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Summary

Treatment-selection markers predict an individual’s response to different therapies, thus allowing 

for the selection of a therapy with the best predicted outcome. A good marker-based treatment-

selection rule can significantly impact public health through the reduction of the disease burden in 

a cost-effective manner. Our goal in this paper is to use data from randomized trials to identify 

optimal linear and nonlinear biomarker combinations for treatment selection that minimize the 

total burden to the population caused by either the targeted disease or its treatment. We frame this 

objective into a general problem of minimizing a weighted sum of 0–1 loss and propose a novel 

penalized minimization method that is based on the difference of convex functions algorithm 

(DCA). The corresponding estimator of marker combinations has a kernel property that allows 

flexible modeling of linear and nonlinear marker combinations. We compare the proposed 

methods with existing methods for optimizing treatment regimens such as the logistic regression 

model and the weighted support vector machine. Performances of different weight functions are 

also investigated. The application of the proposed method is illustrated using a real example from 

an HIV vaccine trial: we search for a combination of Fc receptor genes for recommending 

vaccination in preventing HIV infection.
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1. Introduction

Heterogeneity exists among individual subjects’ responses to treatment in many disease 

settings. Biomarkers associated with treatment-response heterogeneity can help individuals 

select therapies in order to optimize clinical outcome. As a single marker typically has 

limited ability to predict the heterogeneity in treatment response, statistical methods for 

combining biomarkers are critically needed for optimizing treatment selection.
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Among others, one common approach for identifying marker combinations in treatment 

selection relies on modeling of the disease risk, conditional on biomarkers and treatment 

assignment; subsequent treatment recommendation is made based on the difference in the 

disease risk between non-treated and treated. For example, Song and Pepe (2004) adopted 

the standard logistic regression for disease risk modeling; Foster et al. (2011) proposed a 

‘virtual twin’ method with tree-based estimators of disease risk; Qian and Murphy (2011) 

and McKeague and Qian (2013) adopted a L1-penalized least squares approach for 

estimating treatment-selection rules; Lu et al. (2013) developed an A-learning method for 

linear outcomes that requires correct modeling of the treatment-marker interaction but is 

robust to modeling of the marker’s main effect.

Performance of the treatment-selection rules based on risk modeling relies critically on the 

correct specification of the model, which is challenging given the complexity of biological 

mechanisms. A different approach that is more robust to model misspecification is to write 

down a desired criterion function associated with treatment selection, and search for the 

marker combination that optimizes the criterion function. For example, Orellana et al. 

(2010) considered parametric and semiparametric dynamic regime marginal structural 

models for optimizing expected utility. To optimize the population mean outcome, Zhang et 

al. (2012a, b) proposed finding marker combinations that optimize the empirical or double-

robust estimates of population mean outcome within a pre-specified parametric class. Since 

these estimates of population mean outcome involve a non-smooth, non-convex 0–1 loss, 

the optimization procedure can be computationally challenging. Zhao et al. (2012) 

transformed the optimization problem into an outcome-weighted learning problem and 

derived the optimal treatment-selection rule using a weighted support vector machine 

method by approximating the 0–1 loss with a convex hinge loss function.

In this paper, we propose a new method to identify marker combinations that directly 

optimize the targeted criterion function as did Zhang et al. (2012a) and Zhao et al. (2012). In 

particular, we consider the objective of minimizing unfavorable outcomes in the population. 

These outcomes possibly include 1) events of a targeted disease, and 2) adverse side effects 

or monetary cost incurred by treatment. Furthermore, in a randomized trial setting, the 

optimization problem can be reformulated as one of minimizing a weighted sum of 0–1 loss. 

We propose to solve this via the difference of convex functions algorithm (DCA). Like the 

outcome-weighted support vector machine in Zhao et al. (2012), our estimator allows for 

flexible linear and nonlinear combinations of biomarkers to account for the possibly 

complicated relationship between biomarkers and treatment. However, our estimator is more 

effective at minimizing the targeted criterion function through the adoption of a more 

precise approximation of 0–1 loss. Fisher consistency and asymptotic consistency of the 

proposed estimator are derived. Different choices of weight functions are also investigated 

through numerical studies.

Next, in Section 2, we describe a general framework for optimizing treatment-selection 

rules. In Section 3, we propose a penalized estimator that minimizes the penalized weighted 

sum of a ramp loss function and develop its theoretical properties. In Section 4, we evaluate 

the performance of the estimator and compare it with common approaches through 
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numerical studies. In Section 5, we illustrate the methodology with an example from a 

recent HIV vaccine efficacy trial in Thailand. Finally, we end the paper with a discussion.

