data may prove to be useful in determining 
biologically relevant genes from their expression patterns. Its performance was found 
to be better than that of the normalized complexity. The results were demonstrated on 
yeast cell cycle expression profiles with and without noise. The better performance of 
the zero-crossing count may be attributed to cyclic patterns which can be modeled as 
linear stochastic processes.  
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