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Abstract
Objectives To evaluate the potential of artificial intelligence (AI) to identify normal mammograms in a screening population.
Methods In this retrospective study, 9581 double-readmammography screening exams including 68 screen-detected cancers and
187 false positives, a subcohort of the prospective population-based Malmö Breast Tomosynthesis Screening Trial, were
analysed with a deep learning–based AI system. The AI system categorises mammograms with a cancer risk score increasing
from 1 to 10. The effect on cancer detection and false positives of excluding mammograms below different AI risk thresholds
from reading by radiologists was investigated. A panel of three breast radiologists assessed the radiographic appearance, type,
and visibility of screen-detected cancers assigned low-risk scores (≤ 5). The reduction of normal exams, cancers, and false
positives for the different thresholds was presented with 95% confidence intervals (CI).
Results If mammograms scored 1 and 2 were excluded from screen-reading, 1829 (19.1%; 95% CI 18.3–19.9) exams could be
removed, including 10 (5.3%; 95% CI 2.1–8.6) false positives but no cancers. In total, 5082 (53.0%; 95% CI 52.0–54.0) exams,
including 7 (10.3%; 95% CI 3.1–17.5) cancers and 52 (27.8%; 95% CI 21.4–34.2) false positives, had low-risk scores. All,
except one, of the seven screen-detected cancers with low-risk scores were judged to be clearly visible.
Conclusions The evaluated AI system can correctly identify a proportion of a screening population as cancer-free and also reduce
false positives. Thus, AI has the potential to improve mammography screening efficiency.
Key Points
• Retrospective study showed that AI can identify a proportion of mammograms as normal in a screening population.
• Excluding normal exams from screening using AI can reduce false positives.
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Introduction

Breast cancer screening with mammography is one of the
largest secondary prevention programmes in medicine and is
widely implemented in high-income countries [1, 2]. The
European screening guidelines recommend double-reading
in order to increase screening sensitivity [3]. The double-
reading procedure may be difficult to accomplish due to a
shortage of radiologists specialising in breast imaging inmany
countries [4]. Daily reading of a large number of normal mam-
mograms is a tedious task reducing the attractiveness of the
field. Double-reading can also increase the risk of false posi-
tives [5]. Experiencing a false-positive screening can result in
breast cancer–specific anxiety that can last up to 3 years [6].
Also, women with a false-positive screening are less likely to
return for subsequent screening rounds [6].
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The advent of artificial intelligence (AI) in medical imag-
ing could, however, provide means to improve the efficiency
of mammography screening by reducing the need of human
readers and avoid false positives [7]. Recent studies have
shown that AI can reach a similar or even higher accuracy in
reading mammograms than human readers [8–11], as well as
in improving reader performance when used as a decision
support [10, 12]. Many of these studies were performed on
enriched datasets and studies on AI performance on pure
screening data are still scarce.

The aim of this study was to evaluate the potential of a
commercially available AI system to identify normal mammo-
grams in a breast cancer screening population, thereby reduc-
ing workload related to the radiologists’ screen-reading and
false positives. In addition, the characteristics of screen-
detected cancers that were missed by the AI system were
assessed.

Material and methods

The study was approved by the Regional Ethics Review
Board (2009/770) and the Swedish Ethical Review
Authority (2018/322). Informed consent was obtained.

Study population

A consecutive subcohort from the prospective population-
based Malmö Breast Tomosynthesis Screening Trial [13],
consisting of 9581 women aged 40–74 (mean age 57.6 ±
9.5) with double-read screening mammograms, was included.
The screening intervals were 1.5 years until the age of 55 and
thereafter biennial screening. The subcohort consisted of a
consecutive inclusion of trial participants with two-view dig-
ital mammograms (Mammomat Inspiration, Siemens
Healthcare GmbH) for which both raw and processed imaging
data were available (February 2012 until May 2015). Of the
9581 women, 255 were recalled (recall rate 2.7%) resulting in
68 screen-detected cancers (cancer detection rate 7.1/1000)
and 187 false positives. Ground truth was based on histology
of surgical specimen or core-needle biopsies and with a cross-
reference to a regional cancer register. A normal mammogram
was defined as free of screen-detected cancer. Participants in
the Malmö Breast Tomosynthesis Screening Trial were also
examined with tomosynthesis, but for the purpose of this
study, only the independent mammography reading results
were taken into account.

