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ABSTRACT

Predicting RNA 3D structure from sequence is a ma-

jor challenge in biophysics. An important sub-goal

is accurately identifying recurrent 3D motifs from

RNA internal and hairpin loop sequences extracted

from secondary structure (2D) diagrams. We have

developed and validated new probabilistic models

for 3D motif sequences based on hybrid Stochas-

tic Context-Free Grammars and Markov Random

Fields (SCFG/MRF). The SCFG/MRF models are con-

structed using atomic-resolution RNA 3D structures.

To parameterize each model, we use all instances

of each motif found in the RNA 3D Motif Atlas and

annotations of pairwise nucleotide interactions gen-

erated by the FR3D software. Isostericity relations

between non-Watson–Crick basepairs are used in

scoring sequence variants. SCFG techniques model

nested pairs and insertions, while MRF ideas han-

dle crossing interactions and base triples. We use

test sets of randomly-generated sequences to set

acceptance and rejection thresholds for each motif

group and thus control the false positive rate. Vali-

dation was carried out by comparing results for four

motif groups to RMDetect. The software developed

for sequence scoring (JAR3D) is structured to auto-

matically incorporate new motifs as they accumulate

in the RNA 3D Motif Atlas when new structures are

solved and is available free for download.

INTRODUCTION

RNA 3D motif structure, clustering and sequence alignments

Structured RNA molecules contain modular three-
dimensional (3D) motifs that correspond to the hairpin
loops (HL), internal loops (IL) and multi-helix junction
loops (MHJ) one sees in RNA secondary structures. This

paper focuses on 3D motifs in HL and IL, but the method
can be generalized for MHJ loops. HL occur on the ends
of Watson–Crick (WC) double helices and IL between
two helices. Many 3D motifs formed by HL and IL are
recurrent and found in a variety of non-homologous
locations in diverse RNA molecules, including rRNAs,
tRNAs, ribozymes and riboswitches. Some 3D motifs play
architectural roles (e.g. kink-turns and C-loops), while
others serve to anchor RNA tertiary interactions (e.g.
GNRA HL and their receptors and T-loops), or provide
binding sites for proteins or ligands (1). Such recurrent 3D
motifs usually play similar roles in different RNAs. Other
motifs such as Sarcin–Ricin (S/R) motifs have diverse
functions in different contexts (2). Given that many HL
and IL form de�ned 3D structures that are modular and
recurrent, it is desirable to develop general methods to
predict their presence in new RNA sequences.
Current tools make it possible to infer the secondary

structures of new RNA molecules with reasonable accu-
racy and therefore to identify the locations and sequences
of the HL and IL they contain (3–6). One can then try to
exactly match these sequences to known instances of loops
fromRNA3D structures (7). Unfortunately, exact sequence
matches are rare, except for the smallest motifs, because the
number of sequence variants found in 3D structures is still
relatively limited.
RNA 3D motifs are structured by recurrent non-WC

base-pairing, base-stacking and base-backbone interac-
tions (1). It is the pattern of interactions and the overall
motif geometry rather than the nucleotide sequence that is
conserved across different instances of the same 3D mo-
tif. Moreover, some motifs admit variable-length insertions,
which tend to occur at speci�c locations while conserving
the core 3D structure (8). Thus, different sequences, poten-
tially varying in length, can form the same 3D motif and
perform similar functions.
To identify the best available structural data for each mo-

tif, we have established an automated pipeline that peri-
odically extracts and clusters all HL and IL from a non-
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redundant (NR) set of high-quality RNA 3D structures
from the PDB and NDB (9). Motifs are clustered accord-
ing to conserved interactions and overall geometry, and
not by sequence or overall length, so that the resulting
motif groups in the RNA 3D Motif Atlas are meaning-
ful for RNA structural analysis, comparison and modeling
sequence variability consistent with the 3D structure (10).
The Atlas is periodically updated with new structures, so it
grows with the collection of new RNA 3D structures. Re-
lease 1.13 of the RNA 3DMotif Atlas contains 277 IL mo-
tif groups and 253 HL motif groups. Most of these groups
are homogeneous in 3D structure, and thus matching and
aligning a query sequence to a motif group amounts to a
3D structure prediction.
The goal of this paper is to identify the full range of se-

quences that can form a given RNA 3D motif, while mini-
mizing false positive predictions. In previous work (11,12),
we provided evidence that the actual sequence variability
of basepaired nucleotides in structured RNAmolecules fol-
lows the principle of isostericity (13): Base substitutions at
corresponding paired positions in homologous instances of
the same motif almost always conserve the basepair family
as de�ned by Leontis and Westhof; moreover, within each
basepair family, the most common base substitutions are
isosteric, i.e. they preserve the geometry of the glycosidic
bonds between the bases and the backbone. Isostericity thus
provides the basis for scoring putative sequence variants for
structured 3D motifs used here. In future work we will re-
port on the ability of the models to match novel sequence
variants to the correct motif group.
RNA multiple sequence alignments are sources of ad-

ditional sequence variants for 3D motifs that can be used
to build motif identi�cation algorithms (14,15). These ap-
proaches work best when the alignment positions corre-
sponding to a given 3D motif show good sequence conser-
vation and suf�cient but not excessive numbers of new se-
quence variants. However, in other cases, the number and
variety of distinct sequences aligned to the same 3D motif
suggests that either the alignment is wrong or the 3D motif
is not conserved across all aligned sequences. Thus, to eval-
uate the quality of sequence alignments and to assess the
likelihood that the same 3D motif is present at a particu-
lar location in an alignment, we need an independent model
for the sequence variability that is consistent with the corre-
sponding 3D structure. Producing such models is the main
goal of the present paper. To avoid circularity of reason-
ing, we use 3D structures to build probabilistic models for
sequence variability and use sequence variants from align-
ments to assess and validate the models. The models can
also be used to assess and improve the sequence alignments
themselves (16).

Review of relevant literature

The use of SCFGs to model RNA sequence variability was
introduced in 1994 with the work of two groups (17,18). The
covariance models of Eddy et al. are special types of SCFGs
used to model the sequence variability among homologous
RNA molecules that share a consensus RNA 2D structure.
Their primary use to date has been to provide probabilistic
models to assign newRNA sequences from genome projects

to known families of homologous RNA molecules and to
generate multiple sequence alignments. The program Infer-
nal (19,20) has been used for several years with the Rfam
database for this purpose (21,22). The parameters of each
SCFG are set from hand-curated sequence alignments for
each RNA family.
More recently, Theis et al. extend the work of Cruz and

Westhof by extracting a large number of RNA internal and
hairpin motifs and training Bayesian Network models on
corresponding sequence alignments (14,15). These works
are similar to the present paper in that they use probabilis-
tic models capable ofmodeling nearly arbitrary interactions
between nucleotides, but differ in that they train their pa-
rameters on sequence alignments and do not consider the
false positive rate inherent inmatching one sequence tomul-
tiple models.
Gardner andEldai have used covariancemodels forRNA

motifs (23). Their RMfam collection provides alignments
and covariance models for 34 hand-curated motifs of vary-
ing types for curators and users of non-coding RNA (nc-
RNA) alignments, with the goal of improving functional
prediction of novel nc-RNAs and providing a resource for
studying the evolution of RNA motifs. RMfam motifs are
being annotated in Rfam as of release 12.0 (22).

Markov random �elds are a well-studied extension of
Markov chains to model arbitrary graphs (24). They are
similar in modeling capability to Bayesian networks. MRF
have been used formodeling sequence variability in protein–
protein interactions (25).

MATERIALS AND METHODS

Distinguishing between core and non-core nucleotides

ManyRNA3Dmotifs have one ormore ‘bulged’ or ‘looped
out’ bases that do not interact with the other nucleotides of
themotif, although theymay interact with other parts of the
RNA chain or other molecules. The simplest examples are
IL consisting of a single nucleotide that bulges out of a helix
without interrupting the stacking of the adjacent basepairs.
In the construction of the RNA 3D Motif Atlas (10), we
have taken care to distinguish between the ‘core’ and ‘non-
core’ nucleotides of a motif, and to group instances based
on the geometries and interactions of the core nucleotides.
Structurally similar motifs that have bulged out nucleotides
tend to have them at equivalent places in the structure, al-
though the sequences and numbers of bulged bases can vary.

Components of the probabilistic models

Table 1 lists the different types of nodes (also known as
SCFG rewrite rules) that we de�ne to model RNA 3D
motif sequence variation. Because Cluster and Hairpin
nodes use Markov Random Fields (MRF) to model base
triples and non-nested basepairs, we refer to these as hybrid
SCFG/MRF models.

Building probabilistic models from multiple 3D motif in-
stances

Here we provide details on the construction and parame-
terization of probabilistic models for motif groups having
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Table 1. Types of nodes implemented in the SCFG/MRF probabilistic models introduced in this paper

Node Name For modeling: Modeled with: Examples:

Initial/Insertion
(I)

Variable-length insertions Length distribution, base
distribution and independent bases

Allow for extraneous bases before
the �rst �anking pair of a motif

Basepair (B) Nested basepairs and adjacent
variable-length insertions (bulged
bases)

4×4 probability score matrix for
basepair; length and base
distribution for insertions

All loops with nested basepairs

Cluster (C) Base triples, crossing basepairs,
basepairs on the same strand

Markov Random Field S/R (base triple), C-loop (crossing
basepairs)

Fixed (F) Unpaired core nucleotides 1×4 probability score vector for
base

Conserved base stacked between
basepairs

Hairpin (H) Hairpin loops, which can contain
base triples, non-nested basepairs
and basepairs on the same strand

Markov Random Field T-loop, GNRA loop, UNCG loop

multiple instances, expanding on the description in themain
text of the construction of models based on single instances.
There are two challenges: determining interactions that are
suf�ciently well conserved across multiple instances and ac-
counting for the sequence variability observed in those in-
stances.

