
University of North Florida University of North Florida 

UNF Digital Commons UNF Digital Commons 

UNF Graduate Theses and Dissertations Student Scholarship 

1989 

Identifying Outliers in a Random Effects Model For Longitudinal Identifying Outliers in a Random Effects Model For Longitudinal 

Data Data 

Tamarah Crouse Dishman 
University of North Florida 

Follow this and additional works at: https://digitalcommons.unf.edu/etd 

 Part of the Mathematics Commons 

Suggested Citation Suggested Citation 
Dishman, Tamarah Crouse, "Identifying Outliers in a Random Effects Model For Longitudinal Data" (1989). 
UNF Graduate Theses and Dissertations. 191. 
https://digitalcommons.unf.edu/etd/191 

This Master's Thesis is brought to you for free and open 
access by the Student Scholarship at UNF Digital 
Commons. It has been accepted for inclusion in UNF 
Graduate Theses and Dissertations by an authorized 
administrator of UNF Digital Commons. For more 
information, please contact Digital Projects. 
© 1989 All Rights Reserved 

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unf.edu%2Fetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/191?utm_source=digitalcommons.unf.edu%2Fetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/


INDENTIFYING OUTLIERS IN A

RANDOM EFFECTS MODEL FOR LONGITUDINAL DATA

by

Tamarah Crouse Dishman

A thesis submitted to the Department of Mathematics and
Statistics in partial fulfillment of the requirements for
the degree of

Master of Arts in Mathematical Sciences

University of North Florida
College of Arts and Sciences

December, 1989



The thesis of Tamarah Crouse Dishman is approved:

committee chairperson

)21 [1-1 i~'-)
I I

11/14/8'1

Accepted for The Department:

Accepted for the College:

Accepted for the University:

(2 ( I ~{( R1
Interim Vice-President for Academic Affairs

Signature deleted

Signature deleted

Signature deleted

Signature deleted

Signature deleted

Signature deleted



iii

I extend my sincere appreciation to Graduate Director

Dr. Donna Mohr, the advisor of this project, for her

invaluable guidance and support. I am also grateful to the

Faculty, Staff and Students of this University for their

interest and contributions.

I also wish to thank my parents for encouraging and

nurturing my scholastic endeavors and especially to my

husband for his loving support of my professional goals.



TABLE OF CONTENTS

Acknowledgements

Abstract

Chapter 1 - Introduction
section 1 - Random effects model for

longitudinal data
section 2 - Estimation of parameters

Chapter 2 - Method of Identifying Non-Trackers
section 1 - Method of Identification
section 2 - Explanation of computer

algorithm

Chapter 3 - Conclusion

Appendix 1

Appendix 2

Appendix 3

References

vita

page

iv

(iii)

(vi)

2
3

11

14

20

27

29

30

46

48



v

List of Tables and Figures

(page)

Table 1 - Parameters for Trackers 15

Table 2 - Simulations Run with only Trackers Present 16

Figure 1 - Graph of Expected Values for Non-Trackers 17

Table 3 - Simulations Run with Non-Trackers Present 18

Figure 2 - Outline for Computer Algorithm 19

Table 4 - Results with Trackers Only 23

Table 5 - Parameter Estimates with Trackers Only 24

Table 6 - Results with Non-Trackers Present 25

Table 7 - Parameter Estimates with Non-Trackers Present 26



vi

Abstract

Identifying non-tracking individuals in a population of

longitudinal data has many applications as well as

complications. The analysis of longitudinal data is a

special study in itself. There are several accepted

methods, of those we chose a two-stage random effects model

coupled with the Estimation Maximization Algorithm (E-M

Algorithm) . Our project consisted of first estimating

population parameters using the previously mentioned

methods. The Mahalanobis distance was then used to

sequentially identify and eliminate non-trackers from the

population. Computer simulations were run in order to

measure the algorithm's effectiveness.

Our results show that the average specificity for the

repetitions for each simulation remained at the 99% level.

The sensitivity was best when only a single non-tracker was

present with a very different parameter a. The sensitivity

of the program decreased when more than one tracker was

present, indicating our method of identifying a non-tracker

is not effective when the estimates of the population

parameters are contaminated.
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Chapter 1 - Introduction

According to Ware (1984) longitudinal studies can be

loosely defined as studies in which the response of each

individual is observed on two or more occasions. There are

obviously many applications of longitudinal studies in the

medical and social fields. The objectives of studies of

this type are to characterize patterns of response and

change over time. This motivates the definition of tracking

given by Ware and Wu (1981) as the prediction of future

values based on repeated measurements of the same

characteristic obtained over time for each of a cohort chart

of individuals. In this thesis, non-trackers will be

defined as individuals whose longitudinal observations do

not seem to belong to the same distribution as the rest of

the tracking population.

In the remainder of this chapter a popular model for

analyzing longitudinal data called the random effects model

(Laird and Ware, 1982) will be introduced and explained.

The derivations of the equations from Diem and Liukkonen

(1988) for fitting the model will be given in detail.

Chapter 2 will include the criteria for distinguishing

trackers from non-trackers and conclude with a description

of the computer simulation of the method. The computer

program will be tested for its specificity (defined as its
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behavior when no non-trackers are present) as well as its

sensitivity (measured by its ability to detect non-trackers

when they are present). Results of the simulations and

overall conclusions appear in Chapter 3.

section 1: Random effects model for longitudinal data

Laird and Ware (1982) introduced a two stage model for

the analysis of the highly unbalanced data sets obtained

from longitudinal studies. In the first stage, the

distribution of the characteristics being measured has the

same form for each individual, but the parameters vary over

individuals. The second stage describes the distribution of

these individual parameters or random effects.