AI-derived risk scores

All mammograms were analysed with a commercially avail-
able automatic breast cancer detection AI system based on
deep convolutional neural networks (Transpara v.1.4.0,

ScreenPoint Medical). The AI system assigns screening
exams a risk score of 1–10, with 10 indicating the highest
probability of malignancy [14–19]. The cancer risk scores
are derived from a two-step process in which a traditional
set of image classifiers and deep convolutional neural net-
works are first used to identify suspicious lesions, i.e. calcifi-
cations and soft tissue masses, which are further classified
using a combination of another set of deep convolutional neu-
ral networks. The local detections are then combined into a
risk score for the whole exam. The risk scores are calibrated to
yield approximately one-tenth of screening mammograms in
each category. In this study, we defined low-risk scores as 1–5
and high-risk scores as 6–10.

This version of the AI system was trained and validated
using a database of about 180,000 normal and 9000 abnormal
mammograms from four different vendors [11]. The mammo-
grams used in this study had not been used in prior training or
validation of the AI system.

Review of AI-missed cancers

A consensus panel of three breast radiologists (each with > 7
years of experience) assessed the radiographic appearance,
size, and visibility of cancers, as well as the mammographic
density of mammograms with screen-detected cancers that
were assigned low-risk scores. These cancers could be con-
sidered missed by the AI system. The consensus panel had
access to all clinical information including pathology reports.
The radiographic tumour appearance and mammographic
density for the whole study population were previously
assessed, as described in a prior publication [13].

Statistical analysis

The effect of AI in screening was analysed by quantifying the
number and frequencies of screen exams, screen-detected can-
cers, and false positives for the different risk scores. Wald
confidence intervals (CI) were defined for the reduction of
screen exams, screen-detected cancers, and false positives
with low-risk scores, and calculated at the 95% confidence
level. Calculations were performed in R (version 3.5.1,
www.r-project.org). Furthermore, the distribution of risk
scores in relation to tumour biology was assessed. Number
and frequencies were used to present population
characteristics, tumour biology, and radiographic appearance.

Results

The distribution of risk scores for all mammograms, screen-
detected cancers, and false positives is shown in Fig. 1. The
cancer incidence in mammograms with low- and high-risk
scores was 1.4/1000 and 13.6/1000, respectively. If
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mammograms with a risk score of 1 and 2 were to be exclud-
ed, 1829 (19.1%; 95% CI 18.3–19.9) normal exams could be
removed, including 10 (5.3%; 95% CI 2.1–8.6) false posi-
tives, without missing a single cancer (Table 1). Half
(53.0%, 95% CI 52.0–54.0) of the screen exams had low-
risk scores (≤ 5). If these were to be excluded from screen
reading performed by radiologists, seven (10.3%; 95% CI
3.1–17.5) cancers would have been missed, and 52 (27.8%;
95% CI 21.4–34.2) false positives would have been avoided.
All seven cancers with low-risk scores were invasive
(Table 2), of which three were small (≤ 7 mm), low-grade
invasive tubular carcinomas, i.e. tumours with excellent prog-
nosis [19]. On the other hand, three cancers, two ductal and
one lobular type, were large (20 mm), one of which was his-
tologic grade 3, i.e. of less-favourable prognosis. The radiol-
ogists’ consensus panel judged all cancers, except one, to be
clearly visible (Fig. 2). The latter was a 20-mm-large
mammographically occult invasive ductal carcinoma that
was recalled due to an imaging finding of a pathologically
enlarged lymph node. Six of the cancers had a radiographic
appearance of a spiculated mass. All, except one, of the wom-
en with AI-missed cancers had dense breasts (Breast Imaging
Reporting and Data System-category C and D [21]).

