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Abstract. Occupancy models are widely applied to estimate species distributions, but
few methods exist for model checking. Thorough model assessments can uncover inade-
quacies and allow for deeper ecological insight by exploring structure in the observed data
not accounted for by a model. We introduce occupancy model residual definitions that
utilize the posterior distribution of the partially latent occupancy states. Residual-based
assessments are valuable because they can target specific assumptions and identify ways to
improve a model, such as adding spatial correlation or meaningful covariates. Our
approach defines separate residuals for occupancy and detection, and we use simulation to
examine whether missing structure for modeling detection probabilities can be distin-
guished from that for occupancy probabilities. In many scenarios, our residual diagnostics
were able to separate inadequacies at the different model levels successfully, but we
describe other situations when this may not be the case. Applying Moran’s I residual
diagnostics to assess models for silver-haired (Lasionycteris noctivagans) and little brown
(Myotis lucifugus) bats only provided evidence of residual spatial correlation among detec-
tions. Targeting specific model assumptions using carefully chosen residual diagnostics is
valuable for any analysis, and we remove previous barriers for occupancy analyses—lack
of examples and practical advice.

Key words: hierarchical model; imperfect detection; model assessment; occupancy models; posterior
predictive checks; residual diagnostics.

INTRODUCTION

Occupancy models explicitly account for imperfect

detection while modeling the occurrence of a species

(MacKenzie et al. 2018). Extensions to the original

framework have made this approach widely applicable

(Guillera-Arroita 2017), yet there is still relatively little

work on assessing occupancy model fit. Thorough model

assessments are a fundamental aspect of any data analy-

sis because they help check underlying assumptions and

identify inadequacies of a model for describing patterns

in empirical data sets (Conn et al. 2018). Checking

occupancy models is difficult, however, because there

are distinct model components for detection and occur-

rence. Although this hierarchical structure provides

valuable ecological interpretations, it necessitates a more

nuanced investigation of fit, because both levels of the

model have assumptions that should be checked. To add

to the challenge, it is unclear how well diagnostics are

able to assess the two components separately, because

they are inherently linked in the model.

The approaches originally proposed for assessing

occupancy models focused on summaries of overall

model fit. An omnibus goodness-of-fit test based on a

chi-square statistic for unique detection histories was

developed (MacKenzie and Bailey 2004), and similar test

statistics have been used in posterior predictive checks

(PPCs) for Bayesian analyses (e.g., Broms et al. 2016).

Summaries of overall model fit, however, can be less
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sensitive for detecting model inadequacies than focused

evaluations that target assumptions of concern

(e.g., nonindependent observations; Wright et al. 2016).

Additionally, targeted diagnostics can help uncover how

or why a model may be lacking compared to the

observed data. Recently, Warton et al. (2017) and

MacKenzie et al. (2018) presented residual diagnostics

for occupancy models along with visualization strategies

for diagnosing unexplained relationships between

covariates and the probabilities of occupancy and detec-

tion. We explore a different approach for defining occu-

pancy model residuals and investigate diagnostics for

assessing spatial independence using Moran’s I statistic

(Moran 1950).

We were motivated to consider residual diagnostics

for occupancy models by our work studying bat species

in Montana, USA. Occupancy analyses were conducted

to estimate where species susceptible to white-nose syn-

drome (WNS), a deadly fungal disease in bats, have high

probability of occurrence in the state. This information

can help focus WNS surveillance efforts on areas where

at-risk species likely occur and establish baseline (pre-

WNS) occupancy estimates. Based on the spatial config-

uration of sampled locations, we suspected a need for

incorporating spatial correlation in our analyses but

wanted to assess this assumption before fitting addi-

tional models. Although applications of spatial occu-

pancy models generally focus on correlation among

occupancy probabilities (e.g., Johnson et al. 2013), spa-

tial correlation among detection probabilities is also pos-

sible and can negatively impact inferences when

unmodeled. We were unaware, however, of approaches

for investigating evidence of spatial correlation in residu-

als from a fitted occupancy model and whether we could

distinguish which component(s), occupancy and/or

detection, needed modification. Finally, we also wanted

to assess our expanded models, which included spatial

correlation, to confirm we adequately accounted for spa-

tial patterns in the residuals.

