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Identifying Oscillatory Hyperconnectivity and
Hypoconnectivity Networks in Major Depression

Using Coupled Tensor Decomposition
Wenya Liu , Xiulin Wang , Student Member, IEEE, Jing Xu, Yi Chang,

Timo Hämäläinen , Senior Member, IEEE, and Fengyu Cong, Senior Member, IEEE

Abstract— Previous researches demonstrate that major
depression disorder (MDD) is associated with widespread
network dysconnectivity, and the dynamics of functional
connectivity networks are important to delineate the neural
mechanisms of MDD. Neural oscillations exert a key role
in coordinating the activity of remote brain regions, and
various assemblies of oscillations can modulate differ-
ent networks to support different cognitive tasks. Studies
have demonstrated that the dysconnectivity of electroen-
cephalography (EEG) oscillatory networks is related with
MDD. In this study, we investigated the oscillatory hyper-
connectivity and hypoconnectivity networks in MDD under
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a naturalistic and continuous stimuli condition of music
listening. With the assumption that the healthy group and
the MDD group share similar brain topology from the same
stimuli and also retain individual brain topology for group
differences, we applied the coupled nonnegative tensor
decomposition algorithm on two adjacency tensors with the
dimension of time × frequency × connectivity × subject,
and imposed double-coupled constraints on spatial and
spectral modes. The music-induced oscillatory networks
were identified by a correlation analysis approach based
on the permutation test between extracted temporal factors
and musical features. We obtained three hyperconnectivity
networks from the individual features of MDD and three
hypoconnectivity networks from common features. The
results demonstrated that the dysfunction of oscillatory
networks could affect the involvement in music percep-
tion for MDD patients. Those oscillatory dysconnectivity
networks may provide promising references to reveal the
pathoconnectomicsof MDD and potentialbiomarkers for the
diagnosis of MDD.

Index Terms— Dynamic functional connectivity, coupled
tensor decomposition, major depression disorder, natural-
istic music stimuli, oscillatory networks.

I. INTRODUCTION

M
AJOR depression disorder (MDD) is a globally com-

mon psychiatric disorder characterized by deficits of

affective and cognitive functions [1]–[3]. It is almost a con-

sensus to researchers that MDD is accompanied by abnormal

functional connectivity (FC) between some brain regions, like

cortical regions in the default mode network (DMN), rather

than the aberrant response of individual brain regions [3]–[6].

Music therapy is associated with improvements in mood,

which has made it an attractive tool for MDD treatment [7].

Previous studies have suggested that the oscillatory asymmetry

and dysconnectivity could be the potential biomarkers of MDD

during music perception [8]–[10].

An increasing amount of researches have demonstrated that

FC presents the potential of temporal variability across differ-

ent time-scales (from milliseconds to minutes) to support con-

tinuous cognitive tasks. This is termed as dynamic functional

connectivity (dFC), and it represents the processes by which

networks and subnetworks coalesce and dissolve over time, or

cross-talk between networks [11]–[13]. Recently, researches

have reported abnormal dFC of specific brain regions and
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neural networks in MDD using resting-state functional Mag-

netic Resonance Imaging (RS-fMRI) [3], [5], [13], [14]. For

example, Demirtas et al. found a decreased variability of FC

in the connections between the DMN and the frontoparietal

network [5]. Kaiser et al. showed that MDD patients presented

decreased dFC between medial prefrontal cortical (MPFC)

regions and regions of parahippocampal gyrus within the

DMN, but increased dFC between MPFC regions and regions

of insula. They showed that MDD was related to abnormal

patterns of fluctuating communication among brain systems

involved in regulating attention and self-referential thinking

[13]. The decreased dFC variability was reported between

anterior DMN and right central executive network (CEN) in

MDD, which indicated a decreased information processing and

communication ability [14]. Existing researches about dFC

in MDD mostly focus on resting-state conditions. However,

little is known about the abnormalities of dFC during music

listening conditions.

Benefiting from the high temporal resolution, electroen-

cephalography (EEG) can record electrical brain activity

dynamics at a millisecond scale with rich frequency contents.