2. Method

Here we consider the problem of optimizing the treatment regimen for an unfavorable 

clinical outcome denoted by Y, based on a set of markers X with dimension p ≥ 1. In this 

paper we focus on a binary disease outcome Y, 0 for non-diseased and 1 for diseased. The 

methods developed work for continuous outcomes as well. Let A(X) indicate the marker-

based treatment-selection rule. A = 0 stands for not treating and A = 1 for treating. An 

important measure for quantifying the treatment-selection benefit of A(X) is EA(X)(Y), the 

expected disease rate as a result of treatment selection (Song and Pepe, 2004). Here the 

expectation is averaged over the decision A(X). This measure has become more widely 

recognized in the literature in recent years (Zhao et al., 2012; Zhang et al., 2012a).

While EA(X)(Y) characterizes the burden of disease upon the population, more generally, one 

may be concerned with additional burden associated with treatment. In practice there are 

often unpleasant aspects associated with treatment such as its side effects and/or monetary 

cost. A treatment-selection strategy that takes these aspects into consideration is thus 

preferred. One way to combine the disease and treatment burdens is to pre-specify a 

treatment/disease harm ratio such that each burden type can be put on the same scale. As in 

the decision-theoretic framework proposed in Vickers et al. (2007), let δ be a pre-specified 

ratio of the burden per treatment relative to the burden per disease event, and let Y(1) and 

Y(0) indicate the potential disease outcome if a subject were to receive or not receive the 

treatment. Here we set the burden per targeted disease event as 1. Then the total burden due 

to disease and treatment for a treatment-selection rule A(X), represented in the unit of the 

burden per disease event, equals

(1)

An optimal treatment-selection rule can thus be found by minimizing θ.

In practice, it is often difficult to agree upon δ. Choosing δ = 0 such that θ = EA(X)(Y) 

corresponds to the special case where the criterion function to be minimized is the burden 

due to the targeted disease alone, as in Zhang et al. (2012a) and Zhao et al. (2012). While 

detailed discussion about the choice of δ in treatment selection is beyond the scope of this 

paper, the development of a generalized framework allowing for nonzero δ is, however, 

important for a method to be applicable to practical scenarios where there are sensible ways 

to pre-specify δ. For example, δ was chosen to be 5% for treating breast cancer with 

adjuvant chemotherapy in Vickers et al. (2007) according to a patient survey. In 

Rapsomaniki et al. (2012), δ was chosen to be 2% for cost of preventive treatment per year 

for cardiovascular disease relative to the value of an event-free life year.

Suppose we have data from a two-arm randomized trial with T = 0, 1 indicating assignment 

to the untreated and treated arm, respectively. Let n0 and n1 indicate the number of subjects 
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untreated and treated respectively. We have i.i.d. samples {Yi, Xi, Ti} for i = 1, …, n with n 

= n0 + n1. We make the following assumptions: (i) stable unit treatment value (SUTVA) 

(Rubin, 1980) and consistency: Y(0), Y(1) of one subject is independent of the treatment 

assignments of other subjects, and given the treatment a subject actually received, a 

subject’s potential outcomes equal the observed outcomes; (ii) ignorable treatment 

assignments assumption: T ⊥ Y(0), Y(1)|X. Assumption (i) is plausible in trials where 

participants do not interact with one another and assumption (ii) is ensured by 

randomization. Algebra (as in Web Supplementary Appendix A) shows that

(2)

(3)

where Risk0(X) = P(Y = 1|X, T = 0) and Risk1(X) = P(Y = 1|X, T = 1) are the risk of Y 

conditional on X among untreated and treated, respectively. Therefore an optimal rule A(X) 

in the sense of minimizing θ is A(X) = 1 if Risk0(X) − Risk1(X) > δ and A(X) = 0 otherwise. 

In other words, the reduction in the disease burden from treatment needs to be more 

significant than the burden of treatment itself for one to recommend it for a subject. Note 

that E(Y |T = 0) − θ is the net benefit of A(X) as defined in Vickers et al. (2007), i.e., the 

difference in the total burden comparing treating none with A(X). It equals E[A(X) × 

{Risk0(X) − Risk1(X) − δ}] by equation (3) and is maximized by the optimal rule A(X) = 

I{Risk0(X) − Risk1(X) > δ}. Related results have been shown by others. For example, in the 

setting where Y is defined to be a favorable outcome, Zhang et al. (2012b) showed that the 

optimal A(X) when δ = 0 is to treat if Risk1(X) − Risk0(X) > 0; Baker et al. (2012) showed 

that the average treatment benefit in Y needs to be larger or smaller than δ among subjects 

with A(X) = 1 or 0 respectively, in order for A(X) to be more beneficial than treating none 

and treating all: A(X) = I{Risk1(X) − Risk0(X) > δ} satisfies these conditions. Standard 

regression-based methods can be used to estimate Risk0(X) and Risk1(X) in order to derive 

the optimal treatment-selection rule. As pointed out by Zhang et al. (2012a), however, when 

the risk model is misspecified, performance of the treatment-selection rule derived this way 

can be sub-optimal.