Here, we appeal to Bayesian methods to define sepa-

rate residuals for occupancy and detection to allow for

different assessments at each level of the model. These

residuals can be useful for assessing various model

assumptions, but we focus on investigating residual spa-

tial correlation because of our bat examples. We imple-

mented residual diagnostics for occupancy analyses of

silver-haired (Lasionycteris noctivagans; LANO) and lit-

tle brown (Myotis lucifugus; MYLU) bat data from

Montana. The Moran’s I assessments only provided evi-

dence of residual spatial correlation among detections,

and our strategic exploration of model fit helped guide

how our models could be expanded to improve infer-

ences. We conducted a simulation study to evaluate the

effectiveness of residual diagnostics for identifying inad-

equate spatial structure. Further, we explored when the

separate residuals for detection and occupancy were able

to distinguish which model component contained the

assumption violation.

METHODS

Model formulation and residual definitions

Occupancy models are frequently expressed in a hier-

archical form capturing both the ecological state process

of occupancy (or presence) and the observation process

of detection (K�ery and Royle 2016, MacKenzie et al.

2018). In this formulation, for a single-season model, the

partially latent occupancy states (Zi) for sites i ¼ 1; . . .; n

are modeled as

Zi �BernoulliðwiÞ; (1)

where wi represents the probability of occupancy.

Conditional on site occupancy (Zi ¼ 1), the species is

detected during visits j ¼ 1; . . .; Ji with probabilities pij
such that

½Yij jZi ¼ 1� �BernoulliðpijÞ; (2)

where Ji is the total number of visits to site i. Hetero-

geneity in the occupancy probabilities among sites can

be incorporated using the generalized linear model

framework, typically by connecting the probabilities to

site-level covariates through a logit link function,

logitðwiÞ ¼ Xib. Similarly, the probability of detection

across sites and/or visits is often modeled by

logitðpijÞ ¼ Vija. Here, Xi is a row vector of site-level

covariates for site i and Vij is a row vector combining

site-level and visit-level covariates for visit j at site i. The

vectors b and a represent the vectors of coefficients for

the occupancy and detection components of the model

respectively.

Basic occupancy models assume no false positive

detections occur, implying sites with at least one detec-

tion (ð
PJi

j¼1 yijÞ[ 0) are truly occupied and Zi is one.

However, ambiguity in occupancy status occurs at sites

without any detections, and we use a Bayesian approach

to describe the uncertainty in occupancy states. Consider

the case where Markov chain Monte Carlo (MCMC)

methods are used to approximate the posterior distribu-

tion of interest. Conditional on the vector of observed

detections from site i, yi, Bayes’ Theorem provides the

probability it is occupied as

PrðZ
½t�
i ¼1jyiÞ¼
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PJi
j¼1yij
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(3)

given the current iteration’s probabilities of occupancy

and detection (denoted w
½t�
i and p

½t�
ij for iteration t). Sam-

ples from the posterior distribution of the occupancy

states are generated as random draws from Bernoulli

distributions with these probabilities (Eq. 3) at each
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MCMC iteration. After convergence, the collection of

draws approximates the posterior distribution of the

latent occupancy states and can be used to make infer-

ence about other quantities of interest (e.g., total number

of sites occupied; K�ery and Royle 2016) or to evaluate a

model’s predictive performance (Zipkin et al. 2012). For

sites with unknown occupancy status, the posterior

draws for the latent occupancy state depend on wi and

pij , meaning model assessments may not be able to

untangle the two processes completely. However, poste-

rior distributions of latent variables still provide useful

information that can be used to construct PPCs (Gel-

man 2004, Gelman et al. 2005) or pivotal discrepancy

measures (Yuan and Johnson 2012). Here, we use the

posterior distribution of the occupancy states to define

occupancy model residuals.

Similar to the approaches used by Warton et al.

(2017) and MacKenzie et al. (2018), we define residuals

for the occupancy component (Eq. 1) and separate

residuals for the detection component (Eq. 2). Our defi-

nitions differ, however, because the residuals are calcu-

lated conditional on the posterior distribution of latent

occupancy states. For binary logistic regression, raw

residuals are often defined as the observed value minus

the probability of “success”, and we use this residual def-

inition. The occupancy residual for site i and iteration t

is expressed as

o
½t�
i ¼ z

½t�
i � w

½t�
i ; (4)

where z
½t�
i is a draw from the posterior distribution of the

occupancy state at site i. For this component, the term

“discrepancy” may be more appropriate, because the

occupancy states are partially latent, but we use “residu-

als” to connect our suggestions to more familiar residual

diagnostics.