The oscillation acts as a bridge to connect different brain

regions with resonant communication, which can regulate

changes of neuronal networks and cause qualitative transitions

between modes of information processing [15]–[17]. Impaired

coordination of brain activity associated with abnormal elec-

trophysiological oscillations contributes to the generation of

psychaitric disorders [18]. Numerous studies have investigated

EEG oscillatory FC of MDD in resting-state, and dyscon-

nectivity networks are mostly notable in theta, alpha and

beta oscillations [16], [19], [20]. However, most previous

studies filter EEG signals into a range of frequency bands

(e.g., 8-13 Hz for the alpha band), and ignore the exhaus-

tive spectral dynamics in FC [19], [20]. Music perception

is a complex cognitive task, which is characterized with

dynamics of frequency-specific brain networks for musical

features processing [21]–[25]. To the best of our knowledge,

the oscillatory dFC in MDD during music perception has not

been well investigated yet.

Considering the temporal dynamics and spectral modula-

tions of spatial couplings (e.g., functional connectivity) for

multiple participants in a cognitive task, a multi-way dataset

structure is naturally formed. This multi-dimensional nature

points to the adoption of tensor decomposition models instead

of matrix decomposition models, which normally fold some

dimensions and ignore the hidden interactions across different

modes [24], [26]–[29]. Canonical Polyadic (CP) decompo-

sition is derived in terms of the sum of multiple rank-one

tensors, and each rank-one tensor represents the covariation

of the corresponding components from each mode [30], [31].

The CP decomposition is well implemented into the extrac-

tion of multi-mode EEG features from the multiway dataset

(e.g., channel × frequency × time × subject) [31]–[34].

Recently, Zhu et al. applied CP decomposition to explore

the task-related dFC characterized by spatio-temporal-

spectral modes of covariation from the adjacency tensor

(connectivity × time-subject × frequency) [23], [35]. How-

ever, those applications only focus on the decomposition of

one single tensor, which are based on the assumption that

the underlying spatio-spectral features are consistent among

subjects or groups [25], [29]. Coupled tensor decomposition

(CTD), the extension of tensor decomposition to multiple

block tensors, enables the simultaneous extraction of common

features shared among tensors and individual features specified

for each tensor. For biomedical data, the coupled matrix,

matrix-tensor or tensor decomposition (also known as linked

component analysis) are mostly used for data fusion [36]–[38].

However, to the best of our knowledge, no studies have used

CTD to investigate the pathologic networks of MDD or other

psychiatric disorders.

In our study, we applied a low-rank double-coupled non-

negative tensor decomposition (DC-NTD) model to explore

the temporal and spectral dynamics of spatial couplings in

MDD during music listening. The proposed analysis pipeline

is totally data-driven. We analyzed the whole-brain FC to avoid

prior knowledge about regions of interest, and we investigated

the exhaustive assemblies of oscillations to avoid the selection

of the frequency range. Figure 1 shows the diagram of the

analysis pipeline of this study.

In this paper, scalars, vectors, matrices and tensors are

denoted by lowercase, boldface lowercase, boldface upper-

case and boldface script letters, respectively, e.g., x , x,

X , X . Indices range from 1 to their capital version,

e.g., i = 1, · · · , I .

II. MATERIALS AND METHODS

A. Simulated Data

To validate the feasibility of the proposed method, we firstly

applied it on the simulated data. Two tensors with the size

of 500 × 59 × 2278, representing time × frequency ×

connectivity, were created as follows:

X 1 = X̃ 1 + N 1

= t1 ◦ f1 ◦ c1 + t2 ◦ f2 ◦ c2 + t3 ◦ f3 ◦ c3 + N 1, (1)

X 2 = X̃ 2 + N 2

= t4 ◦ f1 ◦ c1 + t5 ◦ f2 ◦ c2 + t6 ◦ f4 ◦ c4 + N 2, (2)