Identifying consensus basepairs to include in models. A
basepair is included in the model when it occurs between
corresponding nucleotides in a signi�cant number of in-
stances of the 3D motif group. We do not, however, re-
quire that all instances have the basepair to include it in the
model. The motif groups in theMotif Atlas are constructed
so that no two instances in the same motif group have two
different FR3D-annotated basepairs (e.g. tSH and tWH) at
the same position (29). In the best case, basepairs are con-
served across all motif instances and are annotated consis-
tently by FR3D either as full-�edged pairs or as ‘near’ pairs
of the same kind (e.g. tSH or ntSH), which pose no prob-
lems. However, annotations do not always agree across all
motif instances, due to variation in the quality of the under-
lying experimental data, 3D modeling, or inherent �exibil-
ity of the motif. Therefore, when clustering loop instances,
the Motif Atlas makes allowance for a variety of near pairs
at corresponding nucleotide positions (e.g. some ntSH and
some ncWH), or even the complete lack of basepair anno-
tations in some instances, if the instance is suf�ciently sim-
ilar in overall geometry to instances with annotations. The
algorithm we have implemented for identifying basepairs
takes account of this fact and deals generously with these
cases: An annotated basepair is added to the list of con-
sensus interactions of the probabilistic model if more than
one third of instances have a full-�edged FR3D-annotated
basepair. Near basepairs of the same type are allowed to
compensate for lower numbers of full-�edged basepairs. For
motif groups with many instances, a smaller percentage of
annotated basepairs is allowed as long as more than 10 in-
stances share the same interaction. In more detail, denoting
the number of FR3D-annotated basepairs by T, the number
of near and coplanar basepairs (26) of the same family by
C, the number of near but non-coplanar basepairs byN and
the number of instances in the motif group by L, we recog-
nize a consensus basepair if and only if 3T + 2C + N >

min(L, 30).

Determining consensus base-backbone interactions to include
in models. Conserved base-phosphate (BPh) and base-
ribose (BR) interactions are identi�ed as follows: For each
instance of the motif and each pair of interacting nu-
cleotides i and j forming a base-backbone interaction we
tally the base edges (Watson–Crick, Hoogsteen, or Sugar)
of nucleotide i that form the full and near interaction with
the phosphate (or ribose) of nucleotide j and designate by T
and N the number of full and near interactions of the most
commonly occurring edge. We recognize a consensus inter-
action if and only if 2T + N > L and 4T > = L. In partic-
ular, this recognizes a BPh interaction if more than half of
the instances make a BPh interaction using the same edge.

Construction of basepair probability score matrices. Hav-
ing identi�ed a consensus basepair between positions i and
j, we build the corresponding 4×4 probability score matrix
(M) by averaging 4×4 matrices over the instances as fol-
lows: For each instance which makes the consensus con-
served basepair or a near version of that basepair, we cal-
culate the normalized 4×4 substitution matrix by scaling
the IsoDiscrepancy Index (IDI) into a probability score, as
described in Results, cf. Figure 2. When the base in position
i (respectively j) makes a conserved base-backbone interac-
tion, we modify row i (resp. column j) of the 4×4 matrix as
described in the main text under ‘Base-backbone interac-
tions.’ If bases i and j in the current instance do not make
the conserved basepair (or near version of it), then we make
a 4×4 matrix with 0.1 in the position corresponding to the
bases in positions i and j and zeros elsewhere. This accounts
for the observed base combination but does not predict any
additional base combinations. After running through all in-
stances, we sum and normalize the 4×4 matrices to produce
the probability score matrix M for positions i and j.

Treatment of large motif groups. When a 3D motif group
has few instances, isostericity suggests additional plausible
sequence variants. When a 3D motif group has many in-
stances, their sequences alone represent the sequence vari-
ants that actually work in practice, so we weight the ob-
served sequences more heavily, as follows. We calculate the
4×4 count matrix C to tally the number of observed base
combinations (AA, AC, etc.) for given positions i and j.
Letting L denote the number of instances and setting p =
L/(L+100), the �nal 4×4 probability score matrix is (1-p)M
+ pC, which is a weighted average of the basepair probabil-
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ity score matrix M and the count matrix C. When L = 1, it
is dominated by the matrix M, but as L increases, the con-
tribution ofM decreases and that of C increases, with equal
contributions when L = 100. Thus, when a motif group has
few instances, we score primarily by isostericity to remain
open to new base combinations, but as the number of in-
stances increases, we concentrate more of the score on the
observed base combinations.

Treatment of non-basepaired �xed positions. Fixed nodes
model positions that are conserved in all 3D instances of the
motif and form some interaction within the motif, except-
ing basepairing, e.g. C7 in Figure 3(a). Cluster and Hairpin
nodes can have such bases as well, as exempli�ed by U55,
C56 andA57 in Figure 1(a) andU3 in Figure 4(a).We count
the number ofA,C,G andU in this position, add the counts
to the vector [0.5 0.5 0.5 0.5] as a weak Dirichlet prior and
normalize. For example, for the Fixed node in Figure 3(b)
we assign the probabilities 1/12, 5/12, 1/12 and 5/12 for A,
C, G andU, respectively, since two C’s and twoU’s and zero
A’s or G’s were observed in the four instances of this motif.
When a �xed base makes a conserved BPh or BR interac-
tion, the prior is weakened to increase the in�uence of the
actual base counts.

Treatment of bulged bases as variable-length insertions. As
noted above, many motifs have one or more nucleotides
with bases that bulge out and do not interact with the
coremotif nucleotides.Many suchmotifs can accommodate
insertions of varying length without changing the overall
structure of the motif. Moreover, length variations are ob-
served between 3D instances and among aligned sequence
variants. We model the number of insertions with a distri-
bution over 0, 1, 2, etc. using observed insertion lengths
from the 3D instances and assigning small non-zero proba-
bilities to insertion lengths one less and one or two more
than observed values, to broaden and smooth the length
distribution. In detail, when there are L instances, we con-
struct a vector of weights over 0, 1, 2, . . . insertions for each
instance, sum these vectors and normalize to produce the
smoothed length distribution. For an instance having 2 in-
sertions the vector is [0, 1/(20L), 1, 1/(20L), 1/(400L), 0, 0,
0, . . . ]. The letter distribution is set as it is for Fixed nodes,
but without adjusting for BPh or BR interactions. For ex-
ample, the T-loop instances in motif group HL 72498.12
usually have two bulged bases after the �rst basepair, but
some have three. The inserted bases are most often U and
A, but sometimes C and G. Referring to Figure 1, the in-
sertions after the �rst basepair are modeled with probabil-
ities 0.205, 0.112, 0.162 and 0.522 for A, C, G and U, re-
spectively, and the length distribution is 0.0, 6.991×10−4,
0.9229, 0.07634, 9.225×10−5 and 2.865×10−6 for lengths 0,
1, 2, 3, 4 and 5, respectively.
We allow for variable length insertions on each strand af-

ter each basepair Node and after Fixed and Cluster nodes,
even when no insertion is observed in any instance of the
motif; when there is just one instance of the motif, the dis-
tribution is 0.9899, 0.0100, 0.0001 over lengths 0, 1 and 2,
and as the number of instances with no insertion increases,
the distribution is more concentrated on length 0.

Sequence variants from RNA multiple sequence alignments

To obtain additional sequence variants of RNA 3D mo-
tifs beyond what appears in 3D structures, alignments were
downloaded from Silva on March 21, 2013 (27) and the
Greengenes 2012 release (28).We obtained Silva alignments
of the large ribosomal subunit for bacteria, archaea and eu-
karyotes, and of the small ribosomal subunit for eukary-
otes. The Greengenes alignment covers the bacterial small
subunit. Associations between alignments and 3D struc-
tures are listed in Supplementary Section H. To establish
correspondences between nucleotides in a PDB �le and the
columns of the associated sequence alignment, Needleman-
Wunsch with an af�ne gap penalty was used to �nd the
best-matching sequence. All resolved nucleotides in eight
3D structures had exact correspondences in the multiple se-
quence alignments; one position in 1S72 and six positions
in 3U5H did not have exact correspondences. These are
listed in Supplementary Section H. For each motif instance
from each of these structures, all columns of the alignments
between and including the columns corresponding to the
�anking WC pairs of the motif were extracted and gaps re-
moved. For every alignment extract, we �nd that at least
one sequence has an exact sequencematch to at least one in-
stance known from 3D data, evidence that we have located
the correct columns of the alignment.

RESULTS

Overview

The SCFG/MRF models we construct are based on HL
and ILmotif groups from experimental RNA 3D structures
collected in the RNA 3D Motif Atlas (10). Therefore, we
begin with a brief overview of the construction of the Mo-
tif Atlas from HL and IL instances extracted from a non-
redundant (NR) set of RNA-containing crystal structures
deposited at PDB. Understanding how motifs are clustered
into motif families is crucial for designing the correspond-
ing probabilistic models.
Next, we describe the construction of hybrid stochastic

context-free grammar (SCFG) and Markov random �eld
(MRF) models for a single 3D instance of a loop. Un-
der Materials and Methods section, we explain how to
construct models for motif groups having multiple 3D in-
stances. The models are based on FR3D annotations of
nucleotide interactions in the 3D loop instance (29). Base-
pair isostericity is used to assign probability scores to se-
quence variants for each basepair. Base triples and cross-
ing interactions are modeled using MRF production rules
implemented in the SCFG. The insertions observed in 3D
structures are used to set parameters for the distributions
of variable-length insertions. The alignment score measures
how well a sequence �ts an SCFG/MRF model.