We also use the posterior distribution of occupancy

states in our definition of detection residuals. For poste-

rior draw t, the detection residual for site i and visit j is

expressed as

d
½t�
ij

�

�

�

�

z
½t�
i ¼ 1

� �

¼ yij � p
½t�
ij : (5)

These detection residuals are only defined for “occupied”

sites based on the latent state z
½t�
i for a given posterior

draw t. By conditioning on a posterior draw of the occu-

pancy state z
½t�
i

� �

, sites without any detections (yi contain-

ing all zeros) still contribute detection residuals for some

posterior draws because these sites might actually be

occupied z
½t�
i ¼ 1 for some iterations

� �

. Additionally, the

total number of detection residuals will vary across poste-

rior draws because of the uncertainty in true occupancy

at sites with no detections.

Residual-based model assessments

Residual diagnostics are a familiar tool for checking

linear model assumptions and could be equally useful

for assessing occupancy models. Residuals can be used

graphically or form the basis for PPCs, making them

useful for evaluating various aspects of a model depend-

ing on the chosen assessment (Conn et al. 2018). For

occupancy models, a key aspect for any assessment is

that it can be performed using both occupancy and

detection residuals, with the goal of separately evaluat-

ing the two levels of the model. Perhaps the most famil-

iar and straightforward residual assessment is to check

for patterns in the plot of residuals vs. values of a covari-

ate. With binary residuals, as we have for occupancy and

detection (Eqs. 4 and 5), this can be achieved by looking

at binned residual plots (e.g., Gelman et al. 2000). In

this case, the values of a covariate are used to form

approximately equally sized groups. Plotting the aver-

ages of the residuals in each group vs. the corresponding

average covariate values can reveal unexplained struc-

ture in fitted probabilities. Examining such residual plots

from multiple posterior draws characterizes variation

over the posterior distribution.

Besides graphical assessments, residuals can be the

basis for calculating discrepancy measures for PPCs.

Systematic difference between discrepancy measures cal-

culated from residuals based on observed data and those

expected under the assumed model structure provide evi-

dence of a mismatch between the data and fitted model.

For each posterior draw, the observed discrepancy is

compared to the corresponding value from the posterior

predicted replicates. The proportion of posterior draws

where the observed value is larger than the posterior pre-

dictive value is termed the posterior predictive probabil-

ity (PPP) associated with that discrepancy measure. Very

large, or small, PPPs indicate predictions from the model

are not consistent with the observed data relative to the

chosen measure. Assessments of overall model fit can be

performed using a discrepancy measure like the chi-

square statistic based on total detections at a site (e.g.,

Broms et al. 2016). Alternatively, the discrepancy mea-

sure is constructed to assess an assumption of interest

more specifically. Again, the benefit of separate residuals

for detection and occupancy is that analysts can perform

assessments to consider model inadequacies one compo-

nent at a time. Although residuals can be used to assess

many aspects of a model, we focus on evaluating spatial

correlation in occupancy model residuals as motivated

by our bat examples.

Investigating unaccounted for spatial correlation

To investigate spatial structure unaccounted for by a

fitted occupancy model, we use Moran’s I statistic calcu-

lated with residuals to create correlograms and perform

PPCs. The Moran’s I statistic is commonly used for

areal data to explore spatial correlation in continuous
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response variables (Moran 1950, Schabenberger and

Gotway 2005). Based on a defined set of neighbors, this

statistic summarizes the magnitude of spatial correlation

in the residuals. Let wii0 be an indicator for whether sites

i and i0 are neighbors (1) or not (0) and

w
::
¼

Pn
i¼1

Pn
i0¼1 wii0 . With the occupancy residuals

o
½t�
i

� �

, Moran’s I for posterior draw t is calculated as

I ½t� ¼
n

ðn� 1ÞVarðo½t�Þw
::

X

n

i¼1

X

n

i0¼1

wii0 o
½t�
i � �o½t�

� �

o
½t�
i0 � �o½t�

� �

;

(6)

where �o½t� and Var
�

o½t�
�

denote the sample mean and

variance, respectively, of the n occupancy residuals. The

equation can be used to calculate a Moran’s I statistic

with the detection residuals by replacing the o terms with

d terms. For the Moran’s I empirical correlogram, resid-

uals are considered neighbors when the distance between

their corresponding sites (centers of areal units) is within

a given distance class, where different sets of neighbors

can be created across classes defined by increasing dis-

tances. Our empirical correlogram is the plot of the

Moran’s I statistic calculated with neighbors from each

distance class vs. the corresponding average distance

between neighbors. The plot indicates how residual spa-

tial correlation changes across distance classes, where

larger Moran’s I statistics indicate greater correlation.