Stage 1 for each unit i

(1)

where Yi is the vector of ni observations from individual i,

a is a pX1 vector of the unknown population parameters, Xi

is a known design matrix linking a to Yi for each

individual, hi is the kX1 vector of individual effects and

Zi is the known design matrix linking hi to Yi for each

individual. The ei vectors are distributed N(O,Ri) and

assumed to be independent while a is considered fixed and hi

is a random vector as described in stage 2. Throughout the

rest of our work we take Ri=a 2I.
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stage 2

The bi are distributed as N(O,D), independently of each

other and of the ei. D is a kxk positive definite

covariance matrix. The population parameters, a, are

treated as fixed effects.

The Yi are independent and distributed

T 2
N(Xia, ZiDZi + 0 I). The main disadvantage of this model

is the strong assumption made about the structure of the

covariance matrix of the Yi given above.

section 2: Estimation of parameters

In this section, equations for estimating a,02 and D

will be developed. Since there are no closed form solutions

we will derive the iterative solutions from maximum

likelihood estimates using the Estimation Maximization

Alorithm (comprised of E-step and M-step and denoted E-M

Algorithm) given by Dempster et al (1977). We apply the E-M

Algorithm to the random effects model following Diem and

Liukkonen (1988). The derivations omitted by them are

included in this paper as well as the equations. The idea

behind the E-M Algorithm is very simple:

1. In the E-step, the bi are treated as missing

• A.
values and are replaced by estlmates of bi' bi. ThlS

estimate is calculated using current estimates of a,02,D.

2. In the M-step, parameters a,02 and Dare

estimated using the Yi and bi.

The algorithm is repeated until convergence is obtained

or the maximum allowed iterations is reached. The
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derivation of the equations is as follows.

E-step

First note that the joint probability distribution for

Yi and bi given e=(a,a 2 , D) is given by:

where cl is a constant

NOTE:

(Yi-xia-Zibi)T(Yi-Xia-Zibi)=[(Yi-Xia)T_(Zibi)T] [(Yi-Xia)­

(Zibi)]

=(Y.-X.a)T(Y.-X.a)-2(y.-x.a)Tz.b .+b.Tz TZ. b.1 1 1 1 1 1 1 1 1 ill

Now what we need is the conditional pdf of bi given e

f(bi'Yil e)

f(Yil e)

Note that the denominator above is a constant with

respect to bi. We collect all of the bi terms in f(bi'Yile)

and let the remaining terms become one constant, C2.

Therefore,



= C2 exp {~(Yi-Xia)TZibi}
a

• exp{- 1_ (bIzIZibi)
2a 2

1
2

5

[b . TAb . -2(y.-x.a)Tz.b./a2
1 1 1 1 1 1 ]}

where A=(ZiTzi+D-la2)/a2. This can be recognized as the

general form of the multivariate normal distribution. The

variance is found directly by

From Appendix 1, it follows that:



E(b. ly.,e)=(z.TZ,+D-1
0
2)-lZ,T(y,-x,a)= b.

1 1 1 1 111 1

M-Step

All sums below are over i=l,m.

6

(1)

A

Using the values bi calculated in the E-step we want to

maximize

H(e) = E{ln[f(Yi,bile)]IYi,e}, ignoring constants it follows

that:

!m[-n. (2)=E L ~ In 0 -
1 (y.-x,a-z.b.)T(y.-x.a-z.b.)-lln(detD)

1 1 1 1 1 1 11-
2

20
2

1
2 =
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~ In(det D) -

Note: for the above equation N=Lni

• • A -"2 ANow, we use H(e) to derlve expresslons for a, a and D.

(2)

By differentiating H(e) with respect to each variable,

setting the expression equal to zero and solving for the

given variable, a maximum is obtained.



First consider ~:

Note:

and,

8

therefore,

a H (e)
a €X

it follows that,



and,

Now consider a2 :

a H(e) = -N + t[(Yi-xia)T(Yi-xia)]

a 0
2

20
2

20
4

9

(3 )

it follows that,

2o N -

= o



therefore,

A

Finally consider D:

In appendix 2 we present some facts about partial

derivatives with respect to D. Using those facts we can

show,

it follows that,

10

(4)

A 1
D = m (5)

We have now verified the equations given by Diem and

Liukkonen (1988).
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Chapter 2 - Method of Identifying Non-Trackers

In order to test the method discussed in Chapter 1, we

used the equations 1-5 and implemented them in a computer

program. In order to make computation easier, only the

balanced case was addressed. What follows is an explanation

of the criterion used in the algorithm for identifying non-

trackers, a flow chart of the program and a list of the

various simulations that were run.

section 1 : Method of Identification

As mentioned in the introduction, non-trackers will be

identified as those individuals whose observations do not

seem to belong to the distribution of the tracking

population. The criterion we have selected to make this

determination is called the Mahalanobis distance and is

defined as follows:

for each individual i,

(6)

since we assume that each individual is normally distributed

with mean Xia and variance ZiDZiT + a 2I. If a, 0 2 and D

were known and used in place of their estimates in equation
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(6), clearly, Di would have a chi-square distribution with n

degrees of freedom where n is the dimension of y.

In order to "weed out" non-trackers, we will first find

the individual with the largest Mahalanobis distance. The

p-value is calculated for that individual and compared to a

previously determined significance level (denoted "signif").

If the p-value is less than the significance level, the

individual is considered a non-tracker and eliminated from

the tracking population. New population parameters are

calculated and the process is repeated until the p-value of

the maximum Di in the current iteration is not less than the

significance level. At that time the parameters of the

tracking population are given as well as the number of non­

trackers.

Due to our approximation of the Di's being

independently distributed as chi-square each with n degrees

of freedom, we arrived at our calculation of the p-value by

using order statistics. Each time through the "weeding out"

process we are interested in the individual with the maximum

Di. Note that from equation 6, this is a measurement of the

observation with the maximum distance from the normal

distribution with paramenters calculated from equations 1-5.

Examination of the probability distribution of the maximum

order statistic for this type of distribution leads to a p­

value expressed as

p-value=l- F(dmax)m
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where dmax stands for maximum Di from X2(n) and F(dmax)

equals the cumulative distribution function. The program

for computing F(dmax) is taken from Press et al (1986).