A central challenge in matching novel sequences to motif
groups is the possibility of false positive matches. We gauge
the false positive rate by scoring randomly-generated test
sets of sequences against each motif group and de�ning ac-
ceptance and rejection regions for each group in terms of
alignment score and edit distance.We then compare the per-
formance of the acceptance/rejection regions toRMDetect.
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Figure 1. (A) Structure of the exemplar instance HL 3RG4 004 of motif
group HL 72498.12, with annotations used to generate the SCFG/MRF
model. The annotations include two basepairs, G53/C61 cWW U54/A58
tWH, bulged bases 59 and 60, and a 3-nucleotide hairpin with sequence
UCA in which U55 makes a 5BPh base-phosphate interaction with A58.
(B) Corresponding model tree of the SCFG/MRF model. The model tree
consists of an Initial node (I1) to model nucleotides before G53 or after
C61, basepair nodes (B2 and B3) to generate the paired nucleotides, and a
hairpin node (H4). The nodes are labeled with information about the base
combinations observed in the motif exemplar.

Figure 2. Empirically-based mapping of IDI to probability score for
basepair substitutions. The function is piecewise linear between these
(IDI,Score) points: (0,1), (1.8,0.8), (2.2,0.13), (3.1,0.07), (3.5,0.05),
(7,0.03), (9,0.01), (10.0,0.01).

Software for aligning sequences to SCFG/MRF mod-
els and scoring sequences against motif groups is provided.
The software is named JAR3D, for Java-based Alignment
of RNA using 3D structure information and is pronounced
‘jared.’

Internal and hairpin loops extracted fromRNA 3D structures

We have developed and implemented a data pipeline to au-
tomatically extract and cluster RNA hairpin and internal
loops from a non-redundant (NR) set of high quality 3D
structures (9) and to cluster them into geometrically simi-
lar motif groups in a consistent way. To insure accessibil-
ity, the motif groups are available online through the RNA
3D Motif Atlas (10). The guiding principle of the cluster-

ing method is to group together instances having a com-
mon, core geometry and shared patterns of non-WC base-
pairs. Those motif nucleotides that interact with each other
through non-covalent pairing, stacking or backbone inter-
actions form the core of the motif, in contrast with bulged
out nucleotides (see Materials and Methods section). Thus,
motif instances assigned to the same group need not share
the same number of nucleotides and may differ in the num-
bers and positions of bulged out nucleotides. The �anking
WC pairs (i.e. cWW AU, GC and GU pairs) are included
with eachmotif, one �anking pair for each hairpin loop and
two for each internal loop. Flanking pairs are included be-
cause in a number of motif families, for example C-loops
(cf. Figure 4(a)), they participate in base-speci�c interac-
tions with other nucleotides and these interactions must be
included to accurately model sequence variation in the mo-
tif. Please refer to the Discussion for an important point
about the identi�cation of �anking WC pairs in predicted
secondary structures.
The RNA 3D Motif Atlas provides stable identi�ers

for individual loop instances and for motif groups. Loop
IDs include the PDB �le and position within that �le, e.g.
‘HL 3RG5 004’ refers to the fourth hairpin loop in PDB
�le 3RG5 (see Figure 1(a)). This loop instance is assigned
to the motif group with motif ID ‘HL 72498.12’ in release
1.13 of the RNA 3DMotif Atlas. The 5-digit motif ID code
persists from release to release, while the version number
provided after the period is incremented only when new in-
stances are added to the group. Loop and motif IDs can be
searched on the Motif Atlas website.
The RNA 3D Motif Atlas is updated periodically using

PDB �les from the most recent NR set, and so it grows as
the RNA 3D structure database grows. The motif groups
were reviewed manually to con�rm the quality and stability
of the clustering from release to release (10). In this paper,
we refer to release 1.13 from March 29, 2014, which con-
tains 278 internal loop groups and 253 hairpin loop groups.
One motif group (IL 02957.1) was found to contain nested
cWW pairs within the same strand and was not included in
the present study as it is better modeled as a junction loop.
The remaining 277 IL motif groups contain a total of 1581
loop instances, of which 127 form singleton groups com-
posed of just one loop instance. The 253 HL motif groups
contain 1025 instances, of which 127 form singleton groups.
In addition, 54 IL groups and 110 HL groups contain no
pairing or base-backbone interactions internal to the mo-
tif besides the closingWC basepair(s), although many show
base stacking and have core nucleotides beyond the �ank-
ing basepairs. Many of these instances interact with RNA,
protein, or small molecules and their 3D structures may
be shaped in whole or in part by induced �t. Modeling se-
quence variation consistent with observed external interac-
tions is beyond the scope of this paper. For loops that lack
internal interactions, we make simple SCFG/MRFmodels
and retain them in our diagnostics as distractors for motif
identi�cation.
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Figure 3. Panel (A) shows the annotation of instance IL 2AW7 041 of the
S/R motif, numbered as in motif group IL 95652.3. Not shown are con-
served base-phosphate interactions between the nucleotides 10 and 5, 4
and 11, 3 and 12, 14 and 13. Panel (B) shows the model tree consisting of
an Insertion node (I), �ve Basepair nodes (B), one Cluster node (C), one
Fixed node (F) and one Terminal node (T).

Hybrid stochastic context-free grammar/Markov random
�eld (SCFG/MRF) models

In the next sections, we outline how we build SCFG/MRF
probabilistic models for the sequence variability of HL and
IL motif groups starting with the 3D structures of known
instances. We use SCFG probabilistic models to model the
sequence variability of RNA 3D structures, with the follow-
ing innovations: We use (i) 3D structure information to set
the parameters of the probabilistic model, and (ii) Markov
Random Fields (MRF) to model base triples, locally cross-
ing interactions and same-strand basepairs. These innova-
tions are needed to accurately model 3Dmotifs that include
features such as the base triple in the S/R motif (Figure 3)
and the crossing interactions in the C-loop (Figure 4).

While SCFGs are typically described using the formal-
ism of ‘terminals,’ ‘nonterminals,’ ‘production rules’ and
other specialized terminology (17), our modeling approach
is more easily understood in terms of ‘guide trees,’ as de-
scribed in Chapter 5 of the Infernal User Guide (19,30).
Guide trees consist of a series of nodes each of which se-
quentially generates one or more nucleotides. Because the
nodes of our guide trees differ from those used by Eddy and
collaborators, we will refer to them as ‘model trees.’

Modeling hairpin loops with SCFG/MRF probabilistic mod-
els

We begin with a concrete example of a common struc-
tured hairpin loop, the T-loop, �rst identi�ed in tRNA

Figure 4. Panel (A) shows the annotation of instance IL 4JRC 003 of the
C-loop motif, numbered as in motif group IL 73276.5; the unnumbered C
between A6 and G7 is bulged out and not identi�ed as a core nucleotide.
Bases that are aligned vertically are stacked in the motif, in particular A6

and G7. Panel (B) shows the model tree consisting of an Initial node (I),
Cluster node (C) and Terminal Node.

(31) and since observed in many other structured RNA
molecules, including 16S and 23S rRNA (32). T-loops are
of special interest because they mediate RNA–RNA in-
teractions: Wherever they occur they provide intercalation
sites for bulged bases from another RNA loop. Figure 1(a)
shows the structural annotations of the exemplar instance
HL 3RG5 004 of motif group HL 72498.12; the interca-
lated base, not shown, pairs with U55 and is stacked be-
tween A57 and A58. Comparison of the 3D instances of
this motif group de�nes the conserved structural features
of the motif, including both annotated basepairs, the posi-
tion where the backbone changes direction (curved dotted
arrow) and the bulged out bases, U59 and U60. Figure 1(b)
shows the corresponding model tree for the SCFG/MRF,
which consists of four nodes.
Themodel is most easily understood by examining how it

generates sequence variants for T-loops, although in actual
use, it is used to score putative hairpin loop sequences to de-
terminewhich ones aremost likely to form the characteristic
T-loop 3D structure. Each node of the model tree succes-
sively generates letters corresponding to nucleotides, start-
ing at the far left and far right of the eventual sequence and
working toward the middle. Node I1 is an Initial node that
generates unpaired letters with low probability, to model
loop sequences having nucleotides that precede the closing
WC basepair of the HL. Most of the time I1 generates no
nucleotides. Next, the Basepair node B2 of the model tree
generates paired letters to model the �anking WC basepair
of the HL. With highest probability, B2 generates the base
combinations GC, CG, AU and UA, which form canoni-
cal WC basepairs isosteric to the GC pair observed in the
exemplar instance, but it can also generate, with lower prob-
ability, GU and UG, to re�ect that these base combinations
form cWWpairs that are only ‘near isosteric’ withGC.With
yet lower probabilities B2 generates the remaining base com-
binations that form cWW pairs that are not isosteric with
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Table 2. IsoDiscrepancy Index (IDI) values calculated by comparing ex-

emplars for all base combinations that form tWHbasepairs to theUA tWH

pair

A C G U

A 4.0878 –– 3.6083 ––
C 2.6310 2.7488 3.1218 ––
G –– –– 2.5703 4.2290
U 0.0000 –– 2.5140 2.5829

Table 3. Probability scores assigned to all base combinations, when UA

tWH is observed in the 3D structure

A C G U

A 0.0265 0.0056 0.0273 0.0056
C 0.0552 0.0461 0.0369 0.0056
G 0.0056 0.0056 0.0650 0.0259
U 0.5556 0.0056 0.0685 0.0597

Table 4. Probability scores for all base combinations, when GU cSH is

observed in the 3D structure

A C G U

A 0.1105 0.1138 0.0062 0.0051
C 0.1069 0.1242 0.0013 0.1251
G 0.0108 0.0059 0.0121 0.1320
U 0.0095 0.1107 0.0013 0.1245

GC, reserving the lowest probability for GG, which cannot
form a cWW basepair at all. Further details for calculating
basepair substitution probabilities are given in the next sec-
tion.
Node B3 models theU54/A58 tWHbasepair characteris-