To make treatment selection more robust to model misspecification, we follow the strategy 

of Zhang et al. (2012a) and Zhao et al. (2012), and consider a class of rules that make 

treatment recommendation based on whether a marker combination score is greater than 

zero. In particular, let A(X) = I{f(X) > 0} with I the indicator function, f(X) = b+γ(X) with 

γ(X) a function of markers X. Then θ in (2) can equivalently be represented as

The optimal f(X) can be found by minimizing the empirical estimate of θ, i.e.,
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Therefore, we can formulate this problem as the minimization of a weighted sum of 0–1 

loss. That is, f̂ can be found as the minimizer of

(4)

with the subject-specific weight

(5)

Note that in the special case where δ = 0, we have W1i = 0 when Yi = 0, which implies that 

we only need to measure biomarkers among cases to derive the optimal treatment-selection 

rule. In subsequent numerical studies, we name this set of weights the ‘case-only weights’.

Second, note that θ can also be represented as E(Y|T = 0) + E[(1 − Y) × (1 − T) × I{f(X) > 

0}]/P(T = 0) − E[(1 − Y) × T × I{f(X) > 0})]/P(T = 1) + δ × P{f(X) > 0}. So to estimate f(X) 

we can minimize , 

which is equivalent to minimizing the weighted sum of 0–1 loss (4) with the weight

(6)

Note that for δ = 0, using this set of weights only requires collection of biomarker 

information among controls since W2i = 0 for Yi = 1. In subsequent numerical studies, we 

name this set of weights the ‘control-only weights’.

Since the minimizer of two different sets of loss will also be the minimizer of the linear 

combination of the two sets of loss, we can choose weights in loss (4) as a weighted average 

of the case-only weights (5) and the control-only weights (6) with weight p and 1 − p 

respectively for arbitrary p. This is equivalent to minimizing (4) with

(7)

In subsequent numerical studies, we choose p = 1/2 and name the set of weights the ‘case-

control weights’. All three sets of weights W1, W2, W3 do not require modeling of the 

disease risk conditional on the marker and the treatment.
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Finally, we consider substituting the doubly robust estimator of EA(X)(Y) (Zhang et al., 

2012a) for estimating θ in (2). This estimator augments the inverse probability weighted 

estimator of EA(X)(Y) with a term that involves the risk of Y given X and T. It has the double 

robustness property in that it is consistent for EA(X)(Y) if either P(T = 1|X) (the propensity 

score for treatment) or the risk model is correctly specified. In a randomized trial, the 

propensity score for treatment is known, so consistency of the estimator is always 

achievable. Using the augmented term is expected to have the added advantage of improving 

efficiency, as shown in Zhang et al. (2012a) for continuous outcomes. Using a working 

model to obtain risk estimates  and  leads to the estimate of θ as

where P[I{f(X) > 0} = T| X] = π × I{f(X) > 0} + (1 − π) × I{f(X) ≤ 0} for π = P(T = 1), 

. As shown in Web 

Supplementary Appendix B, this corresponds to minimization of (4) with the weight

(8)

We names this set of weights the ‘double-robustness weights’.

In subsequent numerical studies, we evaluate the performance of our estimators based on the 

above four special weights. We note, however, the existence of alternative ways to generate 

the weights. In particular, since the minimization of (3) is equivalent to the minimization of 

E[I{f(X) ≤ 0} × {Risk0(X) − Risk1(X) − δ}], any consistent estimate of Risk0(X) − Risk1(X) − 

δ can serve as W in (4). Similar observation has been made for the problem of minimizing 

EA(X)(Y) (Zhang et al., 2012b).

2.1 Penalized Weighted Ramp Loss Estimator

In this section we consider the minimization of the loss function (4) conditional on a pre-

specified set of weights W. Minimization of a weighted sum of 0–1 loss is computationally 

challenging due to the non-convexity of the indicator function. We propose to derive the 

marker combination through a difference of convex functions algorithm (Liu et al., 2005; 

Wu and Liu, 2007). Specifically, we approximate the indicator function I(u ≤ 0) with a ramp 

loss function hs(u) as shown in Figure 1(a), where hs(u) = 1 if u/s ≤ −1/2; hs(u) = −u/s + 1/2 

if −1/2 ≤ u/s < 1/2; and hs(u) = 0 if u/s > 1/2, with s > 0 a scale factor. For any given u ≠ 0, 

the value of this loss function moves towards 0 or 1 and becomes 0 or 1 at some point as s 

→ 0. Identifiability issues exist in minimizing the weighted sum of ramp loss because hs(|u|) 

is greater than or equal to hs(c|u|) for c > 1 and the ramp loss function satisfies hs(|u|) = hs=1(|

u|/s). We handle the identifiability problem and at the same time control the model 

complexity by setting s = 1 and adding a penalty term to the weighted ramp loss. Using h(u) 
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to indicate hs(u) with s = 1, we propose to estimate f(X) = b + γ(X) by minimizing a 

penalized weighted sum of ramp loss

(9)

where λn is a tuning parameter and ||f|| is some norm for f. To solve this minimization 

problem, we represent the ramp loss function h as the difference between two convex 

functions as shown in Figure 1(b): h(u) = h1(u) − h2(u), where h1(u) = (1/2 − u)+ and h2(u) = 

(−1/2 − u)+. This allows application of a difference of convex functions algorithm (DCA) 

for minimization as will be presented in the following section. Next we consider derivation 

of treatment-selection rules based on linear and nonlinear marker combinations 

consecutively.