In order to test the sensitivity (probability that an

individual is identified as a non-tracker given that they

are really a non-tracker) and specificity (probability that

an individual is identified as a tracker given that they

really are a tracker) of our algorithm, several simulations

will be run. Combinations of the number of non-trackers

present, the number of individuals, the number of

observations per individual, the magnitude of 0 2 ,

significance levels and values used for X, Z and a are

listed in tables at the end of this chapter. The results of

the simulations described above appear in Chapter 3.

In an attempt to clarify the relationship between

trackers, non-trackers and their parameters a pictorial

representation appears in Figure 1 at the end of this

chapter. Trackers and non-trackers are sketched on the same

axis with respect to Xa, their expected values, for n=5 and

n=10. Both case A and case B for non-trackers are shown.

In case A, a=(5,-4,2), the opposite slopes for the sketches

indicate that the non-trackers are drastically different

from the trackers. For case B, a=(7,0,1), there is only a

slight difference between the non-trackers and trackers.

Given this information, we would expect case A type of non­

tracker to be easier to identify.
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section 2: Explanation of Computer Algorithm

As sketched in Figure 2, the calling program is

RANCOEF2. It begins by getting parameters for trackers and

non-trackers after which it generates Yi for each. It then

calls the subroutine FITRCB2 which is designed to first make

initial estimates for the population parameters, then

improve these estimates using the E-M algorithm. Next, the

subroutine FIND is called to "weed out" the non-trackers.

If any individual is eliminated FITRCB2 is called to

recalculate the parameter estimates of the tracking

population then FIND is called again. After all non­

trackers have been "weeded out" we return to the main

program where parameter information is recorded. There are

50 repetitions of each simulation and overall statistics for

each type of simulation are calculated and given in Tables 4

and 6 of Chapter 3. The random number generator was adopted

from Press et al (1986) and LINPACK routines were used for

matrix manipulations.



Table 1- Parameters for Trackers

n=5
1 -2 0 1 -2
1 -1 0 1 -1 (J = (5, 3, 2)

X = 1 0 1 Z = 1 0
1 1 1 1 1

D ( 0.5 0.0 )=
1 2 1 1 2 0.0 0.5

The two settings for 2 0.5 and 2.00 are .

1 -4 0 1 -4
1 -3 0 1 -3
1 -2 0 1 -2
1 -1 0 1 -1

X
1 0 0 Z

1 0 (J = (5, 3, 2)
= =

1 1 1 1 1
( 0.5 0.0 )1 2 1 1 2 D =

1 3 1 1 3
0.0 0.5

1 4 1 1 4
1 5 1 1 5

The two settings for 0 2 are 2.0 and 8.0

15



Table 2 -simulations Run with only Trackers Present

m n 0 2 signif

25 5 0.5 .10

25 5 0.5 .15

25 5 2.0 .10

25 5 2.0 .15

25 10 2.0 .10

25 10 2.0 .15

25 10 8.0 .10

25 10 8.0 .15

50 5 0.5 .10

50 5 0.5 .15

50 5 2.0 .10

50 5 2.0 .15

50 10 2.0 .10

50 10 2.0 .15

50 10 8.0 .10

50 10 8.0 .15

16
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Table 3 - Simulations Run with Non-Trackers Present

m n ntr 0 2 a

25 5 1 0.5 A
25 5 1 0.5 B
25 5 1 2.0 A
25 5 1 2.0 B
25 5 2 0.5 A
25 5 2 0.5 B
25 5 2 2.0 A
25 5 2 2.0 B
25 10 1 2.0 A
25 10 1 2.0 B
25 10 1 8.0 A
25 10 1 8.0 B
25 10 2 2.0 A
25 10 2 2.0 B
25 10 2 8.0 A
25 10 2 8.0 B
50 5 1 0.5 A
50 5 1 0.5 B
50 5 1 2.0 A
50 5 1 2.0 B
50 5 3 0.5 A
50 5 3 0.5 B
50 5 3 2.0 A
50 5 3 2.0 B
50 10 1 2.0 A
50 10 1 2.0 B
50 10 1 8.0 A
50 10 1 8.0 B
50 10 3 2.0 A
50 10 3 2.0 B
50 10 3 8.0 A
50 10 3 8.0 B

The significance level used was 0.10. A indicates
a=(5, -4, 2) ; B indicates a= (7 , 0 , 1) . Ntr stands for the
number of non-trackers present.
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Figure 2 - Outline for Computer Algorithm

RANCOEF2

Read parameters

~--4)Begin a simulation
Generate y for trackers

Generate y for non-trackers

Call FITRCB2

Initial estimate of population parameters

E-M algorithm to
using previously
criterion

?Call FIND

Calculate l>i

improve above estimates
determined convergence

recalculate
of tracking

I
I
I

I Throws out the non-tracker

I Jl----Call FITRCB2 to
parameter estimatesI population

I
Record parameter estimates for the simulation

,i _-Last
~-

, ----~O(-----

simulation?
J/

YES
~

Calculate overall parameter estimates,
and specificity for each simulation

sensitivity



20

Chapter 3 - Conclusion

The first observation, obvious by looking at Table 4,

is that when no non-trackers are present the algorithm is

excellent. The average specificity among repetitions stays

above 99% for each type of simulation indicating that the

program has no problem identifying a tracker when it really

is a tracker. From Table 5 we see that the parameter

estimates of a, 0 2 and D are very accurate. When signif is

changed from 0.10 to 0.15 while all other parameters are

held constant it is true that specificity is slightly better

at the 0.10 level. More interesting is the fact that the

percentage of repetitions that throw out a tracker increases

as signif increases. The overall average for this

percentage at the 0.10 level is 0.0775 and for 0.15 it is

0.10. This is what we would expect to happen since our p­

value for max Di is being compared to the signif level to

identify non-trackers and possibly eliminate them.