Because the residuals are defined for each posterior

draw, there is variability in these statistics over the poste-

rior distribution. We simultaneously plot empirical cor-

relograms from a random collection of posterior draws

to summarize the posterior variability in the degree of

remaining spatial correlation.

For a related PPC, we use the “queen” neighbor defi-

nition (i.e., adjacent sites based on moving a queen chess

piece; Schabenberger and Gotway 2005) to calculate

Moran’s I. In other words, the pair of occupancy residu-

als o
½t�
i and o

½t�
i0 are neighbors if sites i and i0 are queen

neighbors. A pair of detection residuals d
½t�
ij

�

and d
½t�
i0 j0

�

are classified as neighbors if they are from the same site

(i = i0) or from neighboring sites based on the queen def-

inition (sites i and i0 neighbors). With the Moran’s I

statistic as the discrepancy measure, this PPC can be

summarized by calculating the PPP of more observed

correlation within the queen’s neighborhood than

expected under a fitted model. This assessment is poten-

tially less descriptive than the Moran’s I empirical cor-

relogram because it focuses on one distance class instead

of simultaneously displaying multiple classes.

Bat data examples

Mist netting and acoustic surveys for silver-haired

(LANO) and little brown (MYLU) bats were conducted

in Montana during the summers (defined as June to

September) of 2008, 2009, and 2010. We briefly describe

the methods here and include further details in

Appendix S1. A single nightly survey using either mist

netting or an acoustic detector was considered a single

visit to build detection histories. Mist netting captures

were considered unambiguous detections, andwe assumed

all captured bats were correctly identified to species.

Acoustic files were analyzed using Sonobat (version 3.0;

https://sonobat.com/) and manual confirmation of species

identifications by an expert unequivocally indicates a spe-

cies was detected during an acoustic survey (Reichert

et al. 2018). All surveys were associated with the

10 9 10-km grid developed for the North American Bat

Monitoring Program (NABat; Loeb et al. 2015) for anal-

yses. Each grid cell was considered a site where species

presence (or not) was of interest. Throughout we often

use the term “occupancy,” but for highly mobile species

like bats we prefer the terms “presence” or “occurrence.”

Sites across Montana were surveyed, but surveys were

often spatially and temporally clustered because of logisti-

cal constraints (see Appendix S1), suggesting spatial cor-

relation (potentially because of temporal correlation)

could be an important consideration in our analyses.

Forest percent cover (log-transformed), elevation,

ruggedness, and average degree days were included as

site-level covariates based on similar analyses for Oregon

and Washington (Rodhouse et al. 2015). For each

nightly visit, we included the method (mist netting or

acoustic), survey date within the year, and daily weather

measurements (precipitation and minimum temperature)

from nearby weather stations as potential detection-level

explanatory variables. For each species, we fit initial

models assuming independence for both model compo-

nents after accounting for covariates.

We used binned residual plots to assess the assumed

functional form of the covariates used to model the

probabilities. For each covariate, we plotted the binned

residuals from 5 to 10 random posterior draws. To

explore unaccounted-for spatial correlation, we exam-

ined Moran’s I empirical correlograms (distance

classes for every 15 km) and PPCs, as described previ-

ously. Based on these assessments, we expanded the

models to include, as needed, spatially correlated

effects using restricted spatial regression (Hughes and

Haran 2013, Johnson et al. 2013). This method

assumes an intrinsic conditionally autoregressive

(ICAR) structure on site-level random effects added to

the logit-transformed probabilities for occupancy and/or

detection. The restricted structure of the spatial effects

can make model fitting more computationally efficient

and help reduce confounding with covariates that have

spatial structure. We reexamined the Moran’s I resid-

ual assessments after fitting the spatial occupancy

models. We conducted these analyses using R (version

3.4.1; R Core Team 2017). All models were fit using

Stan (Carpenter et al. 2017) called via R with the rstan

package (version 2.17.3; Stan Development Team

2018). All data and code for these analyses are pro-

vided in Data S1.
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Simulation study

Motivated by our bat data analyses, we conducted a

simulation study to evaluate the effectiveness of Moran’s

I PPP for identifying inadequate spatial structure in an

occupancy model. For ease of presenting results over

many simulated data sets, our comparisons focused on

the PPP summary instead of graphical assessment. All

simulations were performed using R (version 3.4.1; R

Core Team 2017) and models were fit with the rstan

package (version 2.17.3; Stan Development Team 2018).