2.2 Identification of Linear Marker Combinations

First, we consider optimizing a linear marker combination f(X) = b + XTβ. We propose to 

solve for b and β by minimizing the weighted sum of ramp loss (9) with L2-norm penalty

(10)

with zi = sgn(wi).

Let , and write h(u) = h1(u) − h2(u), minimization of (10) can be 

carried out in the following steps:

Step 1. Start with an initial guess for η and call it η0.

Step 2. Solve

where , and  is the first derivative of 

h2(u) with respect to u, except 0 at u = −1/2.

Step 3. Compute η0 and go back to step 2 until the change in the penalized weighted 

sum of ramp loss is less than a pre-specified threshold.

In Step 2 of the algorithm above, we solve a convex optimization problem. As h1 and ĥ2 are 

not smooth functions, a standard optimization strategy is to convert it to a constrained 

smooth optimization problem by introducing slack variables ξi to replace h1 and adding two 

sets of constraints. This leads to
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(11)

where we have dropped terms void of ξ or β. The constraints in the above optimization 

problem are challenging to work with; therefore we seek to find its dual problem via the 

Lagrange method. The primary Lagrangian is

where α and γ are vectors of non-negative Lagrange multipliers, corresponding to the two 

sets of constraints in (11). As detailed in Web Supplementary Appendix C, this leads to the 

dual problem of

(12)

where Q is a square matrix whose [i, i′]th element is 〈zixi, zi′xi′〉/(nλn), , and 

. The optimization problem (12) has a set of simple box 

constraints and can be solved via many quadratic programming methods. As shown in Web 

Supplementary Appendix C, we have . The estimate 

of b can be found by averaging { }. 

Having found the best combination, the treatment-selection rule for a new observation xnew 

will be A(xnew) = I{f(xnew) > 0} where .

2.3 Identification of Nonlinear Marker Combinations

As the most optimal marker combination for treatment selection may not be among linear 

combinations of the input markers, we may wish to enlarge the feature space via basis 

expansion and find the best linear combination in the enlarged space. One such approach is 

via the so called “kernel methods”. Let ϕi = ϕ(xi) denote the feature vector for subject i in 

the enlarged feature space. For example, with two markers {x1, x2} to derive a treatment-

selection rule, we may wish to go beyond their linear combinations and look at the second 

order trends as well as the interaction between the two markers. Then ϕi in the enlarged 

feature space, will equal {x1i, x2i, , x1ix2i}. We can specify a kernel K corresponding 

to the inner product in the mapping ϕ, i.e., K(xi, xj) =< ϕi, ϕj >. Conversely, for any 

continuous, symmetric, and positive semidefinite kernel function K :  ×  → ℝ, Mercer 

theorem (Vapnik, 1995) shows that there exists such a mapping ϕ such that K(xi, xj) =< ϕi, 

ϕj >. Examples of common nonlinear kernels include the polynomial kernel with dth degree 

K(xi, xj) = (1+ < xi, xj >)d, the radial basis function (RBF) kernel K(xi, xj) = exp(−γ||xi − 
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xj||
2) with γ a tuning parameter, and the identical-by-state (IBS) kernel 

 for xip = 0, 1, 2 (Wessel and 

Schork, 2006).

Let  be the associated reproducing kernel Hilbert space (RKHS). We generalize equation 

(10) to find a combination of markers f ∈  through the minimization of the penalized 

weighted sum of ramp loss , with ||·|| the norm in . 

This is the same as (10), when K is the linear kernel. The algorithm developed in Section 2.2 

can be adapted to solve the minimization problem. In step 1 we can let ηi ← 0. In step 2, the 

dual problem that needs to be solved has the same form as (12), where Q is now a square 

matrix whose [i, i′]th element is . Having solved 

the dual problem, it is not necessary to translate it back to the primal problem because step 3 

calls for η. With , we have 

, where · is the element-wise multiplication 

operator, and Φ = (ϕ1, …, ϕn)T. This shows that even though ϕi may be infinite-dimensional, 

ηi always has a finite-dimensional representation. As shown in Web Supplementary 

Appendix C, the marker combination score for a new data xnew is 

.