where X̃ m, m = 1, 2 represented the ground truth networks,

and N n, n = 1, 2 were the nonnegative noise created by

the absolute values of white noise with the size of 500 ×

59 × 2278. In the time domain, each temporal component

ti , i = 1, 2, · · · , 6 was simulated by the absolute value of

white noise to ensure the nonnegativity of the synthetic tensor

X , and no coupled temporal component existed between two

tensors. In the frequency domain, four spectral components

f j , j = 1, 2, · · · , 4 were constructed by Hanning windows

and white noise with bandwidth centered at 5 Hz, 10 Hz,

15 Hz and 20 Hz, and two spectral components were set to

be coupled between two tensors. In the adjacency domain,

four adjacency components ck, k = 1, 2, · · · , 4, representing

auditory network (AUD), visual network (VIS), salience net-

work (SAN), and dorsal attentional network (DAN), were con-

structed with the Desikan-Killiany anatomical atlas according

to Kabbara’s work [39], and two adjacency components were

coupled between two tensors. The synthetic data were shown

in Figure 2(a).
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Fig. 1. Diagram of the analysis pipeline. (a) Adjcency matrix construction in each time window and each frequency bin. After source reconstruction,
the cortical signals were segmented by overlapping time windows, and wavelet transform was applied for each time course within each time window.
Phase lag index was used to obtain the adjacency matrix for each time window and each frequency bin. (b) Adjacency tensor construction and
decomposition. A 4-D adjacency tensor was constructed for each group with the dimension of time × frequency × connectivity × subject, and
coupled tensor decomposition was implemented with coupled constraints in spectral and adjacency modes. The 4-D core tensor is superdiagonal
with values of 1. (c) The identification of hyperconnectivity and hypoconnectivity networks by music modulation. Five musical features were extracted
with MIR toolbox from tango music, and correlation analysis was conducted between musical features and decomposed temporal factors to identify
music-induced brain networks. Hyperconnectivity and hypoconnectivity networks were summarized from the results of music modulation.

B. EEG Data Description

1) Participants: Twenty MDD patients and nineteen healthy

controls (HC) participated in this experiment. All the patients

were from the First Affiliated Hospital of Dalian Medical

University in China. This study has been approved by the

ethics committee of the hospital, and all participants signed

the informed consent before their enrollment. None of the

participants has reported hearing loss and formal training in

music. All the MDD patients were primarily diagnosed by

a clinical expert and tested according to Hamilton Rating

Scale for Depression (HRSD), Hamilton Anxiety Rating Scale

(HAMA) and Mini-Mental State Examination (MMSE). The

means and standard deviations (SD) of age, education, clinical

measures, duration of illness and gender for both groups were

listed in Table I.

2) EEG Data: During the experiment, participants were told

to sit comfortably in the chair and listen to a piece of music.

A 512-second musical piece of modern tango Adios Nonino by

Astor Piazzolla was used as the stimulus due to its rich musical

structure and high range of variation in musical features such

as dynamics, timbre, tonality and rhythm [21], [40]. The

EEG data were recorded by the Neuroscan Quik-cap device

with 64 electrodes arranged according to the international

10-20 system at the sampling frequency of 1000 Hz. The

electrodes placed at the left and right earlobes were used as

the references.

TABLE I

MEANS AND STANDARD DEVIATIONS OF AGE, EDUCATION, CLINICAL

MEASURES, DURATION OF ILLNESS AND GENDER FOR THE

HC GROUP AND THE MDD GROUP

The data were visually checked to remove obvious artifacts

from head movement and down-sampled to f s = 256 Hz

for further processing. Then 50 Hz notch filter and high-

pass and low-pass filters with 1 Hz and 30 Hz cutoff were

applied. We interpolated the bad intervals of one channel by
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the mean values of their spherical adjacent channels. Eye

movements artifacts were rejected by independent component

analysis (ICA).

3) Musical Features: In this study, two tonal and three

rhythmic features were extracted by a frame-by-frame analysis

approach using MIR toolbox [41]. The duration of each frame

was 3 seconds, and the overlap between two adjacency frames

was 2 seconds. Therefore, we got 510 samples for the time

courses of each musical feature at a sampling frequency

of 1 Hz. In this study, we only used the first T = 500 samples

of each musical feature due to the length of recorded EEG

data. Tonal features include Mode and Key Clarity, which

represent the strength of major of minor mode and the mea-

sure of tonal clarity, respectively. Rhythmic features include

Fluctuation Centroid, Fluctuation Entropy, and Pulse Clarity.

Fluctuation centroid is the geometric mean of the fluctuation

spectrum representing the global repartition of rhythm period-

icities within the range of 0–10 Hz. Fluctuation Entropy is the

Shannon entropy of the fluctuation spectrum representing the

global repartition of rhythm periodicities. Pulse Clarity is an

estimate of clarity of the pulse.

C. Source Reconstruction

Source reconstruction procedure was performed with open-

source Brainstorm software [42]. For forward modeling, we

used the symmetric boundary element method (BEM) to

compute the volume-conductor model with the MNI-ICBM152

template corresponding to a grid of 15000 cortical sources. For

source modeling, minimum norm estimate (MNE) was applied

with a measure of the current density map and constrained

dipole orientations (normal to cortex). Then, the Desikan-

Killiany anatomical atlas was used to parcellate the cortical

surface into C = 68 regions, and the principal component

analysis (PCA) method was performed to construct the time

course for each brain region.