AI performance in relation to tumour biology

As shown in Table 2, the most common type of screen-
detected cancers was an invasive ductal carcinoma. The ma-
jority of mammograms with invasive ductal carcinomas were
classified with high-risk scores. Notably, 10 out of 11 mam-
mograms with invasive lobular cancers, a cancer type that is
known to sometimes have a subtle radiographic appearance,
were also classified with high-risk scores. Furthermore, high-
risk scores were assigned to all cancers with calcifications as
the dominating radiographic feature (Fig. 3). The majority
(10/14) of these were ductal carcinoma in situ. Finally, all
but one of the seven high-grade cancers had a risk score of 10.

Discussion

The present study aimed to assess whether AI could identify
normal exams in mammography screening. We found that
with AI, every fifth mammogram could be excluded from

screen reading performed by radiologists without missing can-
cers, and at the same time a number of false positives could be
avoided. Consequently, radiologists’ workload and costs re-
lated to screen reading and false positives could potentially be
reduced. Considering that the double-reading procedure is
practiced in many screening programmes, especially in
Europe [22], the saving could be substantial. In this specific
Swedish screening setting with low recall rates (2.6%), the
reduction of false positives was small. It is fair to assume that
the reduction of false positives could be greater in a setting
where the recall rates are higher, such as in the USA [23, 24].
The majority of the false-positive mammograms had high-risk
scores, reflecting the fact that both human readers and AI
found suspicious features in the same image.

The size of the reduction of screen exams from radiolo-
gists’ reading also depends on whether the trade-off in terms
of a slight reduction of sensitivity could be considered accept-
able. If we would exclude mammograms with low-risk scores
(half of all screen exams), 28% of the false positives could be
avoided. This does not seem acceptable since 10% of the
cancers would have been missed. Since half of the AI-
missed cancers were indolent cancers, i.e. low-grade invasive

Table 1 The accumulated effect
of excluding mammography
screen exams assigned low AI
risk scores

Risk scores Screen exams, n (% [95% CI]) Cancers, n (% [95% CI]) False positives, n (% [95% CI])

1 1004 (10.4 [9.9–11.1]) 0 6 (3.2 [1.5–6.8])
1–2 1829 (19.1 [18.3–19.9]) 0 10 (5.3 [2.9–9.6])
1–3 2723 (28.4 [27.5–29.3]) 2 (2.9 [0.8–10.1]) 19 (10.2 [6.6–15.3])
1–4 3994 (41.7 [40.7–42.7]) 4 (6.7 [2.3–14.2]) 35 (18.7 [13.8–24.9])
1–5 5082 (53.0 [52.0–54.0]) 7 (10.3 [5.1–19.8]) 52 (27.8 [21.9–34.6])
Total (1–10) 9581 (100.0 ) 68 (100.0) 187 (100.0)

Table 2 Histological characteristics of screen-detected cancers
categorised with low- and high-AI-risk scores (low scores = 1–5 and high
scores = 6–10)

Low risk, n (% [95% CI]) High risk, n (% [95% CI])

Histologic type

IDC 3 (42.9 [6.2–79.5]) 30 (49.2 [37.1–61.4])

ILC 1 (14.3 [2.6–51.3]) 10 (16.4 [9.2–27.6])

Tub 3 (42.9 [6.2–79.5]) 7 (11.5 [5.7–21.8])

DCIS 0 11 (18.0 [10.4–29.5])

Other* 0 3 (4.9 [1.7–13.5])

Total 7 (100.0) 61 (100.0)

Histologic grade invasive cancers

Grade 1 4 (57.1 [25.0–84.2]) 20 (40.8 [28.2–54.8])

Grade 2 2 (28.6 [8.2–64.1]) 23 (46.9 [33.7–60.6])

Grade 3 1 (14.3 [2.6–51.3]) 6 (12.2 [5.7–24.2])

Total 7 (100.0) 49 (100.0)

IDC invasive ductal cancer, ILC invasive lobular cancer, Tub invasive
tubular cancer, DCIS ductal carcinoma in situ

*e.g. papillary carcinoma, apocrine tumour
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tubular cancers, the trade-off might still be considered. We
have to keep in mind that the results are point estimates with
mostly broad confidence intervals; the percentage of missed
cancers may be as few as 3% and as many as 18%. The
magnitude of normal exams identified in this study was sim-
ilar to the results presented by Rodriguez-Ruiz et al using the
same AI system, but on a study population with both clinical
and screening mammography exams [25], and by Yala et al
using a different AI system than the one used in this study, on
a large screening data set [26].