When non-trackers are included the results are much

more interesting. From Table 6 we see that again the

average specificity among repetitions remains above 99% for

each type of simulation. When we examine the sensitivity,

it is easy to see that non-trackers were correctly

identified with best accuracy when only one non-tracker was

present and when it was significantly different from the
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tracking population. It is also obvious that increasing the

number of non-trackers significantly lowers the sensitivity

of the program. This indicates that identifying non-

trackers is very difficult when the parameter estimates are

very contaminated. As we would expect, throughout the

simulations, the sensitivity levels were higher for case A,

0=(5,-4,2), than case B, 0=(7,0,1), (recall that case A non-

trackers are very different from the trackers where case B

non-trackers are only slightly different). Signif was held

constant at 0.10 for all of the simulations in which non-

trackers were included. This level was used in order to

reduce the number of trackers incorrectly identified as non-

trackers. Changing 0
2 while holding everything else

constant results in only a slight change in the level of

sensitivity.

• A
As shown in Table 7, the est1mate of D, D, is affected

significantly by the presence of more than one non-tracker.

• A
Specifically, the entr1es of D are larger than D. We know

A • ••
that when D 1S large, 1t'S 1nverse is small and therefore by

the relationship given in equation 6, Di is smaller than it

should be. As a result, the power of the Mahalanobis

distance is being reduced. This in turn reduces the power

of our algorithm. Our research did not include this, but,

other suggestions such as eliminating two non-trackers at a

time could be studied for the applicability to this problem.

We began this project with the intentions of designing

a computer algorithm for identifying non-trackers present
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in a population from a balanced set of data. Although

theoretically sound, some algorithms do not attain the

practical application desired. For professionals, this is

not discouraging but rather a way of opening other areas of

study. An investigation of the influence function seems to

be a logical alternative.



Table 4 - Results with Trackers only

m n a 2 signif spec std dev

25 5 0.5 .10 .9976 .0096

25 5 0.5 .15 .996 .0121

25 5 2.0 .10 .9968 .0110

25 5 2.0 .15 .9936 .0169

25 10 2.0 .10 .996 .0121

25 10 2.0 .15 .996 .0121

25 10 8.0 .10 .9968 .0110

25 10 8.0 .15 .9944 .0162

50 5 0.5 .10 .9984 .0055

50 5 0.5 .15 .998 .0061

50 5 2.0 .10 .9984 .0055

50 5 2.0 .15 .998 .0061

50 10 2.0 .10 .9988 .0048

50 10 2.0 .15 .9988 .0048

50 10 8.0 .10 .9988 .0048

50 10 8.0 .15 .9988 .0048

23
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Table 5 - Average Parameter Estimates with Trackers Only
(Selected Cases)

Case 1: m=25 n=5 0
2 =2 . 0

;)2 = 1. 8791 with std dey = 0.2628

(~823)
std dey

A ( 0.4755 0'0244~ (0.2869 ):; ~ 3.0287.·D = 0.2538
0.0244 0.4934 1. 9332 0.5535

"-

Case 2 : m=50 n=5 0
2 =2 . 0

;)2 = 1. 9458 with std dey = 0.1986

A (0.4949 r~12O )
std dey

0.0149) (0.1964 )D = :; ~ ,3.0294 0.1598
0.0149 0.5041 1. 9257 0.3833

)
-<, ~i'

Case 3 : m=25 n=10 0
2 =8 . 0

;)2 = 7.9065 with std dey = 0.8343

lG264) C~2~~V )A (0.4964 -0.0025) AD = a = 3.0210 . • 0.1702
-0.0025 0.4803 2.0334 0.7609
\. ,

Case 4 : m=50 n=10 0
2 =2 . 0

with std dey

-0.0217\

0.4970 )

D =
0.5

std dey

(

I.0 . 1870 \..0.1085 .J

0.2676 J

0.0\
'\
)

= 0.1313
avg

~ = I~: ~:6; \)
\2.0104

for the above are:

1.9827

A ~(O. 4897
D =

-0.0217

True parameter values
signif = 0.10

i 0.5
Il 0.0
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Table 6 - Results with Non-Trackers Present

m n ntr 0 2 a spec sens

25 5 1 0.5 A .99583 1.000
25 5 1 0.5 B .99667 0.300
25 5 1 2.0 A .99750 0.960
25 5 1 2.0 B .99667 0.220

25 5 2 0.5 A .99826 0.260
25 5 2 0.5 B .99913 0.100
25 5 2 2.0 A .99652 0.160
25 5 2 2.0 B .99730 0.080

25 10 1 2.0 A .99250 0.580
25 10 1 2.0 B .99583 0.080
25 10 1 8.0 A .99583 0.640
25 10 1 8.0 B .99667 0.160

25 10 2 2.0 A .99391 0.180
25 10 2 2.0 B .99739 0.030
25 10 2 8.0 A .99739 0.120
25 10 2 8.0 B .99826 0.000

50 5 1 0.5 A .99796 1.000
50 5 1 0.5 B .99837 0.600
50 5 1 2.0 A .99878 1. 000
50 5 1 2.0 B .99959 0.360

50 5 3 0.5 A .99745 0.620
50 5 3 0.5 B .99830 0.267
50 5 3 2.0 A .99872 0.627
50 5 3 2.0 B .99915 0.093

50 10 1 2.0 A .99714 1. 000
50 10 1 2.0 B .99796 0.320
50 10 1 8.0 A .99510 1. 000
50 10 1 8.0 B .99959 0.240

50 10 3 2.0 A .99915 0.227
50 10 3 2.0 B .99787 0.067
50 10 3 8.0 A .99872 0.293
50 10 3 8.0 B .99787 0.047

The significance level used was 0.10. A indicates
a=(5, -4, 2) ; B indicates a= (7 ,0,1) • Ntr stands for the
number of non-trackers present.
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Table 7 - Average Parameter Estimates with Non-Trackers
Present

(Selected Cases from non-tracker 0=(5,-4,2))