D. Dynamic Functional Connectivity

Many studies have reported that the communication of brain

regions or neural populations depends on phase interactions

for electrophysiological neuroimaging techniques, like EEG

[43]. To avoid source leakage, the pairwise synchronization

was estimated by PLI to map the whole-brain FC [44]. In

this study, to assess the dFC across both time and frequency,

we segmented the source-space data into W = 500 windows

by the sliding window technique with a window length of 3 s

and an overlap of 2 s according to the extraction framework of

musical features. Then, we computed the time-frequency (TF)

decomposition within each time window by the continuous

wavelet transform with Morlet wavelets as basis function .

We set the frequency bins as 0.5 Hz, and obtained F = 59

samples in frequency domain in the range of 1-30 Hz.

For the time window w, we can get the complex TF

representation Pw ∈ R
Tw×F from wavelet transform, where

Tw = 3 f s, and the time and frequency-dependent phase at

time tw and frequency f can be obtained by

ϕ(tw, f ) = arctan
imag(Pw(tw, f ))

real(Pw(tw, f ))
, (3)

where imag() and real() represent the imaginary part and the

real part of a complex value, respectively. For brain regions i

and j , PLI can be computed as

P L Ii, j (w, f ) =
1

Tw

∣

∣

∣

∣

∣

∣

Tw
∑

tw=1

sign(△ϕi, j (tw, f ))

∣

∣

∣

∣

∣

∣

, (4)

where △ϕi, j (tw, f )) = ϕi (tw, f ) − ϕ j (tw, f ) is the phase

difference of brain regions i and j at time tw and frequency f

in time window w. Therefore, for each time window and each

frequency point, we can form an adjacency matrix A ∈ R
C×C ,

where C means the number of brain regions. Because of the

symmetry of FC matrix, we took the upper triangle of A and

vectorized it to a ∈ R
N×1 , where N = C(C − 1)/2 = 2278

represents the number of unique connections. Then, we can

construct two adjacency tensors with the dimension of time ×

frequency × connectivity × subject, X HC ∈ R
W×F×N×SHC

(500 × 59 × 2278 × 19) for the HC group and X MDD ∈

R
W×F×N×SMDD (500 × 59 × 2278 × 20) for the MDD group,

where SHC = 19 and SMDD = 20 mean the number of subjects

in the HC group and the MDD group, respectively.

E. The Application of Low-Rank Coupled Tensor
Decomposition

Considering the high computation load, the nonnegativity

of the tensors (constrained to [0,1] due to PLI index) and high

correlations in spatial and spectral modes, we applied a low-

rank DC-NTD model which was more flexible to add desired

constraints.

1) Low-Rank Coupled Tensor Decomposition: With the con-

structed tensors X HC ∈ R
W×F×N×SHC and X MDD ∈

R
W×F×N×SMDD , the corresponding CP decomposition can be

represented as X HC ≃
∑RHC

r=1 u
(1)
r ◦ u

(2)
r ◦ u

(3)
r ◦ u

(4)
r =

[[U(1), U
(2), U

(3), U
(4)]] and X MDD ≃

∑RMDD

r=1 v
(1)
r ◦ v

(2)
r ◦

v
(3)
r ◦ v

(4)
r = [[V (1), V

(2), V
(3), V

(4)]], where ◦ denotes the

vector outer product. u
(n)
r and v

(n)
r denote the r th component

of factor matrices U
(n) and V

(n), n = 1, 2, 3, 4, in the

modes of time, frequency, connectivity and subject for two

groups. RHC and RMDD are the ranks of X HC and X MDD,

respectively. Considering the nonnegativity of constructed

tensors and the coupled constraints in spectral and adjacency

modes, we formulate it as a double-coupled nonnegative tensor

decomposition (DC-NTD) model, where X HC and X MDD can

be jointly analyzed by minimizing the following objective

function:

J (u
(n)
r , v(n)

r )

= ‖X HC −

RHC
∑

r=1

u
(1)
r ◦ u

(2)
r ◦ u

(3)
r ◦ u

(4)
r ‖2

F

+‖X MDD −

RMDD
∑

r=1

v
(1)
r ◦ v

(2)
r ◦ v

(3)
r ◦ v

(4)
r ‖2

F

s.t. u
(2)
r = v

(2)
r (r ≤ L f ), u

(3)
r = v

(3)
r (r ≤ Lc). (5)

‖ · ‖F denotes the Frobenius norm. L f and Lc denote the

number of components coupled in spectral and adjacency

modes, and L f,c ≤ min(RHC, RMDD). The fast hierarchical
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alternative least squares (FHALS), an accelerated version of

the hierarchical alternative least squares (HALS) algorithm,

has been effectively applied to a number of (coupled) tensor

decomposition problems [25], [45], [46]. In this study, we

apply the FHALS algorithm to optimize the DC-NTD problem

in (5), and introduce the low-rank approximation to reduce

computational complexity [47], [48].