We were not able to unravel why the AI system missed
cancers, since all but one had a clearly visible lesion in the
breast. However, since the cancers were visible, there seems to
be room for improvement of the AI system. We can expect
that AI algorithms improve over time with further training; in
fact, the AI system used in this study has evolved from version
1.4.0 to 1.6.0. With this improvement, we could potentially,
by excluding mammograms with low-risk scores, safely auto-
mate a substantial part of the screen reading. The effect on
interval cancers, i.e. false negatives, has not been included in

Fig. 2 A cancer missed by the AI system. A 7-mm-large invasive tubular cancer (grade 1) with the radiographic appearance of a spiculatedmass that was
categorised with an AI risk score of 3. MLO, mediolateral oblique view; CC, craniocaudal view

Fig. 3 Distribution of AI risk scores in relation to radiographic
appearance of screen-detected cancers. Three cancers are not included
in the analysis (women recalled due to enlarged lymph node or due to
symptoms)

Fig. 1 Distribution of AI risk scores for all mammography-screen exams,
screen-detected cancers, and false positives
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the present study due to small numbers, but is currently being
investigated in a larger cohort. However, in the cohort used in
this study, no interval cancer was later diagnosed among
women in AI risk group 1 or 2. Still, the medico-legal and
ethical challenges using AI as a stand-alone reader in screen-
ing when a cancer is missed are expected to be considerable
[7]. To automatically discard low-risk exams from human
reading might therefore not be possible. The risk scores could,
however, potentially be used to address the screen-reading
workload by triaging exams to either single or double reading.

In this study, the AI system was shown to be especially sen-
sitive in detecting microcalcifications, which is a common, and
often the single, radiographic feature of ductal carcinoma in situ.
The ductal carcinoma in situ lesions all received high AI risk
scores (i.e. score 6–10 of which 55% received a score of 10).
This implies that using this AI system in screening is likely to
maintain or increase the detection rate of in situ cancers, hence
possibly adding to overdiagnosis [27]. On the other hand, of the
cancers that were missed by AI, three out of seven were small,
low-grade invasive tubular cancers, which in the light of overdi-
agnosis might not necessarily be a drawback [28]. Studies with
other AI vendors have shown varying results; the sensitivity for
calcifications can increase with the assistance of AI [10] or that
AI seems to bemore sensitive to invasive than in situ cancers [8].

The generalizability of these results is subject to certain limi-
tations. The study data was derived from a single-screening cen-
tre with specific conditions, e.g. an urban Swedish population,
experienced breast radiologists, the use of the double-reading
procedure, and using only one mammography and AI vendor
combination. Therefore, the results need to be validated retro-
spectively on other screening data sets, and subsequently in a
prospective trial. Another aspect is how well radiologists will
perform using the AI system as decision support rather than as
an independent pre-sortingmethod as is proposed in this study. It
is reasonable to assume that the radiologists would be influenced
by the knowledge of the risk scores in a prospective setting,
affecting both sensitivity and specificity [29]. Another limitation
of this study was the small sample size of cancers that did not
allow for any subgroup analyses, besides descriptive statistics.
Furthermore, the study population was based on a prospective
screening trial comparing tomosynthesis with mammography
[13], but the scope of this study was limited to evaluating the
mammography results. In the trial, additional cancers were de-
tected with breast tomosynthesis and the performance of the AI
system on the corresponding mammogram is currently being
investigated, as well as the performance in mammography in
relation to breast density.

In conclusion, this study has shown that AI can correctly
identify a proportion of a screening population as cancer-free
and also reduce false positives. Thus, AI has the potential to
improve the mammography screening efficiency by reducing
radiologists’ workload and the negative effects of false
positives.
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