In practice, having the flexibility of modeling nonlinear marker effect is important for 

achieving good treatment-selection performance. This is especially true in the presence of 

nonzero treatment burden. Using the GLM model as an example: suppose the disease risk 

conditional on the markers and treatment follows g{P(Y = 1|X, T)} = β0 + β1T + β2µ(X) + 

β3ν(X)T with µ(X) and ν(X) being some functions of X. Based on (3), the optimal treatment-

selection rule is to treat if the difference between Risk0(X) = P(Y = 1|X, T = 0) and Risk1(X) 

= P(Y = 1|X, T = 1) is greater than the treatment/disease burden ratio δ. Using the GLM 

model the optimal treatment-selection rule, given δ = 0, is to treat if β1 + β3ν(X) > 0 and to 

not treat otherwise, since sgn{Risk0(X) − Risk1(X)} = sgn{β1 + β3ν(X)}. In other words, 

only the main effect of treatment and the marker-treatment interaction need to be modeled 

correctly to derive the optimal A(X) for δ = 0. This is no longer true, however, for positive δ, 

since the sign of Risk0(X) − Risk1(X) − δ also depends on the intercept term and the main 

effect of the marker in the risk model for nonlinear link function g (which makes it more 

challenging to closely model the marker combination). Note that if there exists an 

underlying monotone transformation q such that q{Risk0(X) − Risk1(X)} = c + γ(X) for some 

constant c, then the optimal rule is to recommend treatment if c + γ(X) > q(δ) or equivalently 

if c − q(δ) + γ(X) > 0. This optimal rule belongs to the class of treatment-selection rules we 

study in this paper.

2.4 Theoretical Results

We consider the problem of minimizing E[|W| × I{sgn(W) × f(X) ≤ 0}], the expectation of 

(4) with respect to a measureable function f, where W is a random variable indicating 

individual-specific weight. We make the following assumptions: (i) f is a measurable 
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function:  → ℝ; (ii) Y ∈ ℝ is bounded; (iii) |W| for W ∈ ℝ is bounded above. Fisher 

consistency of the treatment-selection rule based on minimizing the weighted sum of the 

ramp loss can be derived as shown in Theorem 1.

Theorem 1—For any measureable function f, if f̂ minimizes E[|W| × h{sgn(W) × f(X)}], 

then f ̂ also minimizes E[|W| × I{sgn(W) × f(X) ≤ 0}].

Theorem 1 states that the treatment-selection rule minimizing the weighted sum of ramp loss 

will also minimize the weighted sum of 0–1 loss. The approximation of the 0–1 loss with the 

ramp loss does not affect the best treatment-selection performance. Proof of Theorem 1 is 

shown in Web Supplementary Appendix D.

Furthermore, let f ̂n be the penalized ramp estimator of f proposed in Section 2.1 based on a 

sample size of n; one can show that the weighted sum of ramp loss estimated based on f ̂n is 

consistent for that based on f as presented in Theorem 2.

Theorem 2—For a sequence of λn > 0 such that λn → 0 and λnn → ∞, we have that in 

probability limn→∞{θh(f̂n) − inff ∈ H̄k θh(f)} = 0, where  denotes the closure of  and θh(f) 

= E[|W| × h{sgn(W)f}].

Proof of Theorem 2 is presented in Web Supplementary Appendix E.

2.5 Alternative Estimator of Marker Combinations

In this section, we briefly discuss an alternative way to minimizing the weighted sum of 0–1 

loss in (4) based on the weighted support vector machine technology. Since 

, minimizing the 

weighted sum of 0–1 loss  can be translated into an equivalent 

problem of minimizing a weighted sum of classification error 

, where , the weight for the new classification 

problem, equals |Wi|. In other words, our minimization problem can be formulated into a 

problem of minimizing the weighted sum of classification error where 

 is the true binary classes, sgn{f(Xi)} is the predicted binary class 

based on X, and  is the subject-specific weight. This type of weighted classification error 

problem can thus be resolved using the weighted support vector machine (Lin and Wang, 

2002) based on Xi, , and  (sketched in Web Supplementary Appendix F). The 

outcome-dependent estimator of Zhao et al. (2012) is a special case of this class with 

weights W★ corresponding to the case-only weights W1 (5) in the scenario where δ = 0.

This alternative approach is essentially approximating the 0–1 loss with a hinge loss 

function g(u) = max(0, 1 − u), and minimizing the weighted sum of hinge loss. As shown in 

Figure 1(a), the hinge loss does not approximate the 0–1 loss adequately. Use of a 

suboptimal approximation could compromise the performance of the estimated marker 

combinations. Next, in simulation studies, we include the weighted support vector machine 
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estimator as a comparison estimator. We also assess the impact of different choices of 

weights relative to the outcome-dependent weight adopted in Zhao et al. (2012).

3. Simulation

In this section, we investigate the performance of the proposed estimator that minimizes the 

penalized weighted sum of ramp loss for treatment selection (W-RAMP). For three different 

simulation settings of 1:1 randomized trial, we study two common kernels for combining 

two biomarkers X1 and X2: the linear kernel for finding linear marker combinations and the 

RBF kernel for identifying nonlinear combinations. For each simulation setting, we consider 

the treatment/disease burden ratio δ = 0 and 0.01, and evaluate four different sets of weights: 

a) the case-only weights (W1); b) the control-only weights (W2); c) the average case+control 

weights (W3); and d) the double-robustness weights (W4). Performance of the W-RAMP 

estimators is compared with the common linear logistic regression model and the weighted 

support vector machine (W-SVM) estimators described in Section 2.5. In the linear logistic 

regression, the risk of Y is modeled as a function of the main effect for treatment status and 

for each biomarker, as well as the interaction between treatment status and each biomarker. 