Through the FHALS algorithm, the minimization problem

in (5) can be converted into max(RHC, RMDD) rank-1 subprob-

lems, which can be solved sequentially and iteratively. We take

the r th subproblem as an example:

min Jr = ‖YHC
r − u

(1)
r ◦ u

(2)
r ◦ u

(3)
r ◦ u

(4)
r ‖2

F

+‖YMDD
r − v

(1)
r ◦ v

(2)
r ◦ v

(3)
r ◦ v

(4)
r ‖2

F , (6)

where YHC
r

.
= X HC−

∑RHC

k �=r u
(1)
k ◦u

(2)
k ◦u

(3)
k ◦u

(4)
k and YMDD

r
.
=

X MDD −
∑RMDD

k �=r v
(1)
k ◦ v

(2)
k ◦ v

(3)
k ◦ v

(4)
k . When calculating one

of the variables, we need to fix the other variables and let the

corresponding derivative be zero. For example, to determine

u
(n)
r , we let ∂Jr/∂u

(n)
r be zero, and then we can obtain the

following solution:

u
(n)
r = Y

HC
r,(n)

[

ur

]⊙−n /
[

ur
T

ur

]⊛−n , (7)

where Y
HC
r,(n) is the mode-n matricization of YHC

r . ⊙ and ⊛

denote the Khatri-Rao product and Hadamard (element-wise)

product.
[

ur

]⊙−n = u
(4)
r ⊙· · ·⊙u

(n+1
r )⊙u

(n−1
r )⊙· · ·⊙u

(1)
r and

[

ur
T

ur

]⊛−n =
(

[ur ]
⊙−n

)T
[ur ]

⊙−n . Taking Y
HC
r,(n) = X

HC
(n) −

U
(n)[U⊙−n ]T + u

(n)
r [u

⊙−n
r ]T into (7), we can get

u
(n)
r = u

(n)
r +

[

X
HC
(n) u

⊙−n
r − U

(n)
Ŵ

(n)
r

]

/Ŵ
(n)
(r,r), (8)

where X
HC
(n) is the mode-n matricization of X HC and

Ŵ
(n) =

[

U
T

U
]⊛−n . Suppose that the rank-R̃HC approxima-

tion of X HC obtained by unconstrained tensor factorization

is expressed as [[Ũ
(1)

, Ũ
(2)

, Ũ
(3)

, Ũ
(4)

]], R̃HC ≤ RHC, thus

the mode-n unfolding of X HC can be written as X
HC
(n) =

Ũ
(n)

[

Ũ
⊙−n

]T

. Therefore, the learning rule of u
(n)
r can be

reformulated as follows:

u
(n)
r = u

(n)
r +

[

Ũ
(n)

Ŵ̃
(n)

r − U
(n)

Ŵ
(n)
r

]

/Ŵ(r,r), (9)

where Ŵ̃
(n)

= [Ũ
T

U]⊛−n . Analogously, we can obtain the

learning rule of v
(n)
r as follows:

v
(n)
r = v

(n)
r +

[

Ṽ
(n)

�̃
(n)

r − V
(n)

�
(n)
r

]

/�
(n)
(r,r), (10)

where �
(n) =

[

V
T

V
]⊛−n and �̃

(n)
= [Ṽ

T
V ]⊛−n .

The rank-R̃MDD approximation of X MDD is expressed as

[[Ṽ
(1)

, Ṽ
(2)

, Ṽ
(3)

, Ṽ
(4)

]], R̃MDD ≤ RMDD. Specially, if r ≤

L f , u
(2)
r = v

(2)
r and if r ≤ Lc, u

(3)
r = v

(3)
r , thus their solutions

should be calculated as:

u
(2)
r = v

(2)
r

= u
(2)
r +

[

Ũ
(2)

Ŵ̃
(2)

r −U
(2)

Ŵ
(2)
r +Ṽ

(2)
�̃

(2)

r −V
(2)

�
(2)
r

]

/
[

Ŵ
(2)
(r,r)+�

(2)
(r,r)

]

, (11)

and

u
(3)
r = v

(3)
r

= u
(3)
r +

[

Ũ
(3)

Ŵ̃
(3)

r −U
(3)

Ŵ
(3)
r +Ṽ

(3)
�̃

(3)

r −V
(3)

�
(3)
r

]

/
[

Ŵ
(3)
(r,r)+�

(3)
(r,r)

]

, (12)

In order to obtain the nonnegative components, a simple

“half-rectifying” nonlinear projection is applied. We update

u
(n)
r and v

(n)
r successively in each subproblem, and the

max(RHC, RMDD) subproblems are optimized alternatively one

after another until convergence. In this study, we adopt alter-

nating least squares (ALS, [49]) algorithm to perform low-

rank approximation. The FHALS-based DC-NTD algorithm

is summarized in Algorithm 1.