tic of T-loops. Like B2, it generates with highest probability
pairs of letters that form basepairs isosteric toUA tWHand
with lower probabilities base combinations that form non-
isosteric tWH pairs or lower yet, letters incapable of form-
ing tWH basepairs. Node H4 is a Hairpin node that gener-
ates three letters for the hairpin turn that connects the left
and right strands, using the observed sequence as a guide.
Unpaired bases occur between the two conserved base-

pairs in all T-loops. Rather than treat the bulged bases with
separate Insertion nodes, we have chosen to generate them
using the �rst or ‘outside’ Basepair node. Basepair nodes
generate bulged bases independently in either strand, with
a probability distribution parametrized for insertion length
and letter distributions as described inMaterials andMeth-
ods section. With highest probability, B2 generates zero let-
ters on the left and two letters on the right, corresponding
to the bulged bases shown in Figure 1(a). Finally, with low
probability, node B2 can generate no letters at all, corre-
sponding to the deletion of this basepair.
Putting this together, it should be clear that the output se-

quence 5′-A U UCGAAGCU-3′ should be generated with
relatively high probability, for example by node I1 generat-
ing empty strings, node B2 generating an AU (cWW) base-
pair with inserted bases AGC on the right, node B3 the UA
(tWH) basepair, and node H4 the hairpin sequence UCG.
Conversely, the model should assign this sequence a rela-
tively high alignment score.

Setting basepair probability scores from one instance of amo-
tif

Isostericity of RNA basepairs accurately describes ob-
served substitutions between corresponding positions in
homologous RNA molecules. In previous work, we intro-
duced the IsoDiscrepancy Index (IDI) to quantify isosteric-
ity or the geometric similarity of any two RNA basepairs
(11). The IDI measures the local distortion of the sugar-
phosphate backbone when one basepair substitutes for an-
other.We calibrated the IDI to assign reasonable cutoffs for
labeling basepairs as isosteric (IDI ≤ 2.0) and near isos-
teric (2.0 < IDI ≤ 3.3). We measured the IDI values for
every pair of basepairs within each geometric base-pairing
family, using exemplar structures of each basepair, i.e. rep-
resentative instances (centroids by IDI) chosen by priori-
tizing basepairs from higher-resolution structures that have
roughly co-planar bases (26). The basepair exemplars and
mutual IDI values are available at http://ndbserver.rutgers.
edu/ndbmodule/services/BPCatalog/bpCatalog.html.

To parameterize Basepair nodes, we need substitution
probabilities for each basepair that occurs in the motif. As
an example, the IDI values for the UA tWHbasepair, which
occurs in the T-loop (cf. Figure 1) and the S/R motif (cf.
Figure 3), are collected in Table 2. The numbers in Table
2 are the IDI values between the exemplar UA tWH pair
and the exemplars of each of the other base combinations in
the tWH family. The smallest IDI values correspond to the
tWH basepairs that are most similar to UA by IDI. While
no basepair is isosteric to UA (IDI < 2.0), six are nearly
isosteric, namely tWH CA, CC, CG, GG, UG and UU as
they have IDI ≤ 3.3. The base combinations AC, AU, CU,
GA, GC and UC do not make tWH basepairs, so the cor-
responding entries in Table 2 are indicated with ‘––.’
To assign probability scores to base substitutions for each

basepair, the IDI values are converted to scores using the
piecewise linear function shown in Figure 2. This function
models our observations that identical sequences or isos-
teric substitutions, with 0 ≤ IDI ≤ 2, occur in 88% of cWW
pairs (and 95% of non-cWW pairs), near isosteric substitu-
tions, with 2 < IDI ≤ 3.3, occur in 10% (respectively 2%),
and non-isosteric substitutions in 2% (respectively 2%) of
the cases (11). Base combinations not forming pairs are as-
signed the score 0.01. We make no claim that this is the op-
timal mapping of IDI to probability score, only that it re-
�ects observations from conserved basepairs and, as shown
below, works adequately.
Mapping the IDI values from Table 2 with the function

in Figure 2 and then normalizing results in the probability
scores in Table 3.

Thus, having observed aUA tWHbasepair in amotif, this
is the 4×4matrix of probability scores that we assign.While
the scores are normalized to sum to 1 as probabilities must
be, they are not meant to be strictly interpreted as the prob-
abilities that each substitution will be observed. Actual sub-
stitutions will be limited by exogenous constraints imposed
by the interactions the motif makes and endogenous con-
straints such as thermodynamic stability. Both are beyond
the scope of this model. On the other hand, sequencing and
alignment error and the quirks of biological systemsmake it
possible to observe surprising sequence variants. Thus, the
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Table 5. Nine highest scoring sequence variants of the base triple in the

S/Rmotif, together with their scores calculated using two scoring schemes

Variant Score 1 Score 2

GUA 0.2189 0.5718
CUA 0.2074 0.0774
UUA 0.2064 0.0770
GUG 0.0270 0.0705
CUG 0.0256 0.0096
UUG 0.0255 0.0095
GUU 0.0235 0.0614
CUU 0.0223 0.0083
UUU 0.0222 0.0083

Scoring scheme 1: Scores calculated using basepairs only. Scoring scheme
2: Scores calculated using basepairs and base-backbone interactions.

probability scores should simply be seen as a way of scor-
ing possible substitutions for their ability to make the same
interaction as seen in the 3D instance while being open to
unusual variations.

Modeling internal loops

Next we illustrate the construction of an SCFG/MRF
model for a recurrent and highly structured internal loop
called S/R, using the instances in motif group IL 95652.3
(other variants of the S/R motif appear in other motif
groups). Figure 3(a) shows the annotation of motif in-
stance IL 2AW7 041 from this group, which contains �ve
non-WC basepairs, two of which form a base triple with
a common base, U5. This example illustrates the use of
Markov Random Field (MRF) method for treating base
triples and intra-strand basepairs. The model tree repre-
senting the SCFG/MRF is shown in Figure 3(b) with the
nodes aligned to the structural features they represent. The
sequences of internal loops are written with an asterisk, ‘*’,
indicating where one strand of the motif ends and the sec-
ond begins. The sequence of IL 2AW7 041 is written 5′-
GGAGUACG*UAAAAC-3′ and the �ankingWCpairs are
G1/C14 andG8/U9. (Hairpin loops have no strand separa-
tor and multi-helix junctions have two or more strand sep-
arators, depending on the number of helices.) A Terminal
node (T9 in Figure 3) is used to identify the break between
strands. It generates, or ‘parses,’ the ‘*’ symbol.
The two basepairs that share base U5 form the base triple

of the S/R motif and must be modeled as a unit because
base changes in one pair may affect the other pair. There-
fore, we model the base triple using a base Cluster node
(C). Base Clusters implement Markov Random Fields by
multiplying the probability scores of individual basepairs
and dividing by a normalization constant chosen to make
all probability scores sum to 1. The normalization constant
only needs to be calculated once, when the model is being
built. For example, to model the base triple in the S/R mo-
tif, we score each possible triple by multiplying the scores of
the cSH base combination (fromTable 4) and the tWHbase
combination (from Table 3) and then normalizing these
products to sum to 1 by dividing by 0.3351645. The results
of this calculation for the top 9 scoring three-nucleotide se-
quence variants are shown in the column labeled Score 1 in
Table 5. Score 2 will be explained in the next section.

Table 6. Probability scores for all base combinations, whenGU cSH is ob-

served in the 3D structure and the G makes a base-phosphate interaction.

These numbers can be compared to Table 4.

A C G U

A 0.0562 0.0579 0.0032 0.0026
C 0.0544 0.0632 0.0007 0.0637
G 0.0385 0.0210 0.0430 0.4704
U 0.0048 0.0564 0.0007 0.0634

Figure 4 shows the annotation of an instance of the C-
loop and the associated model tree, to further illustrate the
use of Cluster nodes to model the non-nested, ‘crossing’
non-WC pairs C2/A6 and C4/G7. SCFGs model RNA se-
quence variability by ‘peeling off’ one basepair at a time,
provided that the basepairs are nested within one another
as in Figures 1 and 3. The Cluster node used to model the
base triple in the S/R loop is a mild extension of the usual
application of SCFG, as it generates three bases at once, but
the triple is still nested within the other basepairs. The C-
loop cannot be decomposed into nested basepairs, and so a
Cluster node is used to model all of the bases between posi-
tions 1 and 7 simultaneously. Bases 1, 2, 4, 5, 6 and 7 make
four basepairs, as indicated. Base 3 is stacked on Base 4 and
so is considered to be a core nucleotide, even though it does
not basepair; it is modeled as a �xed position in the Cluster.
In the C-loop instance IL 4JRC 003 shown in Figure 4, the
nucleotide between positions 6 and 7 is bulged out of the
motif (as indicated by the dashed lines) and therefore is not
a core nucleotide and is not numbered. Once bases 1–7 are
generated, this additional base is generated as a variable-
length insertion within the Cluster node. Indeed, other in-
stances of the C-loop in motif group IL 73276.5 have 0, 1,
or 2 nucleotides at this position, cf. Table 7.