Case 1: m=25 n=5 NTR=2 0 2 =2 . 0

(J2 = 1.8667

D=(, 0.5048
-0.0211

with std dey =

-0.0211 \,

3.5484 )

0.3681

i~932 ) (~~~9~;V)
o = 2.5188 ' ,0.2923

'2.06585, 0.6356,
\

Case 2: m=50 n=5 NTR=3 0 2 =2 . 0

(J 2 = 1. 8538

D J,10.5280

\0.0032

with std deY =

::::::)
0.2443

(~82 7 )
0=2.8683"

1. 9940 ) (
~~~og~V)

',O.2693"f
0.3849 )

Case 3: m=25 n=10 NTR=2 0 2=8 . 0

(J2 = 7.8287

A I0.4989
D =

-0.0948

with std deY =

-::::::)
0.7751

avg

(

5 . 01 12 '\
~

o = ,2.5055 )/
.1.9160 !

I

,std deY

(

' 0.3302 \
.,i o. 2887)
0.6536)

Case 4: m=50 n=10 NTR=3 0 2=2 . 0

D = 10.5008 0.0145 ')

~O • 0145 2 • 64 50 I

True parameter values for the
signif = 0.10

I 0.5 0.0

with std deY =(J2 = 1.9294

D =
( 0.0 0.5

0.1603
avg .std deY ,

(

/ 4 . 9 7 2 7 \\ /0.1605 )
o = ',2.6678 ,," ~t,0.2053

2.0182 Ii 0.2584
P ,f

above are:
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Appendix 1

In order to find the mean of our mUltivariate normal

distribution we set the general form of this distribution,

where bi is the random variable, equal to our distribution,

sUbstitute for A and solve for M directly.

Since,

[
T T T ]- b.Ab.-2M Ab·+M AM
111

2

and we have,

A = .....(_z.;;;;;I'---=- --'-_

Now, setting the "linear term" from above equal to the

"linear term" of our distribution
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Appendix 2

We must show that =

We use the fact that

A= T Both D- 1 and A are symmetric. We know thatbibi .

adi j
dirdc j where d is the th= r,cadr c rc

entry in D and d i r is the i r t h entry in -1 Then, D .

ab~D-lb. = a tr D-1A = a L L il
ad 1 1 ad ad d ali

rc rc rc i 1

= - L
i

\' dirdc l
L. ali
1

= cl )
L d ali
1

The sum in parentheses in the last expression is the c,it h

entry in D-1A, or the i,ct h entry in AD-I using the symmetry

of A and D-1. Replacing d i r by d r i using symmetry, we have

since this last expression is just the r t h row of D- 1 times

the c t h column of AD-I, we have that

=
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Appendix 3 - Programs for computer simulations

CALLING PROGRAM TO GENERATE DATA WITH TRACKERS AND NONTRACKERS.
PROGRAM THEN CALLS ROUTINE FITRCB TO FIT RANDOM COEFFICIENT
LINEAR MODELS AS DESCRIBED BY LAIRD AND WARE, BIOMETRICS, 1982.
THE ACTUAL ALGORITHM FOLLOWS THE DESCRIPTION GIVEN BY DIEM AND
LIUKKONEN IN STATISTICS IN MEDICINE, 1988.
AFTER THE INITIAL FIT, THE PROGRAM USES THE ROUTINE FINDEM
TO FIND NONTRACKERS.
AT THE END, PROGRAM PRINTS ESTIMATED PARAMETER VALUES FOR
TRACKERS, AND A LIST OF ID NUMBERS FOR SUSPECTED NONTRACKERS.
******** BALANCED DATA DESIGNS *******

IMPLICIT REAL*8 (A-H,Q-Z)
INTEGER N,M,P,K,PN,KN,MTR,MNTR
DIMENSION X(20,6),Z(20,6)
DIMENSION Y(20,200),ALPH(6),B(6,200),D(6,6)
DIMENSION XN(20,6) ,ZN(20,6)
DIMENSION ALFBAR(6),DBAR(6,6),ALFDEV(6)
INTEGER IUSE(200)
COMMON /DATAS/X,Z,Y
COMMON /PARAMS/ ALPH,B,SIGMA2,D
COMMON /ITCON/MAXIT
COMMON /USEME/IUSE
DIMENSION TALPH(6) ,TD(6,6),TQ(6,6),XA(20),BT(6)
DIMENSION TALPHN(6),TDN(6,6),TQN(6,6),XAN(20)
DIMENSION WORK(6),JTV(6)
ALL INPUT READ FROM FILE ON CHANNEL 3
IUSE(200) IS AN INTEGER VECTOR WHERE IUSE(I)=l MEANS

THE INDIVIDUAL I SHOULD BE USED IN FITTING
IUSE(I)=O MEANS DO NOT USE INDIV. I IN FITTING MODEL

READ IN DIMENSIONS N=# OBSERVATIONS PER INDIVIDUAL