This is also the risk model used for constructing the double-robustness weights. For 

comparison, we also applied the genetic algorithm (W-GENOUD) to find linear marker 

combinations that minimize the weighted sum of 0–1 loss (4) as did in Zhang et al. (2012a).

In each Monte Carlo simulation, a training sample of size n = 100 is generated; 5-fold cross-

validation is used to identify the optimal tuning parameter λn and γ (for RBF kernel) within 

a range of 0 to 5 after  is scaled to be 1; a treatment-selection rule Â(X) is then 

estimated from the training sample using the selected tuning parameter. To evaluate the 

performance of the estimated rule, a test set of n = 100, 000 is generated in each simulation, 

based on which we estimate θ with 

. 

Distribution of the test set performance over 500 Monte-Carlo simulations is evaluated. For 

ease of comparison, here we present the percent reduction in θ using a marker-based rule 

compared to the optimal treatment strategy in the absence of marker information. The latter 

is defined as treating all if the difference in disease prevalence between the untreated and the 

treated is larger than δ, or treating none otherwise.

Setting 1 includes two sub-settings. In the first sub-setting (1A), we simulate two biomarkers 

(X1, X2) from a bivariate normal distribution with mean 0, variance 1 each, and correlation 

0.2. Risk of Y conditional on X1, X2 and T follows a linear logistic model logitP (Y = 1|X1, 

X2, T) = −1.6 − X1 − X2 − T × (2.5 + 2.5X1 + 2.5X2). In the second sub-setting (1B), 10% 

outliers are added to the data, where the outliers consist of independent markers X1, X2 each 

with mean 2 and variance 2, with the risk of Y conditional on X1, X2 and T following a 

logistic model 

. Disease 

prevalences among untreated and treated are 0.244 and 0.236 respectively for setting 1A and 

0.318 and 0.307 respectively for setting 1B.
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Setting 2 also includes two sub-settings. In the first sub-setting (2A), we simulate two 

biomarkers (X1, X2) from a bivariate normal distribution with mean 0, variance 1 each, and 

correlation 0.2. Risk of Y conditional on X1, X2 and T follows a logistic model 

. In the 

second sub-setting (2B), 10% outliers are added where the outliers consist of independent 

markers X1, X2 each with mean 2 and variance 1.5, with the risk of Y conditional on X1, X2 

and T following a logistic model 

. Disease prevalences among untreated and treated are 0.185 and 0.175 respectively for 

setting 2A and 0.192 and 0.190 respectively for setting 2B.

In setting 3, we simulate two independent biomarkers (X1, X2) each from a mixture of 90% 

uniform(−1,1) and 10% uniform (0,2). Risk of Y conditional on X1, X2 and T follows 

logitP(Y = 1|X1, X2, T) = −1+T ×[0.5 − 6X1X2 × I {(X1 > 0&X2 > 0)|(X1 < 0&X2 < 0)}]. 

Disease prevalences among untreated and treated are 0.269 and 0.256 respectively.

Tables 1 shows simulation results for δ = 0. In setting 1A, where the linear logistic model 

holds, the marker combination based on the linear logistic model achieves the largest 

treatment-selection benefit with the highest precision. The performance of the linear W-

RAMP estimator is inferior to the linear logistic model, but significantly better than the 

linear W-SVM estimator (p-value≤ 0.001 comparing θ based on the paired t-test for each set 

of weights). Moreover, the performance of the linear W-SVM estimator is sensitive to the 

choice of weights, with the double-robustness weights greatly outperforming the other three 

sets of weights including the case-only weights. In contrast, the performance of the linear 

W-RAMP estimator is fairly insensitive to the choice of weights. When the RBF kernel is 

used, the double-robustness and the case-only weights work best for both the W-RAMP and 

the W-SVM estimators; the W-RAMP estimator significantly outperforms the W-SVM 

estimator with the double-robustness weights (p-value=0.008 comparing θ based on the 

paired t-test) while the two have comparable performance with respect to the other three 

weights.

With outliers added (settings 1B), linear marker combinations identified by the W-RAMP 

estimator have much improved performance compared to either the linear logistic model or 

the W-SVM. Again, the performance of the W-RAMP is insensitive to the choice of 

weights. Nonlinear marker combinations identified using the RBF kernel have improved 

performance compared to linear marker combinations for W-SVM, with the performance 

comparable between the W-RAMP and the W-SVM.

In setting 2A, where interactions exist between treatment and polynomial marker effect, the 

linear W-RAMP estimator has a sightly better treatment-selection performance compared to 

the linear logistic model, whereas the linear W-SVM estimator has the worst performance. 