Basepairs, crossing interactions and base triples can also
occur in Hairpin nodes, and are treated as with Cluster
nodes.
Finally, Figure 3 shows Fixed node F7, which is used to

model a core nucleotide that plays an essential role in a mo-
tif but does not participate in a basepair. The node sim-
ply generates a base on the left strand with high probabil-
ity and using the letter distribution explained in Materials
andMethods section. The bene�t of using a Fixed node for
this purpose (instead of an Insertion node with substitution
probabilities set to mimic the Fixed node) is that it makes
sense to align a conserved, essential nucleotide to a speci�c
feature in the model tree rather than to a node that is used
to model variable-length insertions. Aligning a sequence to
such a model then makes a speci�c inference about the role
played by a particular nucleotide in the 3D structure.

Base-backbone interactions

Base-phosphate (BPh) interactions form between elec-
tropositive hydrogen-bond donor groups on RNA bases
and negatively charged non-bridging phosphate oxygen
atoms (12,33). The bases forming BPh interactions in 3D
structures exhibit strong sequence conservation (typically
>90%) in the corresponding columns of sequence align-
ments as documented in the cited work. Hydrogen bonds
also form between RNA bases and the 2′ and 4′ oxygens of
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Table 7. Alignment of nine sequences from the Greengenes bacterial SSU rRNA alignment, corresponding to the C-loop motif instance IL 1FJG 015

from helix 15 of T. thermophilus 16S rRNA, to the SCFG/MRF model for motif group IL 73276.5 (shown in black) followed by the correspondences of

selected 3D sequences from motif group IL 73276.5 to the SCFG/MRF model for that motif group (shown in blue)

The far right column of the black rows shows the alignment score. One sequence from the alignment has too few nucleotides to be able to align to the
Cluster node in the SCFG/MRFmodel, and so no alignment is given by JAR3D. Note that the �rst blue sequence is the sequence of the 3D instance that
was mapped to the alignment, and so also appears as the second black sequence.

the ribose sugar, (‘base-ribose’ or ‘BR’ interactions). These
interactions also show high conservation in sequence align-
ments of the base involved in the interaction, as explained
in Section A of the Supplementary Material.
We model all base-backbone interactions except intra-

nucleotide ‘Type 0’ interactions found in canonical RNA
double helices. Probability scores are adjusted to favor the
base that is observed to make each base-backbone interac-
tion in the 3D structure. We illustrate the adjustment pro-
cess for the base annotated G4 in Figure 3, which makes
a base-phosphate interaction with the phosphate of A11.
To re�ect the 70% base conservation at position 4 in the
S/R motif, the numbers in the third row of Table 4 are ad-
justed to favor G at this position by multiplying scores in
that row by 7 and re-normalizing the matrix. The results
are shown Table 6. A similar approach is applied to model
conserved model BR interactions. Note that when the same
two nucleotides making a base-backbone interaction simul-
taneously form a basepair, we do not make an adjustment

for the base-backbone interaction, but rather rely solely on
the probability scores for the observed basepair.
Using the BPh weighted probability scores in Table 6 to-

gether with the scores for the UA tWH basepair given in
Table 3 gives the second set of scores (‘Score 2’) in Table 5.
Note that the triplet GUA now has by far the highest score.
In fact, every instance of the S/R motif in 3D structures
has this triplet in this position, and support for this triplet
in sequence alignments is similarly strong.

Building probabilistic models from multiple instances of 3D
motifs

Most motif groups in the RNA 3D Motif Atlas have more
than one instance and some have dozens or more. These in-
stances provide validated sequence variants of known struc-
ture for modeling sequence variation of recurrent 3D mo-
tifs. In the Materials and Methods section we describe in
detail how we identify conserved pairwise interactions for
each motif group and average 4×4 matrices of probability
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scores for basepairs over motif instances, how we adjust for
base-backbone interactions, and how we set parameters for
Fixed nodes and variable length insertions.
The text format for writing out SCFG/MRF models is

explained in Section B of the Supplementary Material. The
full model for T-loop group HL 72498.12 is provided in
Supplementary Section C, the full model for S/R group
IL 95652.3 is given in Supplementary Section D, and the
full model for C-loop group IL 73276.5 is found in Supple-
mentary Section E.

Scoring a sequence against a given model

Given a loop sequence and an SCFG/MRF model, we use
the CYK (Cocke-Younger-Kasami) algorithm to determine
the most likely way in which the model could generate the
sequence and therefore the probability of the most likely
‘parse’ of the sequence. Note that Cluster nodes are a sig-
ni�cant innovation. The parsing algorithm parses Cluster
nodes by (i) looping through the various combinations of
numbers of insertions that may have been made within the
base cluster; (ii) identifying the letters that correspond to
the interacting bases (there are three of these in the Cluster
node in Figure 3 and seven in Figure 4); (iii) computing the
probability that those letters form the indicated basepairs
and/or occupy the �xed positions; (iv) calculating probabil-
ity scores for variable-length insertions; (v) consulting the
child node’s maximal probability for generating the rest of
the subsequence; and (vi) choosing the optimal combina-
tion.
The maximum-probability parse calculated by CYK in-

fers which nodes generate which letters of the sequence,
and thus leads to an alignment of the sequence to a given
SCFG/MRF model. Alignments are discussed in the next
section. For scoring purposes, themaximal probability itself
quanti�es howwell the sequencematches themodel.We call
the natural logarithm of this maximal probability the align-
ment score.Typical values fall between−20 and−3. To infer
the best parse for an IL, its sequence must be scored twice
against the model, once for each ordering of the strands, be-
cause most SCFG/MRFmodels for IL are asymmetric and
expect the motif to be presented in a particular ordering of
the strands. For example, the sequence 5′-AACC*GUGU-
3′ must also be scored as 5′-GUGU*AACC-3′. As au-
tonomous motifs that connect two helices in the secondary
structure, IL can occur in either orientation relative to the
5′-end of the molecule. However, the 5′ to 3′ ordering of the
bases within each strand is not altered by 180◦ rotation of
the motif.
Note that the current implementation of JAR3D only

scores hairpin and internal loops, and does not fold the se-
quence to identify potential loops. Thus, users will need to
predict the secondary structure and extract the sequences of
these loops before submitting them to JAR3D. Please refer
to the Discussion for an important point about the identi-
�cation of �anking WC pairs in secondary structures. The
upper limit on the length of an IL or HL sequence is 99
characters.

Aligning sequences to the SCFG/MRF model for a motif
group

The JAR3D software can be used to align sequences to the
probabilistic SCFG/MRF models. As an example we pro-
vide alignments and scores for C-loop sequences in Table
7, which shows the nine highest multiplicity sequences from
the Greengenes SSU alignment, corresponding to instance
IL 1FJG 015 from helix 15 of bacterial 16S rRNA (T. ther-
mophilus), together with their alignment to the JAR3D
model for the C-loop motif group IL 73276.5, as deter-
mined by the JAR3D alignment program (shown in black).
At the far right of each line is the alignment score. One se-
quence has fewer than the seven nucleotides required for
the Cluster node in the C-loop and so no alignment can
be made. For comparison, Table 7 shows in blue the actual
correspondences of nine sequences of 3D instances of the
C-loop to the nodes of the SCFG/MRF model; these are
the correspondences from theRNA3DMotif Atlas that are
used to de�ne the SCFG/MRFmodel of sequence variabil-
ity. The column headers show the correspondences between
the seven core positions in the motif and the four nodes in
the C-loop model (cf. Supplementary Section E). No align-
ment score is shown because these correspondences are not
determined by running the JAR3D alignment program.
To demonstrate the ability of JAR3D to produce correct

alignments, we aligned the sequences of all 3D instances
from each of the 277 IL and 253HLmotif groups to the cor-
responding JAR3D models and juxtaposed the actual cor-
respondence between each sequence position and the nodes
in the SCFG/MRF models. For a handful of models, there
are small mistakes in the JAR3D alignment, usually where
two identical bases occur next to each other in the sequence,
but for the vastmajority ofmodels, all sequences are aligned
by JAR3D exactly as their 3D instances correspond to the
motif group. These alignments are available for IL at the
following URL and at a similar URL for HL:
http://rna.bgsu.edu/data/jar3d/diagnostics/IL/1.13/

GroupToModelDiagnostic.html

Acceptance and rejection regions for each motif group

We can align a given sequence to a particular SCFG/MRF
model and determine the alignment score, but how do we
tell if the match is good enough to claim that the sequence
forms the 3D structure of the associated 3D motif group?
To address this question, we develop acceptance and rejec-
tion regions for each motif group in this section. We start
by describing test sets of randomly-generated IL and HL
sequences that serve as distractors, then use these to set cut-
offs for each motif group. Then we address the related, mul-
tiple testing question: What percentage of the distractor se-
quences fall into the acceptance region of at least one motif
group? Thus, a goal of this section is to assess and limit the
global false positive rate when considering the match be-
tween a given sequence and all motif groups. The effort is
complicated by the fact that we do not have sequences that
are known to not fold into any of the 3D motifs in our col-
lection.
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Table 8. Transition probabilities for interior nucleotides in IL

A C G U

A 0.4589 0.1240 0.2357 0.1814
C 0.4324 0.1905 0.2248 0.1524
G 0.5084 0.1200 0.1748 0.1968
U 0.4338 0.1392 0.2432 0.1838

Rows are labeled by the starting state, columns by the next state, and each
row sums to 1.