Algorithm 1 DC-NTD-FHALS Algorithm

Input: X HC, X MDD, L f , Lc, RHC, RMDD, R̃HC, R̃MDD

1 Initialization: U
(n), V

(n), n = 1, 2, 3, 4

2 Calculate Ũ
(n)

, Ṽ
(n)

, n = 1, 2, 3, 4 via unconstrained

ALS

3 while unconvergence do

4 for n = 1, 2, · · · , 4 do

5 for r = 1, 2, · · · max(RHC, RMDD) do

6 Update u
(n)
r , u

(n)
r via (9), (10), (11) and (12)

7 end

8 end

9 end

Output: U
(n), V

(n), n = 1, 2, 3, 4

2) Selection of Components: In this section, we will describe

how to determine the number of totally extracted components

RHC and RM D D , which refers to the hidden information in

low-dimensional space for each block data, and the number

of coupled components L f and Lc, which reveal the common

features between two-block data. For the selection of RHC and

RM D D, we performed PCA on the matricization data X(3) ∈

R
F×W N S unfolded along frequency mode for each block data,

and kept the number of components with 95% explained

variance. The selection of the number of coupled components

is a key issue for the conduction of the DC-NTD-FHALS algo-

rithm and the explanation of results, and it always becomes

an open issue depending on practical applications. In this

study, we performed the fourth-order CP tensor decomposition

based on the FHALS algorithm on two-block data separately,

and calculated the correlation maps of extracted components

between two-block data in spectral and adjacency modes,

respectively. According to the correlation maps, we will select

the number of highly correlated (coupled) components. The

detailed implication procedure will be described in the results

section.

F. Identification of Music-Induced Hyperconnectivity and
Hypoconnectivity Networks

After the conduction of the low-rank DC-NTD-FHALS

algorithm, we need to identify the music-induced oscillatory
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Fig. 2. Simulation illustration. (a) Three spatio-temporal-spectral patterns were simulated for two groups, and the first two patterns were identical
in adjacency and spectral modes. (b) The reconstructed spatio-temporal-spectral patterns.

networks that are abnormal involved in the MDD group. We

conducted a correlation analysis approach between temporal

factors and five musical features with Pearson correlation

based on the permutation test method. To ensure the statistical

significance of the correlation and consider the problem of

multiple comparison, the Monte Carlo method and permu-

tation test were applied to compute a significant threshold

of correlation for each musical feature [21]–[23], [25]. For

the time course of each musical feature, we kept the real

part and replaced the imaginary part with random uniformly

distributed phases, and performed Pearson correlation with

the time courses of the extracted temporal components. Then,

we repeated this procedure 100000 times, and obtained the

threshold for each musical feature at a significant level of

pcorrected < 0.05.

The coupled spectral and adjacency components are com-

mon features between CON and MDD groups, and the

remaining components are individual features of each group.

The oscillatory networks among common features that are

involved in music perception in the HC group but not in the

MDD group are identified as hypoconnectivity networks, and

the oscillatory networks among individual features that are

involved in music perception in the MDD group are identified

as hyperconnectivity.

III. RESULTS

A. Results of Simulated Data

We implemented the low-rank DC-NTD-FHALS algorithm

on the synthetic data, and we set SN R = 15, L f = Lc = 2,

Fig. 3. Correlation analysis of the spectral factor and the adjacency
factor extracted from the 4-D tensor decomposition for each block data.

and RHC = RMDD = 3. The extracted temporal, spectral and

adjacency factors were shown in Figure 2(b). We ran 10 times

of the low-rank DC-NTD-FHALS algorithm, and we obtained

stable decomposition results with an averaged tensor fit of

0.864 and an averaged running time of 113.27 seconds.

B. Results of EEG Data

Through PCA analysis on the unfolded data along the spec-

tral mode for two-block data, we extracted RHC = RM D D =

27 components for both HC group and MDD group. Then we

performed the fourth-order CP tensor decomposition on each

block data, and computed the correlation maps of spectral and

adjacency factors between two groups, as shown in Figure 3.