The code for all simulations is available in Data S2.

We simulated data sets for sites defined as cells on a

15 9 15 grid (n ¼ 225) with J ¼ 5 visits to each. The

data-generating occupancy probabilities were defined as

logitðwiÞ ¼ b0 þ b1xi þ gi with b0 ¼ 0 and b1 ¼ 1.

Detection probabilities were defined as logitðpijÞ ¼ a0þ
a1vij þ hi with a0 ¼ 0 and a1 ¼ 1. Both of the covariates,

xi and vij, were random draws from independent

Uniformð�1; 1Þ distributions. Spatial correlation was

incorporated in the data-generating process by adding

spatially correlated, site-level effects to the logit-trans-

formed probabilities of occupancy and/or detection

(denoted by gi and hi, respectively). These spatial effects

approximately followed an ICAR structure with scaling

factor r representing the strength of spatial correlation

(described for occupancy models by Johnson et al. 2013).

We generated data sets under four scenarios, which varied

based on which model component the spatially correlated

effects were added to: detection only (all gi ¼ 0), occu-

pancy only (all hi ¼ 0), both with independent spatial

effects (gi 6¼ hi, but with equal r), or both with identical

spatial effects (gi ¼ hi). For each scenario, we varied the

strength of spatial correlation using r ¼ f0; 0:5; 1; 1:5; 2g
and generated 100 different data sets for each value. Note

that when r ¼ 0, all simulated spatial effects are zero,

which represents no added spatial correlation.

For each simulated data set, three occupancy models

were fit with each including the correct covariate struc-

ture (i.e., xi and vij included in all fitted models). The

“nonspatial” model assumed independence and did not

include spatial correlation for either component. The

additional models fit added an ICAR spatial structure

among the detection or occupancy probabilities (“spatial

detection” and “spatial occupancy,” respectively). We

calculated a PPP based on Moran’s I with a queen

neighborhood definition for every model fit, with sepa-

rate assessments using the detection and occupancy

residuals. For each scenario and strength of correlation,

we calculated the proportion of simulated data sets iden-

tified as having more residual spatial correlation than

expected under the fitted models using these assess-

ments. To summarize over all the simulated data sets, we

considered a Moran’s I PPP greater than 0.9 as an indi-

cation of spatial correlation. In practice, however, a

strict cutoff is not necessary and the probabilities should

be interpreted on a continuous scale, as we did in our

empirical analyses.

RESULTS

Bat data examples

For both species, the Moran’s I empirical correlo-

grams using the detection residuals decreased with

increasing distance, but there were no strong patterns

apparent using the occupancy residuals (Fig. 1a). Addi-

tionally, the Moran’s I PPP provided evidence for resid-

ual spatial correlation in the detection probabilities for

both species (LANO: >0.999; MYLU: 0.993) but not the

occupancy probabilities (LANO: 0.574; MYLU: 0.680).

Plotting binned residuals vs. the available covariates did

not reveal patterns that would indicate an important

covariate was excluded or an alternative functional form

of a covariate was needed in our initial models (e.g.,

Fig. 1b for elevation). Therefore, we opted to expand

our initial models by incorporating spatial correlation

among the detection probabilities.

After explicitly modeling spatial correlation among

detection probabilities, assessments of the updated mod-

els no longer indicated unexplained spatial correlation.

The Moran’s I empirical correlograms no longer showed

strong patterns (Appendix S1) and the PPPs using the

detection residuals were lower for both species (LANO:

0.674; MYLU: 0.659). There was still the question, how-

ever, of how well these residual diagnostics could assess

the detection component separately from the occupancy

component.

Simulation study

Spatial correlation in detection only.—For data generated

with spatial correlation in the detection component only,

Moran’s I PPP with detection residuals identified model

inadequacy only when the fitted model incorrectly

assumed independent detection probabilities (Fig. 2a,

orange lines fitting non-spatial and spatial occupancy

models). As expected, the proportion of simulated data

sets with PPP > 0.90 increased as the strength of spatial

correlation among detection probabilities increased.