Test sets of randomly-generated sequences

We begin by creating randomly-generated sets of IL and
HL sequences, called IL Rand and HL Rand, respectively.
The goal is to generate sequences that statistically resemble
known loops but are less likely to form speci�c, low-energy
3D structures.
We construct the test sequences so that they have strand

lengths observed in 3D instances or slightly longer, to be
sure to cover the full range of sequences that could score
well against the models. For IL, we examine all instances
from 3D structures and record the length of both the shorter
and longer strand. Each unique combination is recorded in
the form (a,b), where a ≤ b, and for good measure we also
include strand lengths (a,b+1), (a+1,b+1), and, if a < b,
we include (a+1,b). This gives 93 unique combinations of
strand lengths from (2,3) to (13,17). For HL, we consider
all strand lengths from 3 to 22.
Given desired strand length(s) for a loop, we generate

closing basepair(s) using the distribution over �anking pairs
found over all known instances of 3D motifs. For IL this
is: CG (0.2761), GC (0.3596), AU (0.1121), UA (0.1251),
GU (0.0639), UG (0.0632). Next we generate the interior
nucleotides of the strand(s) using aMarkov chain whose pa-
rameters were trained by all interior nucleotides across all
instances of known 3D motifs. For IL, the initial distribu-
tion for the �rst nucleotide 3′ to the �anking basepair is A
(0.2653), C (0.1527), G (0.3227), U (0.2593) and the transi-
tion matrix is shown in Table 8.

For each unique combination of strand lengths, we gen-
erated 1000 test IL sequences and 1000 test HL sequences.
The sets IL Rand and HL Rand thus have 93 000 and 20
000 sequences, respectively.
The sequences in IL Rand and HL Rand resemble

known loops in that they have the correct distribution over
base combinations in the �anking WC pairs, the correct
distribution of the �rst interior nucleotide and the cor-
rect second-order statistics for interior nucleotides. How-
ever, there is no further dependence within each strand and
no dependence between the interior nucleotides of the two
strands in IL, and so no reason to suspect that the sequences
will fold into structured 3D motifs. Nevertheless, as we will
see below, the sequences are short enough that some of them
happen to have the same interior sequence as known 3D in-
stances, and others are close enough to known 3D instances
that they can be expected to fold into known geometries.We
simply do not have a source of sequences that are known to
not fold into one speci�c 3Dmotif that is signi�cantly more
stable than alternative structures.

Cutoffs for each motif group

To �nd appropriate cutoffs between acceptance and rejec-
tion regions for alignment scores, we use 3D structures
as the source of known 3D motif sequences and we use
the randomly-generated sets IL Rand and HL Rand as a
source of distractor sequences. As we mentioned above,
however, some of the sequences in these sets can be expected
to fold into known 3D motifs, so this is not a clear-cut case
of binary classi�cation.
We score each sequence from IL Rand against all IL

motif groups (and similarly with HL Rand), recording the
alignment score and the minimum interior edit distance (the
Levenshtein distance between the non-�anking nucleotides
on each strand) to known 3D instances. For each motif
group, we prioritize those sequences having (1) interior edit
distance≤ 5 and (2) alignment score within 20 of the highest
alignment score among 3D instances of that motif. The dif-
ference between the highest alignment score and the align-
ment score of the current sequence is called the alignment
score de�cit. The top panel of Figure 5 shows a scatter-
plot of these numerical features of sequences from IL Rand
(shown as red dots) scored against motif group IL 95652.3,
an S/Rmotif with 14 core nucleotides and seven conserved
basepairs, cf. Figure 3. Numerical values for known 3D in-
stances are shown as blue X’s and values for sequences from
multiple sequence alignments (cf. Materials and Methods
Section and Supplementary Section H) are shown as black
dots. To aid in data visualization, the horizontal coordi-
nates of each dot are shifted to the right by a uniformly
distributed random number. The center panel of Figure 5
shows the plot for motif group IL 03282.1, which has ten
core nucleotides and �ve conserved basepairs but does not
have sequence alignment data. The bottom panel of Fig-
ure 5 shows the plot for motif group IL 86357.3 which has
six core nucleotides and three conserved basepairs. The ac-
ceptance region for each motif group is shown in light gray.
In Figure 5, The X’s representing sequences from 3D

structures appear in the lower left because they have in-
terior edit distance 0 from known 3D instances and small
alignment score de�cits because the models are parameter-
ized based on these instances. In the top and center pan-
els of Figure 5, the sequences in IL Rand (red dots) sep-
arate nicely from the 3D sequences (blue X’s) and in the
top panel the sequences from multiple sequence alignments
(black dots) concentrate in the lower left of the graph. This
makes it possible to mostly separate the sequences from
IL Rand from the others using the top dark lines shown
in each panel; the lines are of the form De�cit + 3*Edit-
Distance = k, where the constant k is speci�c to the motif
group.
The bottom panel in Figure 5 concerns motif group

IL 86357.3, which has interaction signature cWW-tWW-
cWW. All �ve 3D instances have AC tWW as the non-WC
basepair, but there are four different sequences of the �ank-
ing bases. A large number of sequences from IL Rand have
the same interior sequence. Thus, not all of the sequences
in IL Rand can be considered to be false positives for all
groups. It is also not sensible to claim that all sequences
from sequence alignments form the same motif as we see in
3D structures, as is apparent from the wide range of align-

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
3
/1

5
/7

5
0
4
/2

4
1
4
3
3
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Nucleic Acids Research, 2015, Vol. 43, No. 15 7515

Figure 5. Scatterplots of alignment score de�cit against interior edit
distance for motif group IL 95652.3 (top), IL 03282.1 (center) and
IL 86357.3 (bottom). Red dots are from IL Rand, black dots are from
multiple sequence alignments and large blue X’s are from 3D instances.
A uniformly distributed random number is added to the interior edit dis-
tance for each dot to aid in visualization. The acceptance region is shown
in light gray, and Cutoff scores 0 and 50 are shown by the darker lines;
Cutoff score 100 is at (0,0).

ment score de�cits even at interior edit distance 1 (black
dots). Manual inspection of multiple sequence alignments
con�rms that many sequences differ in substantial ways
from all known 3D instances, for example, by having multi-
ple insertions or deletions. We use k = 9.5 as a compromise
that accepts many of the sequences at edit distance 1 but
accepts sequences with higher interior edit distances only
when the alignment score de�cits are low enough.
More generally, for each motif group we set k so that 4%

of the sequences from IL Rand (or HL Rand) with inte-
rior edit distance ranging between 1 and 5 and alignment
score de�cit below 20 fall below the line De�cit + 3*Edit-
Distance = k. We set a minimum value of k equal to 9.5
so that we do not make the acceptance region too small
for small motifs. When the 4% cutoff gives k > 20, we re-
de�ne k so that just 2% of the sequences from the test set
fall in the acceptance region, provided that this does not
make k below 20. Finally, we set a maximum value of 25
to avoid enormous acceptance regions for large motifs. The
top two panels in Figure 5 show values of k strictly between
9.5 and 25, and the bottom panel shows a case in which
the minimum value of k is used. The coef�cient 3 is chosen
to accept sequences with rather large interior edit distance
but small alignment score de�cit, and to reject sequences
with small edit distance but which do not �t the probabilis-
tic model well. The distribution of points from IL Rand
in Figure 5 shows that alignment score de�cit and interior
edit distance together aremore effective in separating points
from IL Rand from the other sequences than either one
alone. Graphs analogous to Figure 5 are available for all IL
motif groups at http://rna.bgsu.edu/data/jar3d/diagnostics/
IL/1.13/ModelSpeci�cCutoffs.zip and at a similar URL for
HL.
The acceptance region for a motif group with constant k

is now de�ned to be all sequences with interior edit distance
0 or else having alignment score de�cit less than or equal
to 20, minimum interior edit distance less than or equal to
5, and De�cit + 3*EditDistance ≤ k. Other sequences are
rejected as matches to the motif group. We �nd that when
multiple sequence alignment data are available, sequences
with interior edit distances greater than 5 are dominated
by sequences from IL Rand, even for large motifs, and thus
matching such sequences to a motif group is not meaning-
ful.
To quantify where in the acceptance region a sequence

falls, we de�ne a Cutoff score that has maximum value 100
at the point (0,0) and decreases linearly to 0 on the line be-
tween the acceptance and rejection regions. Figure 5 indi-
cates Cutoff scores 0, 50 and 100. Negative values of Cutoff
score tell how far outside the acceptance region a sequence
lies. A small number of sequences have zero minimum inte-
rior edit distance to a 3D instance and yet negative Cutoff
score, so we set the Cutoff score to 0 for these sequences.
These surprising cases come from small motifs with many
instances, and appear to be due to inhomogeneity in themo-
tif groups. Resolving this will require re�ning the clustering
procedures of the RNA 3DMotif Atlas. We anticipate that
JAR3D models based on new releases of the Motif Atlas
will show improvement.
Table 9 shows that sequences from 3D structures typi-

cally have high Cutoff scores. Note that just 0.57% of 3D
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Table 9. Percentage of 1580 IL sequences from 3D structures which score

above each indicated value of Cutoff score

Cutoff score
Percentage of 3D sequences scoring
above the given Cutoff score

99 31.33%
95 45.00%
90 53.73%
80 71.33%
50 92.91%
0 99.43%

sequences have Cutoff score equal to 0 (as discussed in the
previous paragraph).
Key features of the Cutoff score are (i) The maximum

Cutoff score for all motifs is 100; (ii) Cutoff scores 0 and
above are in the acceptance region; and (iii) Interpretation
of the Cutoff score is uniform across motif groups.