M = # OF INDIVIDUALS
P = DIMENSION OF ALPHA (FIXED EFFECTS)
K = DIMENSION OF B (RANDOM EFFECTS)
PN=DIM OF ALPHA FOR NONTRACKERS
KN=DIM OF B FOR NONTRACKERS
MTR = NUM OF TRACKERS

*** GET PARAMETERS FOR TRACKERS AND NONTRACKERS ***

READ (3,*) N,M,P,K,PN,KN,MTR
MNTR=M-MTR
READ NUMITR = NUMBER OF REPETITIONS OF SIMULATION
WRITE (9,*) , N,M,P,K,MTR',N,M,P,K,MTR
READ (3,*) NUMITR
READ (3,*) MAXIT,CONV
GET MATRIX X FOR TRACKERS, XN FOR NONTRACKERS
DO 10 I=l,N

READ (3,*) (X(I,J) ,J=l,P), (XN(I,J) ,J=l,PN)
CONTINUE

GET MATRIX Z FOR TRACKERS, ZN FOR NONTRACKERS
DO 15 I=l,N

READ (3, *) (Z (I,J) ,J=l,K), (ZN(I,J) ,J=l,KN)

3C
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CONTINUE
GET TRUE VALUES OF ALPHA, STORED IN TALPH
READ (3,*) (TALPH(I) ,I=l,P), (TALPHN(I) ,I=l,PN)
WRITE (9,*) , ALPH FOR NONTR'
WRITE(9,16) (TALPHN(I) ,I=l,PN)
FORMAT(3(lX,F10.4»
GET TRUE VALUE OF MEASUREMENT VARIANCE, SIGMA2, STORED AS TSIG2
READ (3,*) TSIG2,TSIG2N
TSIG=DSQRT(TSIG2)
TSIGN=SQRT(TSIG2N)
GET TRUE VALUE OF COVARIANCE MATRIX 0 FOR RANDOM EFFECTS
DO 20 I=l,K

READ (3,*) (TD(I,J) ,J=l,K)
CONTINUE

DO 25 I=l,KN
READ(3,*) (TDN(I,J) ,J=l,KN)
CONTINUE

READ (3,*) SIGNIF
READ (3,*) lOOM
WRITE (9,*) , TSIG2,SIGNIF'
WRITE(9,30) TSIG2,SIGNIF
FORMAT(2(lX,F10.4»
XX=RAN3 (lOOM)

TRAN
CALL CHOLESKY DECOMPOSITION TO FACTOR TD=(TQ)*(TQ)
DO 75 I=l,K

DO 72 J=l,K
TQ(I,J)=TD(I,J)
CONTINUE

CONTINUE
JOB=O
LDA=6
CALL DCHDC(TQ,LDA,K,WORK,JPV,JOB,INFO)
WRITE (6,*) INFO
DO 78 I=l,K-l

DO 77 J=I+l,K
TQ(J,I)=TQ(I,J)
TQ(I,J)=O.DO
CONTINUE

CONTINUE
TRAN

CALL CHOLESKY DECOMPOSITION TO FACTOR TDN=(TQN) * (TQN)
DO 95 I=l,KN

DO 92 J=l,KN
TQN(I,J)=TDN(I,J)
CONTINUE

CONTINUE
JOB=O
LDA=6
CALL DCHDC(TQN,LDA,KN,WORK,JPV,JOB,INFO)
WRITE (6,*) INFO
DO 98 I=l,KN-l

DO 97 J=I+l, KN
TQN(J,I)=TQN(I,J)
TQN(I,J)=O.DO
CONTINUE

CONTINUE

STORE MEAN VECTOR X*ALPHA FOR TRACKERS
DO 150 I=l,N
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+++++ MANUFACTURE Y FOR NONTRACKERS II=MTR+1,M ++++++

DO 4 I=l,M
IUSE(I)=l

+++++ MANUFACTURE Y FOR TRACKERS II=l,MTR ++++++

XA(I)=O.DO
DO 145 J=l,P

XA(I)=XA(I)+X(I,J)*TALPH(J)
CONTINUE

CONTINUE

IF (MTR.GE.M) GO TO 410
DO 400 II=MTR+1,M

MANUFACTURE B FOR THE II INDIVIDUAL
CALL MULTNO(TQN,6,KN,BT,IDUM)
DO 370 I=l,KN

B(I,II)=BT(I)
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BEGIN REPETITIONS, CREATING DATA FOR ++++++++++
TRACKERS i NONTRACKERS; FITTING MODEL ++++++++++
AND FINDING NON-TRACKERS

STORE MEAN VECTOR XN*ALPHAN FOR NONTRACKERS
DO 190 I=l,N

XAN(I)=O.DO
DO 185 J=l, PN

XAN(I)=XAN(I)+XN(I,J)*TALPHN(J)
CONTINUE

CONTINUE

++++++++++++
++++++++++++
++++++++++++

DO 300 II=l,MTR
MANUFACTURE B FOR THE II INDIVIDUAL
CALL MULTNO(TQ,6,K,BT,IOUM)
DO 270 I=l,K

B(I,II)=BT(I)
CONTINUE

DO 290 I=l,N
Y(I,II)=XA(I)+GASDEV(IDUM)*TSIG
DO 280 J=l,K

Y(I,II)=Y(I,II)+Z(I,J)*BT(J)
CONTINUE

CONTINUE
CONTINUE

SIGBAR=O.ODO
SIGDEV=O.ODO
DO 200 I=l,P
ALFBAR(I)=O.ODO
ALFDEV(I) =0. 000
DO 210 I=l,K
DO 205 J=l,K
DBAR(I,J)=O.ODO
CONTINUE
CONTINUE
SUMSN =0.000
SUMSN2=0.ODO
SUMSP =0.000
SUMSP2=0.ODO
DO 3000 III=l,NUMITR
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370 CONTINUE
DO 390 I=l,N

Y(I,II)=XAN(I)+GASDEV(IDUM)*TSIG
DO 380 J=l,KN

Y(I,II)=Y(I,II)+ZN(I,J)*BT(J)
380 CONTINUE
390 CONTINUE
400 CONTINUE
410 CONTINUE