With the RBF kernel, both the W-RAMP and the W-SVM estimators have slightly improved 

performance compared to linear marker combinations, especially for the case-only weights 

and the double-robustness weights. The performance is comparable between the W-RAMP 

and the W-SVM. When 10% outliers are added to the data (setting 2B), among linear marker 

combinations, the W-RAMP estimator significantly outperforms the linear logistic model or 
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the linear W-SVM. Using the RBF kernel allowing for nonlinear effect leads to a large 

improvement in treatment-selection benefit compared to the linear kernel with the 

performance comparable between the W-RAMP and the W-SVM.

In setting 3, where the optimal marker combination for treatment selection is highly 

nonlinear, the linear logistic model and the linear W-SVM lead to marker combinations that 

perform worse than the strategy of treating all. The linear W-RAMP estimator, in contrast, 

still has better performance compared to treating all. The RBF kernel improves the 

performance over linear kernel for both the W-RAMP and the W-SVM estimators with 

performance similar between the two.

For finding linear combinations, the relative performance of the W-RAMP and the W-

GENOUD varies with the weights and settings, but overall the two seem to have comparable 

performance. Computation times for W-GENOUD, W-RAMP, and W-SVM are around 4.6, 

0.3, and 0.1 sec respectively for a training size of 100.

Tables 2 shows simulation results for δ = 0.01. The pattern for comparing different 

estimators is fairly similar to that in Table 1. In general, linear marker combinations derived 

from the proposed W-RAMP estimator have greater performance compared to those from 

the linear W-SVM. With the presence of nonlinear effect or outlying observations, using a 

nonlinear kernel such as the RBF kernel improves the performance of the W-RAMP or the 

W-SVM. The performance of the two algorithms using the RBF kernel are comparable in 

various simulations when tuning is performed using 5-fold CV.

In Supplementary Tables 1 and 2 we show additional simulation results where an 

independent tuning set of size 1000 is generated in each Monte Carlo simulation, reflecting 

an “ideal” setting where there is little uncertainty in choosing tuning parameters. Under this 

kind of “ideal” tuning, appreciable improvement in performance of both the W-RAMP and 

the W-SVM are observed compared to 5-fold CV for tuning, with the W-RAMP in general 

performing significantly better than the W-SVM using both the linear and the RBF kernel. 

The potential of using better tuning methods to improve the performance of the W-RAMP 

merits further investigation.

4. Data Example

We illustrate the proposed estimators of marker combinations with a real example from an 

HIV vaccine study. As a prevention measure, vaccines typically have low cost related to 

treatment, thus we set δ = 0. The example comes from the RV144 Thailand HIV vaccine 

trial, the first HIV vaccine trial that demonstrates a positive vaccine efficacy in preventing 

HIV infection (with an estimated hazard ratio of vaccine vs placebo of 31.2% and p-value 

0.04). The trial included 16,402 participants aged 18–30 who were 1:1 randomized into a 

vaccine and a placebo arm (Rerks-Ngarm et al., 2009).

A followup RV144 host-genetic study was conducted to investigate the effect of genotypes 

of Fc receptor gene on vaccine efficacy. Overall 148 single nucleotide polymorphisms 

(SNPs) covering five Fc-γ receptor genes Fc-γR2a, Fc-γR2b, Fc-γR2c, Fc-γR3a, and Fc-

γR3b, and 42 SNPs covering the Fc-α receptor gene were genotyped on 125 cases (74 
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placebo recipients and 51 vaccine recipients), and 225 controls (20 placebo recipients and 

205 vaccine recipients). After exclusion of SNPs with minor allele frequency less than 5% 

and SNPs highly correlated with one another (with Pearson correlation greater than 0.80), 

four SNPs, each categorized into a binary variable, were identified to have significant 

interactions with the vaccination status based on the univariate case-only analysis (Li et al., 

2014).

Here we explore combinations of the four SNPs to recommend the use of vaccine in order to 

minimize the rate of HIV infection in the population. We consider the following five 

treatment strategies: (i) the strategy of not vaccinating anyone; (ii) the strategy of 

vaccinating everyone; (iii) the strategy of selective vaccinating based on a linear logistic 

model selected using the Akaike Information Criteria (AIC) defined as 2× number of 

parameters −2×log(likelihood), where the predictors considered are the main effects for 

treatment and for each SNP and the interaction between treatment and each SNP; and iv) the 

W-RAMP estimator for four different set of weights (where the linear logistic risk model as 

in (iii) is used to construct the double-robustness weights); and (v) the W-SVM estimator. 

For the W-RAMP and the W-SVM, we consider both the linear and the IBS kernel, and use 

5-fold CV for tuning parameter selection. Based on the entire dataset, the tuning parameter 

identified, and corresponding estimated treatment-selection rules using the linear W-RAMP 

and the linear W-SVM are presented (Web supplementary Table 3). Also presented is the 

estimated treatment-selection rule based on the logistic regression model.