Global acceptance rate

For most motif groups, the acceptance region is designed to
accept just 4% of sequences in the set IL Rand. However,
each sequence in IL Rand could be accepted by any of the
277 IL motif groups, so the global rate at which sequences
from IL Rand are accepted by at least one motif group will
be higher than 4%. In fact, the overall acceptance rate is
22.7% for IL. For comparison, the percentage of sequences
in IL Rand with zero interior edit distance to a known 3D
instance is 4.8% and the percentage with Cutoff score over
50 against at least one motif group is 7.4%. The overall ac-
ceptance rate for sequences in HL Rand is 43.5%, the per-
centage with zero interior edit distance to a known 3D in-
stance is 9.3%, and the percentage with Cutoff score over
50 is 19.3%. It is important to emphasize that these global
acceptance rates are not the same as false positive rates and
can be expected to be higher than the actual false positive
rates, as will be explained in more detail below.
It is informative to break down the acceptance rate by

strand length(s). Complete data are listed in Supplemen-
tary Section G for IL and HL, respectively. Table 10 shows
part of Supplementary Table G.1, namely the 19 IL strand
lengths having acceptance rates of at least 60%.
The acceptance rates in Table 10 are surprisingly high,

but this should not be interpreted to mean that the global
false positive rate is higher than it should be. The very high
acceptance rates in Rows 1 to 4 of Table 10 can be under-
stood by the large percentage of these short sequenceswhich
have the same interior sequence as a known 3D loop in-
stance, since these are guaranteed to be accepted by at least
one motif group. Moreover, for Rows 1 to 12 of Table 10,
many 3D motif groups have at least one sequence of the in-
dicated length, giving many possibilities for the randomly-
generated sequences to fall into at least one acceptance re-
gion by chance. In Rows 2, 5, 9 and 14, the two strand
lengths are equal, so that these sequences can match mo-
tif groups using either strand order, effectively doubling the
number of possibilities to be accepted by a motif group.
For example, the sequence GCCCU*AUACU also needs
to be considered as AUACU*GCCCU and thus has 44 op-
portunities to match a motif group having at least one se-

quence with strand lengths (5,5). This makes for a higher
percentage accepted than would be expected based on to-
tal sequence length alone. In fact, many (5,5) sequences
are accepted by multiple (5,5) motif groups, indicating that
the acceptance regions of these motif groups overlap. Over-
lap of acceptance regions is a necessity, because some se-
quences are observed to form different geometries in differ-
ent 3D structures. Additional research will be needed to un-
derstand the range of 3D structures that each sequence can
form in different contexts. In addition, some (5,5) sequences
are accepted by smaller motif groups, considering one base
to be an insertion, or are accepted by larger motifs, with one
deletion. Finally, in rows 10 to 20 of Table 10, the percentage
of sequences from IL Rand that have a Cutoff score over
50 against at least one model is fairly small, indicating that
setting a stricter standard for matching can reduce the false
positive rate ofmatching sequences tomotif groups. JAR3D
reports the Cutoff score, allowing the user to set stricter ac-
ceptance regions if desired. Of course a stricter acceptance
criterion will result in a lower match rate, and the desired
balance between the two will depend on the broader goals
of the user of the software.

Comparison of JAR3D and RMDetect acceptance regions

Here we compare the acceptance regions of the JAR3D
motif groups described above to the motif prediction pro-
gram, RMDetect, that was designed to detect the presence
of RNA IL in longer sequences in which they are �anked by
WC basepairs (15). The RMDetect article includes models
for four motifs, the G-bulge (which forms the core of the
S/R motif), the kink turn, the C-loop and tandem GA
basepairs.We compared the performance of RMDetect and
JAR3D on sequences of these motifs taken from sequence
alignments. Because the programs work differently, we
submitted the sequences differently. For example, the S/R
sequence CCUAGUAC*GGAACCG was scored as such
by JAR3D, but for RMDetect we enclosed it with comple-
mentary sequence GCGC*GCGC and a stem and GNRA
hairpin with sequence GCGAGAGC to form the sequence
GCGCCCUAGUACGCGAGAGCGGAACCGGCGC
(in which the S/R sequence is underlined). RMDetect
was run with default parameters and JAR3D was run
using the acceptance region described above for each motif
group. For the G-bulge and the tandem GA, JAR3D and
RMDetect agree on most sequences. To illustrate, Table 11
lists the number of agreements and disagreements between
the two programs for 320 distinct sequences corresponding
to instance IL 2QBG 011 (from Escherichia coli) of S/R
motif group IL 85647.3, taken from the Silva bacterial
LSU alignment. In this data set, JAR3D and RMDetect
both accept 124 sequences, in the sense that these sequences
fall into the JAR3D acceptance region for motif group
IL 85647.3 and RMDetect accepts them as instances of the
G-bulge motif. Of the other sequences, RMDetect accepts
6 that JAR3D does not, JAR3D accepts 57 that RMDetect
does not, and both reject 133 sequences. In each of these
four categories, Table 11 also shows the sequences with
highest multiplicity in the alignment. Next to the sequences
are the multiplicity, the minimum full edit distance to a
known 3D instance, the minimum interior edit distance,
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Table 10. Acceptance rates for sequences from IL Rand, broken down by strand lengths

Row number
Shorter strand
length

Longer strand
length

% accepted by at
least one model

% with cutoff
score above 50

% with zero
interior edit
distance

Groups with 3D
sequence of these
lengths

1 2 3 100 100 100 14
2 3 3 100 98.6 83.4 12
3 2 4 100 93.8 83.3 20
4 3 4 100 73.1 57.9 20
5 4 4 100 47.6 29.3 11
6 2 5 98.8 54.1 27.1 12
7 3 5 98.6 50.6 22.9 25
8 4 5 98.2 36.1 9.4 28
9 5 5 96.8 26.5 6.7 22
10 3 6 91.3 16 2.7 13
11 4 6 91 12.8 1.6 16
12 5 6 87.9 9.2 0.8 22
13 2 6 83.6 15.7 3.9 7
14 6 6 79.8 8.2 0.6 11
15 3 7 78.3 3.9 0.1 7
16 3 8 71.6 2.8 0.2 5
17 4 7 70.9 5.5 0.6 9
18 2 8 66.2 5.8 0.4 4
19 2 7 61.9 4.1 1.4 6

Column 4 indicates the percentage of the 1000 sequences of the given strand length from IL Rand which are accepted by at least one IL model; the rows
of the table are sorted by this column. Column 5 indicates the percentage of the sequences which have Cutoff score over 50 against at least one model.
Column 6 indicates the percentage of the sequences which have interior edit distance 0 to at least one 3D instance. Column 7 indicates the number of 3D
motif groups having at least one sequence with the given strand lengths.

and the JAR3D Cutoff score. Notice the high multiplicities
and low edit distances of the sequences that JAR3D accepts
but RMDetect does not. This is even more pronounced in
some tandem GA instances from motif group IL 13959.4,
cf. Supplementary Section H. This could be an artifact
of the default cutoffs in RMDetect; if they were set to be
more generous, there may be more sequences which both
accept. Note also in Table 11 that the sequences with high
multiplicities that are accepted by JAR3D all have Cutoff
score above 40, indicating that they would survive a stricter
standard for false positives.
RMDetect accepts many kink turn sequences follow-

ing a pattern similar to Table 11, but misses a large num-
ber of kink turn sequences from motif group IL 65553.8
that JAR3D accepts. These sequences come from helix 11
of 16S or 18S (SSU) rRNA and correspond to 3D mo-
tif instances with loop ids IL 3U5F 019, IL 4BPP 017 and
IL 2AW7 014, fromSaccharomyces cerevisiae, Tetrahymena
thermophila and E. coli, respectively. These particular in-
stances have the standard kink turn geometry except for an
unusual nucleotide arrangement at the 5′-end of the shorter
strand, which makes them stand out from the rest of motif
group IL 65553.8 (in fact, in future releases of the RNA 3D
Motif Atlas, they will be separated from this group to form
a separate kink turn group). Nevertheless, JAR3D accepts
these sequences as instances from this motif group, while
RMDetect with the default parameters does not.
RMDetect fails to recognize most of the C-loop se-

quences, even ones that are exact sequence matches to
those in 3D structures. Data from instance IL 1FJG 015
from Thermus thermophilus SSU and the corresponding
columns of the Greengenes bacterial SSU alignment are
summarized in Table 12. JAR3D accepts the most common
sequences, which have sequences that were observed in 3D
structures. The only instance in which RMDetect accepts a

large number of C-loop sequences is instance IL 3V2F 100
from theThermus thermophilus LSU, and then JAR3Dand
RMDetect agree with a pattern similar to Table 11, cf. Sup-
plementary Section H.
We have run the same comparison shown in Tables 11

and 12 on different motif instances from ribosomal struc-
tures for which alignment data were readily available; these
are shown in Supplementary Section H. Generally speak-
ing, JAR3Dacceptsmore sequences thanRMDetect, which
could simply mean that JAR3D is more permissive. How-
ever, the sequences that JAR3D accepts but RMDetect does
not accept are often ones with very high multiplicity and
in complete accord with whatever sequence patterns one
would expect for the motif, indicating that JAR3D is not
overly permissive and may in fact be identifying more cor-
rect sequences than RMDetect.