C
C
C CALL FITTING ROUTINE FOR BALANCED DATA

CALL FITRCB(N,M,P,K)
CALL FINDEM(N,M,P,K,SIGNIF)
WRITE(9,*)'THE FOLLOWING INDIVIDUALS WERE IDENTIFIED AS

+NON-TRACKERS'
NUMTR=O
DO 510 I=l,M

NUMTR=NUMTR+IUSE(I)
510 IF (IUSE(I) .EQ. 0) WRITE(9,*) I

WRITE (9,*) , NUMBER OF TRACKERS ',NUMTR
IDCTR=O
I DCNTR=0
DO 515 I=l,l1TR

515 IDCTR=IDCTR + IUSE(I)
IF (MTR+1 .GT. M) THEN

SENS=-l.
ELSE

DO 520 I=MTR+1,M
520 IDCNTR=IDCNTR + (l-IUSE(I))

SENS= DFLOAT(IDCNTR)/DFLOAT(M-MTR)
SUMSN=SUMSN + SENS
SUMSN2=SUMSN2 + (SENS**2)

ENDIF
600 SPEC=DFLOAT(IDCTR)/DFLOAT(MTR)

SUMSP=SUMSP + SPEC
SUMSP2=SUMSP2 + (SPEC**2)

C
WRITE (9,*) , ESTIMATED ALPHAS'
DO 605 I=l,P

WRITE (9,604) ALPH(I)
604 FORMAT (lX,F10.4)
605 CONTINUE

WRITE (9,611) SIGMA2
611 FORMAT (' SIGMA2',F10.5)

DO 615 I=l,K
WRITE (9,617) (D(I,J) ,J=l,K)

617 FORMAT (' D',6(lX,F9.4)
615 CONTINUE
C
C THIS WILL CALC OVERALL PARAMS FOR EACH SIMULATION
C

SIGBAR=SIGBAR + SIGMA2
SIGDEV=SIGDEV + (SIGMA2**2)
DO 620 I=l,P
ALFBAR(I)=ALFBAR(I)+ALPH(I)

620 ALFDEV(I)=ALFDEV(I)+(ALPH(I) **2)
DO 650 I=l,K
DO 640 J=l,K
DBAR(I,J)=DBAR(I,J)+D(I,J)
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640 CONTINUE
650 CONTINUE
C
3000 CONTINUE
C +++++++++ 3000 IS END OF REPETITION LOOP ++++++
C
C CALCULATE STATS FOR SENSITIVITY AND SPECIFITY
C

RNITR=DFLOAT(NUMITR)
SPMEAN=SUMSP/RNITR
SPSIG=SQRT«(RNITR*SUMSP2)-(SUMSP**2))/(RNITR*(RNITR-1.)))
IF(MTR+1.GT.M) GO TO 750
SNMEAN=SUMSN/RNITR
SNSIG=SQRT«(RNITR*SUMSN2)-(SUMSN**2))/(RNITR*(RNITR-1.)))
WRITE(9,736) SNMEAN,SNSIG

736 FORMAT (' SENSITIVITY MEAN ',F8.5,' STD DEV ',F8.5)
750 WRITE(9,737) SPMEAN,SPSIG
737 FORMAT (' SPECIFICITY MEAN ',F8.5,' STD DEV ',F8.5)
C
C WRITE OUT PARAMS FOR THE SIMULATION
C

WRITE(9,*)'OVERALL ESTIMATE OF SIGMA-SQUARED'
SIGDEV=SQRT«(RNITR*SIGDEV)-(SIGBAR**2))/(RNITR*(RNITR-1.)))
SIGBAR=SIGBAR/RNITR
WRITE(9,604) SIGBAR
WRITE(9,*)'WITH STANDARD DEVIATION'
WRITE (9, 604) SIGDEV
WRITE(9,*)'OVERALL ESTIMATED ALPHA'
DO 800 I=l,P
ALFDEV(I)=SQRT«(RNITR*ALFDEV(I))-(ALFBAR(I)**2))

+/(RNITR*(RNITR-1.)))
ALFBAR(I)=ALFBAR(I)/RNITR

800 WRITE(9,604) ALFBAR(I)
WRITE(9,*)'WITH STANDARD DEVIATION'
DO 805 I=l,P

805 WRITE(9,604) ALFDEV(I)
WRITE(9,*)'OVERALL ESTIMATE OF D'
DO 820 I=l,K
DO 810 J=l,K
DBAR(I,J)=DBAR(I,J)/RNITR

810 CONTINUE
820 CONTINUE

DO 830 I=l,K
WRITE(9,617) (DBAR(I,J) ,J=l,K)

830 CONTINUE
1000 STOP

END

C
C SUBROUTINE TO PRODUCE MULTIVARIATE NORMAL VECTOR BT WITH
C COVARIANCE MATRIX GIVEN BY TQ*TRAN(TQ)
C DEFINED LENGTH OF VECTOR IS LDA. USED LENGTH IS K.

SUBROUTINE MULTNO(TQ,LDA,K,BT,IDUM)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION TQ(LDA,LDA),BT(LDA)
DIMENSION Z(20)
DO 10 I=l,K

Z(I)=GASDEV(IDUM)
10 CONTINUE

DO 20 I=l,K
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BT(I)=O.DO
DO 15 J=l,I

BT(I)=BT(I)+TQ(I,J)*Z(J)
CONTINUE

CONTINUE
RETURN
END
FUNCTION GASDEV PRODUCES A STANDARD NORMAL DEVIATE
FUNCTION GASDEV(IDUM)
IMPLICIT REAL*8 (A-H,O-Z)
DATA ISET/O/
IF (ISET.EQ.O) THEN

V1=2.*RAN3(IDUM)-1.
V2=2.*RAN3(IDUM)-1.
R=V1**2+V2**2
IF(R.GE.1.)GO TO 1
FAC=DSQRT(-2.*DLOG(R)/R)
GSET=V1*FAC
GASDEV=V2*FAC
ISET=l

ELSE
GASDEV=GSET
ISET=O

ENDIF
RETURN
END

FUNCTION RAN3 PRODUCES A UNIFORM (0,1) RANDOM DEVIATE
FUNCTION RAN3 (!DUM)
IMPLICIT REAL*8 (A-H,O-Z)

IMPLICIT REAL*4(M)