When detection probabilities were adequately modeled

with an ICAR spatial structure, assessments did not

indicate remaining spatial correlation in detection resid-

uals, as desired (Fig. 2a, orange line fitting spatial detec-

tion model). For the Moran’s I PPC based on

occupancy residuals, the proportion of simulated data

sets with PPP > 0.90 remained low regardless of the fit-

ted model (Fig. 2a, purple lines for all models).

Spatial correlation in occupancy only.—When data sets

were simulated with spatially correlated occupancy prob-

abilities, the Moran’s I PPP using detection residuals

indicated model inadequacy in a small proportion of

simulated data sets (Fig. 2b, orange lines fitting all mod-

els). The proportion of simulated data sets where the

occupancy residual assessments correctly identified the

fitted model was misspecified increased as the strength
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of simulated spatial correlation among occupancy prob-

abilities increased (Fig. 2b, purple lines fitting nonspa-

tial and spatial detection models). The Moran’s I PPC

with the occupancy residuals rarely resulted in

PPP > 0.90 when the fitted model correctly included an

ICAR structure on the occupancy probabilities (Fig. 2b,

purple line fitting spatial occupancy model).

Spatial correlation in both components.—When spatial

correlation was simulated in both occupancy and detec-

tion probabilities, regardless of whether the spatial

effects were independent or identical, the Moran’s I PPP

using detection residuals successfully identified models

that incorrectly assumed a detection process without

spatial correlation (Fig. 2c, d, orange lines fitting non-

spatial and spatial occupancy models). Moran’s I PPP

using occupancy residuals, however, had less clear-cut

abilities to identify unaccounted-for spatial correlation.

Specifically, the proportion of Moran’s I PPP > 0.90

using occupancy residuals was larger if the fitted model

assumed independence compared to assessing a fitted

model that included spatially correlated detections

(Fig. 2c, d, comparing purple lines for nonspatial and

spatial detection model fits). Accounting for spatial cor-

relation among detection probabilities increases

uncertainty in the posterior distribution of occupancy

states, and may have contributed to the assessments with

occupancy residuals having a decreased ability to discern

spatial correlation compared to the same assessments

for the nonspatial model.

DISCUSSION

We introduced definitions for occupancy model resid-

uals that utilize the posterior distribution of the partially

latent occupancy states. When residual diagnostics were

applied in our data analyses, the Moran’s I empirical

correlograms and PPPs for our initial models provided

evidence of residual spatial correlation among detection

probabilities for silver-haired and little brown bats. Con-

versely, we found no evidence that occupancy probabili-

ties had residual spatial correlation. In general, many

different underlying processes (e.g., abundance) could

explain our results. For example, temporal patterns in

bat activity could manifest as spatial correlation in our

data because nearby grid cells were often sampled within

days of each other. Other work has shown temporal cor-

relation in detection probabilities for bats (Wright et al.

2016) likely due to runs in bat activity over consecutive

nights (Hayes 1997). Future monitoring efforts could

FIG. 1. Residual-based model assessments for the silver-haired (LANO) and little brown (MYLU) bat analyses that assumed
spatial independence. The Moran’s I correlograms from 100 random posterior draws consistently show a decreasing pattern in the
detection residuals but no strong patterns in the occupancy residuals (a). For both species, there were no strong patterns in the
binned residual plots using the elevation covariate (b). We show the residuals for a single random posterior draw, but for each
covariate we examined plots from 5 to 10 random posterior draws.
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avoid the need for fitting spatial occupancy models if the

spatial locations and timing of surveys are modified

(e.g., MacKenzie et al. 2018:303–304). Compared to the

models assuming independence, the posterior distribu-

tions from our expanded models had lower overall detec-

tion probabilities and higher overall occupancy

probabilities for both species (Appendix S1), consistent

with patterns expected from correlated detection proba-

bilities (Hines et al. 2010). Incorporating spatial correla-

tion among detection probabilities also increased the

uncertainty in all model parameters conveyed by the

posterior distributions. Consequently, assessing spatial

structure of both model components is a crucial, and

perhaps underappreciated, step in evaluating occupancy

models.