According to the correlation maps, we set the number of

coupled components in the spectral mode L f = 25 and the

number of coupled components in the adjacency mode Lc = 7.

We ran 20 times of the low-rank DC-NTF-FHALS algorithm,
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Fig. 4. Three oscillatory hyperconnectivity networks. (a) Adjacency matrix representation of the network. The 68 brain regions are ordered from the
left hemisphere to the right hemisphere. Within each hemisphere, the brain regions are arranged in the order of frontal lobe, temporal lobe, parietal
lobe, and occipital lobe, as indicated in red, yellow, green, and blue color, respectively. Within each lobe, the brain regions are ordered according
to their y-location from anterior regions to posterior regions. (b) The spectral component of the network. (c) Cortical space representation of the
network in Lateral, medial and dorsal view. The networks I, II, and III are related to the musical features of Fluctuation Centroid, Fluctuation Centroid,
and Key Clarity, respectively.

and the averaged running time was 12616 seconds. The

running time was 63819 seconds by one implementation of the

DC-NTF-FHALS algorithm without the low-rank approxima-

tion, which indicated that the low-rank approximation could

greatly reduce the computational load.

After applying the low-rank DC-NTF-FHALS algorithm

and correlation analysis with musical features, we summarized

the results of 20 times of implementation and obtained three

oscillatory hyperconnectivity networks, as shown in Figure 4,

and three oscillatory hypoconnectivity networks, as shown in

Figure 5. For hyperconnectivity networks, Figure 4I shows a

right hemisphere dominated network modulated by oscillations

of alpha and beta (10-16 Hz) bands and the musical feature

of Fluctuation Centroid. The strong connections of this net-

work connect the core regions of DMN, including medial

prefrontal cortex (mPFC), precuneus cortex, and posterior

cingulate cortex (PCC). Figure 4II indicates a left auditory-

related network modulated by delta oscillations and the Fluc-

tuation Centroid feature. An aberrant delta-specific prefrontal

network is identified, which is related to the musical feature

of Key Clarity, as shown in Figure 4III. For hypoconnectiv-

ity networks, Figure 5I and Figure 5II exhibit fronto-parietal

networks which are mainly related to attention control. The

fronto-parietal networks are modulated by oscillations of 8-

14 Hz and 10-19 Hz and musical features of Mode and

Fluctuation Entropy, respectively. Figure 5III shows a low-

frequency (delta oscillations) modulated prefrontal network

which is significantly related to the musical feature of Mode,

and this network is implicated in complex cognitive functions.

IV. DISCUSSION

As far as we know, this study is the first attempt to

investigate the aberrant dFC across temporal evolution and

spectral modulation in MDD during music listening based on

a coupled tensor decomposition approach. This study proposed

a comprehensive framework to extract the FC networks charac-

terized by spatio-temporal-spectral modes of covariation. We

summarized three overactive oscillatory networks and three

underactive oscillatory networks according to the analysis of

musical modulations.

MDD is characterized with imbalanced communica-

tions among large-scale functional networks, including

hyperconnectivity and hypoconnectivity within specific brain

networks or between distinct brain networks during resting-

state, see a meta-analysis in study [6]. In our study, we

also found hyperconnectivity and hypoconnectivity func-

tional networks in naturalistic music perception. We identi-

fied a right hemisphere dominated hyperconnectivity network

which involved the essential regions of DMN, including

mPFC, PCC and precuneus cortex, as shown in Figure 4I.
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Fig. 5. Three oscillatory hypoconnectivity networks. (a) Adjacency matrix representation of the network. The 68 brain regions are ordered from left
hemisphere to right hemisphere. Within each hemisphere, the brain regions are arranged in the order of frontal lobe, temporal lobe, parietal lobe,
and occipital lobe, as indicated in red, yellow, green, and blue color, respectively. Within each lobe, the brain regions are ordered according to their
y-location from anterior regions to posterior regions. (b) The spectral component of the network. (c) Cortical space representation of the network in
Lateral, medial and dorsal view. The networks I, II, and III are related to the musical features of Mode, Fluctuation Entropy, and Fluctuation Entropy,
respectively.

The hyperconnectivity in DMN are often considered as reflect-

ing rumination, where MDD patients perseverate on neg-

ative, self-referential thoughts [50], [51]. Many researches

have reported the hyperconnectivity within DMN in MDD,

which supports that within-DMN hyperconnectivity is related

to enhanced the positive connectivity in MDD [6], [51].