In Table 3, we show estimated performance of these different strategies for deriving 

treatment-selection rules. Naive estimates of θ are obtained by applying the treatment-

selection rule estimated using the full dataset to the same data. Moreover, a random cross-

validation procedure is performed for the computation of θ correcting for overfitting bias. In 

particular, the data are randomly split into five folds stratified on the disease and the 

treatment status, 4 folds for training and the remaining 1 fold for testing. Based on each 

random training subset, a 5-fold CV is performed to select the tuning parameter specific for 

the subset, which is then used to derive a treatment-selection rule using the random training 

subset; the estimated rule is then applied to the random test subset to estimate θ. The 

procedure is repeated 100 times with the average θ computed. In Table 3, we present both 

the naive and the cross-validated estimates of θ. Percentile bootstrap confidence intervals are 

provided for those measures. In the bootstrap procedure, 100 resamplings are performed 

stratified on the disease and the treatment status; the procedure of computing the naive and 

the cross-validated θ estimates is then applied to each resampled data.

From Table 3, the strategy of treating none and treating all lead to an estimated HIV 

infection rate of 9.26 and 6.41 per 1000 persons respectively, consistent with the positive 

vaccine efficacy we observed in the RV144 trial. Severe over-optimism is observed in naive 

estimates of marker-based treatment-selection performance. For most methods, the naive 

estimates show reduced HIV infection rate compared to the treating all strategy. After using 

cross-validation procedure to correct for the overfitting bias, the proposed W-RAMP 

estimator with either the linear or the IBS kernel and the case-only weights lead to reduced 

HIV infection rates: 5.74 per 1000 persons (95% CI: 4.02 to 6.71) for linear and 5.68 per 

1000 persons (95% CI: 4.11 to 6.75) for IBS, compared to 6.57 per 1000 persons (95% CI: 
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4.94 to 7.82) for the treating all strategy. For comparison, the logistic model selected by AIC 

has θ estimate 6.80 (95% CI: 5.41 to 7.99) per 1000 persons, which is 3.5% above treating-

all; the best W-SVM estimators (with the linear or IBS kernel and the case-only weights) 

have θ values fairly close to treating all. Using the W-RAMP with the case-only weights, 

58.2% (95% CI: 45.8% to 73.8%) and 58.6% (95% CI: 44.2% to 73.3%) subjects will be 

recommended for vaccination based on cross-validation, using the linear and the IBS kernel 

respectively.

5. Discussion

We proposed a general framework for deriving the optimal treatment-selection strategy 

using biomarkers, towards the goal of minimizing the total disease and treatment burden to 

the population. The proposed estimation method has an attribute similar to the work of 

Zhang et al. (2012a) and Zhao et al. (2012) in that the optimal marker combination is 

identified through directly minimizing an unbiased estimate of the criterion function, and 

thus is more robust to model misspecification than standard regression-based methods.

Direct minimization of an estimated criterion function poses high computational challenges 

due to the involvement of a non-convex 0–1 loss function. To address this issue, we 

proposed the use of the difference of convex functions algorithm to minimize a penalized 

weighted sum of ramp loss. The ramp loss serves as an approximation to the 0–1 loss. It is 

demonstrated to 1) be a more precise approximation than the hinge-loss approximation 

underlying the standard support vector machine methods; and 2) lead to better or 

comparable estimators of marker combinations in various scenarios. For binary disease 

outcomes, we found the performance of the ramp estimator to be relatively insensitive to the 

choice of weights, with the case-only and the double-robustness weights performing best 

overall, and we therefore recommend the use of the two kinds of weights in practice. The 

good performance of the case-only weights is appealing when the criterion function to be 

optimized is the average disease rate, since the computation of the case-only weights in this 

scenario requires only measurements of markers among case samples and is thus cost-

effective under limited resources.

As mentioned in Section 2.1, unlike the case of δ = 0, in the presence of positive δ, the 

optimal treatment-selection rule can not be represented as a simple function of the main 

treatment effect and the marker-treatment interaction in the disease risk model. This makes 

the modeling of the marker combination more challenging and calls for greater flexibility in 

estimation methods. Our proposed kernel-estimator is appealing given its ability to allow for 

flexible modeling of marker combinations. In practice, it is necessary to put the disease 

burden and the treatment burden on the same scale to determine δ. For example, as in 

Rapsomaniki et al. (2012), if one can associate a monetary cost with the reduction in the rate 

of the targeted disease through treatment, and a monetary cost with treatment (including the 

cost of conducting the procedure and the cost due to secondary events), then δ can be 

computed as the rate of the latter relative to the former. In practice, a series of δ might also 

be chosen for sensitivity analysis. More detailed investigation is warranted for evaluating the 

performance of our estimators in the presence of positive cost ratios.
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Finally, note that Janes et al. (2013) considers a more general decision-theoretical approach 

that allows the burden of disease and treatment to vary with biomarkers. The framework in 

Vickers et al. (2007) is a special case of this general formulation assuming these burdens do 

not depend on the marker value. The method developed in the paper, however, can be 

readily extended to address the general situation through specification of utility parameters 

that character the association between biomarkers and the disease and treatment burdens.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Different approximations of the 0–1 loss function. (b) Representing the ramp loss as the 

difference of two convex functions.
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