Untangling whether inadequacies of a fitted model

correspond to the estimated probabilities of occupancy

or detection is important because it helps suggest how to

appropriately expand a model. With our residual defini-

tions, we attempt to evaluate the detection and occu-

pancy components separately by conditioning on the

posterior distribution of the latent occupancy states.

FIG. 2. For the detection residuals (orange) and occupancy residuals (purple), proportion of simulated data sets where the Mor-
an’s I posterior predictive probability was larger than 0.9 vs. the level of spatial correlation (r). Scenarios explored incorporating
spatial correlation for (a) detection only, (b) occupancy only, (c) both detection and occupancy with separate effects, and (d) both
detection and occupancy with identical effects. For all scenarios and generating coefficient values, 100 data sets were simulated. As
indicated by the columns of the plot, each data set was analyzed using a nonspatial model, a model including spatial correlation
among occupancy probabilities only, and a model including spatial correlation among detection probabilities only.
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However, the two components are inherently linked in

the model because the occupancy posterior distribution

(Eq. 3) depends on both model parameters (w and p). In

practice, our simulations illustrated that residual-based

assessments can still be useful for separately evaluating

each level of the model. Consistently across the scenarios

we explored, the Moran’s I assessment with the detec-

tion residuals was only sensitive to unexplained spatial

correlation among detection probabilities. Similarly,

assessments with the occupancy residuals indicated

model misspecification only for scenarios where simu-

lated spatial correlation was not included for the occu-

pancy component. For occupancy residuals, however,

performance of the Moran’s I PPC depended on the fit-

ted model structure for the detection probabilities. For

instance, adding an ICAR spatial structure on the detec-

tion probabilities reduced the effectiveness of this PPC

for identifying spatial correlation among occupancy

probabilities. This may be due to more uncertainty in the

fitted occupancy probabilities compared to a nonspatial

model. Residual assessments for missing covariates can

also separately assess the model components (simulation

results not shown) and help pinpoint how a model could

be improved.

Other scenarios could result in residual assessments

that are less useful for separately checking the levels of

occupancy models. It is more difficult to distinguish the

two components when there is less information for

informing the occupancy status at sites without any

detections. In general, this happens when sites have a

small number of visits or detection probabilities are

small. As an extreme example, with only one visit to

every site there is no information to assess (or even esti-

mate) detection and occupancy separately. Conse-

quently, lower detection probabilities and/or fewer visits

per site could result in residual assessments that are less

able to distinguish which model level contains the

assumption violation. This makes it important to think

critically about the study design and whether there are

enough data to fit and evaluate models (Warton et al.

2017, MacKenzie et al. 2018). Because the number of

visits and expected detection probabilities are the same

criteria considered for reducing uncertainty in occu-

pancy estimates, following general study design recom-

mendations (MacKenzie et al. 2018) will also improve

the effectiveness of assessing models with residual

diagnostics.

Other approaches to define residuals for occupancy

models do not condition on the posterior distribution of

the latent occupancy states. The residuals proposed by

Warton et al. (2017), for instance, are conditional on

naive occupancy and apply the “Dunn-Smyth” transfor-

mation proposed for discrete observations. The “Dunn-

Smyth” transformation includes random noise that we

found reduced the ability to identify model inadequacies

(Appendix S2). Residuals defined conditional on naive

occupancy but without the transformation performed

better and, in many scenarios, were comparable to the

latent occupancy residuals we described (Appendix S2).

However, calculating residuals conditional on naive

occupancy is more cumbersome because it requires addi-

tional expected values that are complicated and not

included in standard model output. Instead, condition-

ing on the latent occupancy state allows for intuitive

residual definitions that we found easier to implement

and use in practice.

Residuals are a cornerstone for assessing many statis-

tical models because they are a flexible tool for investi-

gating assumptions of interest. Defining residuals

conditional on the posterior distribution of the occu-

pancy states helps account for the hierarchical structure

of occupancy models when performing residual-based

assessments. In our bat data examples, we focused on

investigating unexplained spatial correlation and

improving inferences by using residual diagnostics to

guide model expansions. We also found that residuals

defined with the occupancy posterior distribution can

effectively explore other model assumptions, such as the

functional form of covariates for the fitted probabilities.

Using carefully chosen residual diagnostics to target par-

ticular model assumptions should become an integral

part of evaluating occupancy models. Specific assess-

ments for both levels of an occupancy model can help

guard against potentially erroneous inferences and allow

for deeper ecological insight by exploring structure not

accounted for by a model.
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