Figure 4II shows a delta band-modulated and left auditory-

related network, which is activated by a rhythmic feature of

Fluctuation Centroid. The delta band was demonstrated to

have a substantial influence on the identification of natural

speech fragments in a MEG study [52], and the decoding

of rhythmic features was found to be significantly correlated

with the auditory cortex during music perception [21], [53].

The abnormal delta band-modulated and left auditory-related

network identified in our study might indicate that MDD

patients were less involved in music perception. We identified

two delta band modulated prefrontal networks, both of which

were related to tonal features, Key Clarity and Mode, as

shown in Figure 4III and Figure 5III. However, the prefrontal

network in Figure 4III was hyperactive and right hemisphere

lateralized, and the prefrontal network in Figure 5III was

hypoactive and left hemisphere lateralized. The prefrontal

cortex has been implicated in planning complex cognitive

behavior, decision making and working memory. There are

numerous lines of evidence demonstrating that prefrontal

cortex is dysregulated in depression, and both increased and

decreased functional connections in the prefrontal network

may lead to the failure of inhibitory control in depression

[54]–[57]. Those two prefrontal networks also have abnormal

connections with temporal poles, which may indicate the

dysfunction in semantic integration during music listening

[58], [59]. Our findings are well supported by those litera-

tures that the dysconnectivity in the prefrontal network can

influence the high-order cognitive functions and information

integration during music perception in MDD. Figure 5I and

Figure 5II indicate hypoconnectivity fronto-parietal networks

modulated by different oscillations and musical features. The

abnormal development of the fronto-parietal network is a

common feature across many psychiatric disorders with the

deficit in cognitive control. Previous studies have demonstrated

that MDD is characterized by hypoconnectivity within the

frontoparietal network, which is involved in the top-down

modulation of attention and emotion [6], [19], [60].

In our study, the key issue of applying coupled tensor

decomposition is the selection of the number of all the

extracted components and the number of coupled components.

There are several methods for the selection of the number of

extracted components in tensor/matrix decomposition, such as
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PCA, the difference of fit (DIFFIT), model order selection,

and so on [31]. In our study, due to that the spectral mode

retains the minimum samples compared with temporal and

adjacency modes, we applied PCA on the unfolded data

along the spectral mode to determine the number of extracted

components. We believe this unfolding format can help to

approach the true underlying low-dimensional space. However,

the selection of the number of coupled components and the

coupled modes mainly relys on the data characteristics. Refer

to our previous study, we use a correlation analysis in the

spectral and adjacency modes in our study [25].

The scales of the reconstructed spatial, temporal and spectral

factors are different from those in the synthetic data, see

Figure 2. The scale indeterminacy will not change the topol-

ogy of networks, the evolution of time courses and the modu-

lation of oscillations. However, the addition of the constraints

on scales will increase the model complexity and computa-

tional cost. In the present study, we only consider the group

differences between HC and MDD groups by extracting the

common features and individual features. Subject differences

are omitted and covered in the residuals of the coupled tensor

decomposition, and we assume that the extracted components

are shared by all the subjects within each group. The problem

of subject differences may bring more challenges, but it is also

a crucial and realistic issue, especially in clinical applications.

We clarify two important limitations in this study. First, we

do not have the anatomical images from the individual partic-

ipant, and we use the MNI-ICBM152 template in forwarding

modeling. Using the same anatomical MRI will influence the

accuracy of source reconstruction. Second, the results have

limited explanations due to the music type we selected. Further

studies should investigate different music types, and we also

need to consider the music preferences of participants.

V. CONCLUSION

In this study, we investigated the oscillatory hyperconnectiv-

ity and hypoconnectivity networks elicited by musical stimuli

in MDD. Considering the high-dimensional structure of the

datasets and group differences between HC and MDD groups,

a comprehensive framework was proposed based on coupled

tensor decomposition, and six abnormal connectivity networks

with spatio-temporal-spectral modes of covariation were iden-

tified in MDD during music listening. Our findings are well

supported and verified by previous literatures. Our research

may serve as a signature of the brain’s functional topography

characterizing MDD, and provide novel biomarkers for the

clinical diagnosis and treatment in MDD. The spectral profiles

and spatial networks are usually characterized with sparsity,

and the sparse regularization will be considered in the coupled

tensor decomposition model in the future work. The neural

correlates and dynamic neural processing of musical emotions

have not been well studied, and the future work will also focus

on the selection of control stimuli.
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