DISCUSSION

While the structures of the SCFG/MRF models, which re-
�ect the presence of particular basepairs, base triples, �xed
bases and variable-length insertions, are determined by the
consensus interactions in each motif group, the parame-
terization of the SCFG/MRF models is based largely on
ad hoc choices of substitution probabilities, informed by
isostericity, with adjustments for base-backbone interac-
tions, plus ad hoc modeling of the distribution of variable-
length insertions and the probability of deletion of base-
pairs and other features. The models are thus intermediate
in computational complexity between RMDetect models,
which use interactions from 3D structures but parameter-
ize based on data from sequence alignments, and, for exam-
ple, energy-based molecular dynamics modeling of new se-
quences threaded through known 3D structures. However,
it would be time consuming to run molecular dynamics on
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Table 11. Comparison of 320 distinct sequences from Silva bacterial LSU alignment corresponding to the S/Rmotif in Helix 95 (motif group IL 85647.3)

and 3D motif instance IL 2QBG 011 from E. coli

Multiplicity Full edit Interior edit Cutoff score

Both accept: 124
CUAAGUAC*GGAACUG 7415 0 0 98.29
CUAAGUAG*UGAACUG 1951 2 0 86.50
CUCAGUAC*GGAAGUG 1488 1 1 60.89
CUUAGUAG*CGAACUG 1106 3 1 83.05
CUCAGUAC*GGAACUG 614 0 0 100.00
RMDetect accepts, JAR3D does not: 6
ACAAGUAC*UGACCGA 1 6 3 −2.98
CUAAGUAC*CUG 1 4 4 −292.51
CUAAGUAC*GGAAACGUG 1 2 2 −3.63
CUAAGUAC*GGAGUG 1 2 2 −25.21
CUCAGUAC*CUG 1 4 4 −287.07
JAR3D accepts, RMDetect does not: 57
CUAAGUAC*AGAACUG 1129 1 0 85.56
CUUAGUAC*AGAACUG 617 2 1 71.34
CUUAGUAA*CGAACUG 138 3 1 71.14
CUAAGUAA*AGAACUG 47 2 0 81.77
UUAAGUAU*GGAAUUG 40 3 1 44.93
Neither accepts: 133
CUUUUUCG*CAAAGUG 9 8 4 −20.18
GGAAAAAC*UGGAUUG 8 7 5 −70.66
UUAAUCGU*AGCCCG 7 7 6 −124.25
CCAAAUAG*CAAACCG 6 6 4 −9.26
UUCUCUAA*CGUUCC 6 8 5 −117.07

In each of the four categories, the �ve most frequent sequences are listed with their multiplicities, the minimum full edit distance to known 3D instances
from IL 85647.3, the minimum interior edit distance, and the JAR3D Cutoff score

Table 12. Comparison of sequences from the Greengenes bacterial SSU alignment corresponding to instance IL 1FJG 015 from Thermus thermophilus,

which is in C-loop motif group IL 73276.5

Multiplicity Full edit Interior edit Cutoff score

Both accept: 0
RMDetect accepts, JAR3D does not: 1
UCCUAC*AGG 1 3 2 − 96.47
JAR3D accepts, RMDetect does not: 232
ACAAU*AU 533646 0 0 86.35
GCAAU*AC 337751 0 0 93.99
UCAAU*AA 73701 2 0 86.66
ACACU*AU 2166 1 1 62.48
CCAAU*AG 1190 2 0 88.07
Neither accepts: 388
UAAU*AA 2423 3 1 − 999.00
AAAU*AU 786 1 1 − 999.00
ACAA*AU 143 1 1 − 999.00
GACAAU*AC 66 1 1 − 19.75
CGCAU*AC 65 2 2 − 90.95

There are 621 distinct sequence variants in this alignment. In each of the four categories, up to 5 sequences are listed followed by their multiplicity, the
minimum full edit distance to known 3D instances from IL 73276.5, the minimum interior edit distance, and the JAR3D Cutoff score.

each sequence against each possible 3D structure, and dif�-
cult to set up the initial 3D structures in an automated way.
Probabilistic models such as RMDetect and JAR3D can be
used to screen possible geometries beforemolecular dynam-
ics studies.
When determining the consensus basepairs in an

SCFG/MRF model, two errors can be made: including a
basepair that does not belong, and omitting a basepair that
should be modeled. The rules in Materials and Methods
section for determining the presence of a consensus base-
pair are reasonably generous, especially when the number
of 3D instances is large. If a basepair is included that does
not belong, the sequence variation over the 3D instances
and the scoring due to isostericity will tend to wash out any

statistical dependence in the 4×4 interaction matrix for the
basepair. However, when a basepair that should bemodeled
is omitted, the model is incapable of specifying the relevant
covariation in other ways.
We investigated the possibility of using sequences from

RNAmultiple sequence alignments to inform the choice of
cutoffs between acceptance and rejection regions for each
motif group but chose not to do this for these reasons: First,
this requires a very large number of 3D structures to be
mapped to reliable multiple sequence alignments, and this
was beyond the scope of the present work. Second, as the
RNA 3D Motif Atlas grows, additional alignments would
need to be added to keep pace. Third and most importantly,
the quality of the alignments is of critical importance, but
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cannot be assured.Many of the sequences aligned to a given
instance of a 3Dmotif can be seen by eye to be too long, too
short, or too different to fold into the 3D structure observed
in the one organism for which we have a 3D structure. It
will be left to future work to ascertain why this is; it could
be poor sequencing, poor alignment, unexpected sequences
thatmake the same 3D structure or, most intriguingly, novel
3D structures that form in some of the organisms in themul-
tiple sequence alignment.
The comparison to RMDetect reveals the major dif�-

culty confronting developers of methods for inference of
RNA 3D structure from sequence, even for small motifs:
We simply do not know whether the sequences extracted
from alignments that we are scoring actually form the 3D
motif we have in mind. In the current study, we simply take
sequence multiplicity in the alignment as a proxy indicator
of the likelihood that the sequence forms the 3D structure
known from one (or a small number) of homologs, and pay
attention to how the methods score the sequences with the
highest multiplicities. Better data will make it possible to
make better evaluations of different methods of sequence
identi�cation.
During the course of this work, it became clear that im-

provements in the clustering of some loop instances in the
RNA 3D Motif Atlas are needed. There are cases where
loops with the same sequence and the same basic geometry
are placed in different motif groups because of small dif-
ferences in modeling, and other cases in which loops with
different patterns of basepairing elude the screens that are
meant to place them into different motif groups. An ex-
ample of the latter was mentioned with kink turn group
IL 65553.8. Improvements to the RNA 3DMotif Atlas will
improve the performance of JAR3D by producingmore ho-
mogeneous motif groups and thus tighter acceptance re-
gions and better alignments of sequences to motif groups.
The techniques and diagnostics developed in this paper

assume that the sequence of the IL or HL is known. Start-
ing from an RNA sequence and secondary structure, one
must correctly identify the end of a helix and the start of
the loop. However, the sequences of 3D instances of loops
in the RNA 3D Motif Atlas show that the bases next to
the �anking WC basepair (as identi�ed in the 3D struc-
ture) often have base combinations AU, GC, or GU; in
fact, 17% of base combinations next to �anking WC pairs
in IL have one of these base combinations, and 24% for
HL. For example, many 3D instances of the UNCG HL in
motif group HL 39895.6 have sequence CUUCGG. If this
sequence were encountered at the end of a helix in a sec-
ondary structure, it could reasonably be deduced that the
UG in the second and �fth position make a WC pair, and
that the full sequence of the HL is in fact UUCG. Simi-
larly, 3D instances ofmotif group IL 93424.4 have sequence
CUAAG*CGAAG. In 3D, we see that the U in the second
position does not make a WC pair with the A in the second
to last position, but when this loop occurs in a secondary
structure, it could be extracted as UAAG*CGAA, which
JAR3D does not readily match to motif group IL 93424.4.
Simply put, some AU, GC and GU base combinations are
part of an IL or HL and not the last WC basepair of a he-
lix, and so one additional pair of bases needs to be included
in the sequence of the loop when extracting it from a sec-

ondary structure and scoring it against 3D motif groups.
All six base combinations (AU, UA, GC, CG, GU and UG)
occur, but, as in the examples above, UG is the most com-
mon in HL and UA is the most common in IL.

CONCLUSIONS

This paper presents a new methodology for building hybrid
SCFG/MRF probabilistic models for sequence variability
of RNA 3D motifs based on the motif groups in the RNA
3D Motif Atlas. JAR3D accurately aligns sequences from
3D to their corresponding motif group and can be used
to align novel sequences to motif groups. For each motif
group, acceptance/rejection regions and a cutoff score were
developed to assess the quality of the �t between a sequence
and the 3D motif group; this reduces the rate at which false
positivematches aremade and allows the user to decide how
strict to make the cutoffs. The acceptance/rejection regions
rely on both alignment score from the SCFG/MRF mod-
els and on interior edit distance, showing that both provide
useful information to match sequences to possible 3D mo-
tifs. The motif instances used by JAR3D are drawn from
the RNA 3D Motif Atlas, which is updated periodically to
take advantage of new 3D structures as they are deposited
in the PDB. Thus, the scope and accuracy of JAR3D should
improve as the RNA 3D structure database grows.

AVAILABILITY

Supplementary Section F explains the different JAR3D
program �les and how to run them. The JAR3D executable
�les for scoring sequences against motif groups and for
aligning sequences to a given motif group are available at
http://rna.bgsu.edu/data/jar3d/models. The JAR3D model
�les for all releases of theRNA3DMotif Atlas startingwith
release 1.0, along with the executable version of JAR3D,
are also available at the same site. Executables, instruc-
tions, Matlab programs for generating probabilistic mod-
els, Java programs for scoring sequences against models,
and Python programs for producing nicely formatted align-
ments are available as Release v1.0 on GitHub, see https:
//github.com/BGSU-RNA/JAR3D. Feedback, bug reports
and code contributions can be directed to the authors via
GitHub. The Matlab binary �les from all releases of the
RNA 3DMotif Atlas starting with release 1.0 are available
at http://rna.bgsu.edu/data/jar3d/motifs/ These are neces-
sary to build probabilistic models forMotif Atlas releases if
one does not want to use the precomputed releases.
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