PARAMETER (MBIG=4000000.,MSEED=1618033.,MZ=0.,FAC=2.5E-7)

PARAMETER (MBIG=1000000000,MSEED=161803398,MZ=0,FAC=1.E-9)
DIMENSION MA(55)
DATA IFF /0/
IF(IDUM.LT.O.OR.IFF.EQ.O)THEN

IFF=l
MJ=MSEED-IABS(IDUM)
MJ=MOD(MJ,MBIG)
MA(55)=MJ
MK=l
DO 11 1=1,54

II=MOD(21*I,55)
MA(II) =MK
MK=MJ-MK
IF(MK.LT.MZ)MK=MK+MBIG
MJ=MA(II)

CONTINUE
DO 13 K=1,4

DO 12 1=1,55
MA(I)=MA(I)-MA(1+MOD(I+30,55»
IF(MA(I).LT.MZ)MA(I)=MA(I)+MBIG

CONTINUE
CONTINUE
INEXT=O
INEXTP=31
IDUM=l

ENDIF
INEXT=INEXT+1
IF(INEXT.EQ.56)INEXT=1
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INEXTP=INEXTP+l
IF(INEXTP.EQ.56)INEXTP=1
MJ=MA(INEXT)-MA(INEXTP)
IF(MJ.LT.MZ)MJ=MJ+MBIG
MA (INEXT)=MJ
RAN3=MJ*FAC
RETURN
END
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FITRCB IS THE ROUTINE FOR FITTING THE POPULATION
PARAMETERS FOR TRACKERS. THE EQUATIONS ARE TAKEN
FROM DIEM AND LIUKKONEN (1988) AND THEIR DERIVATIONS
APPEAR IN CHAPTER 1 OF THIS PAPER.

THE FIRST PART OF THIS PROGRAM CALCULATES THE
INITIAL ESTIMATES OF THE B'S, ALPHA, SIGMA SQUARED,
AND THE D'S. THE E-M ALGORITHM IS THEN IMPLEMENTED
WITH THE ABOVE ESTIMATES IN ORDER TO ITERATIVELY
IMPROVE THE ESTIMATES OF THE PARAMETERS.

SUBROUTINE FITRCB(N,M,P,K)
IMPLICIT REAL *8 (A-H,Q-Z)
INTEGER N,M,P,K
INTEGER IPVT(6)
DIMENSION X(20,6),Z(20,6),Y(20,200)
DIMENSION D(6,6),B(6,200),ALPH(6),DET(2)
DIMENSION XTX(6,6),ZTZ(6,6),ZTZI(6,6),ZZZ(6,20)
DIMENSION ZT(6,20),YSUM(20),DSUM(6,6),DOLD(6,6)
DIMENSION XT(6,20),XALPH(20),DIFF(20)
DIMENSION SUMI(6,6) ,SUMIZT(6,20) ,YDIFF(20,200)
INTEGER IUSE(200)
COMMON/DATAS/X,Z,Y
COMMON/PARAMS/ALPH,B,SIGMA2,D
COMMON/ITCON/MAXIT,IFLAG,CONV
COMMON/USEME/IUSE
DATA IFRST/1/
COMMON /FIND/ZT,XALPH
IFLAG=9

FIRST CALCULATE USEFUL QUANTITIES

THE FOLLOWING GIVES TRANS(X)*X

DO 10 I=l,P
DO 5 J=l,P
XTX(I,J)=DDOT(N,X(l,I),l,X(l,J),l)
CONTINUE
CONTINUE

THE FOLLOWING GIVES TWO COPIES OF TRANS(Z)*Z

DO 20 I=l,K
DO 15 J=l,K
ZTZ(I,J)=DDOT(N,Z(l,I),l,Z(l,J),l)
ZTZI(I,J)=ZTZ(I,J)
CONTINUE
CONTINUE

NEED TO CALCULATE INV(TRANS(Z)*Z)*TRANS(Z).
FIRST NEED TO GET TRANS(Z) THEN USE LINPACK
FACTOR AND SOLVER. ABOVE WILL BE STORED IN ZZZ

DO 30 I=l,K
DO 25 J=l,N
ZT(I,J)=Z(J,I)
ZZZ(I,J)=ZT(I,J)
CONTINUE
CONTINUE
CALL DGEFA(ZTZI,6,K,IPVT,INFO)
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IF(INFO.NE. 0) GO TO 500
DO 35 I=l,N
CALL DGESL(ZTZI,6,K,IPVT,ZZZ(1,I),0)
CONTINUE

NOW CALCULATE THE INVERSE

CALL DGEDI(ZTZI,6,K,IPVT,DET,WORK,1)

DM=O.DO
DO 39 J=l,M

DM=DM+DFLOAT(IUSE(J»
IDM=INT(DM)

SUM THE Y'S

DO 45 I=l,N
YSUM(I)=O.ODO
DO 40 J=l,M
IF (IUSE(J).EQ.O) GO TO 40
YSUM(I)=YSUM(I)+Y(I,J)
CONTINUE
CONTINUE

INITIALIZE DSUM, DIFF AND SIGSUM TO ZERO

DO 55 I=l,K
DO 50 J=l,K
DSUM(I,J)=O.ODO
CONTINUE
CONTINUE
DO 57 I=l,N
DIFF(I)=O.ODO
CONTINUE
SIGSUM=O.ODO

THIS ROUTINE CALCULATES THE INITIAL EST OF ALPHA
THE SOLUTION IS STORED IN ALPH

DO 60 I=l,P
ALPH(I) = DDOT(N,X(l,I) ,1,YSUM,1)/DM
CONTINUE
CALL DGEFA(XTX,6,P,IPVT,INFO)
IF (INFO.NE.O) GO TO 501
CALL DGESL(XTX,6,P,IPVT,ALPH,0)

CALCULATE AND STORE THE INITIAL EST OF X*ALPH

DO 70 I=l,P
DO 65 J=l,N
XT(I,J)=X(J,I)
CONTINUE
CONTINUE
DO 75 I=l,N
XALPH(I)=DDOT(P,XT(l,I),l,ALPH,l)
CONTINUE

THIS CALCULATES THE INITIAL B'S

DO 120 J=l,M
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IF (IUSE(J).EQ.O) GO TO 120
DO 90 I=l,N
DIFF(I)=Y(I,J)-XALPH(I)

90 CONTINUE
DO 95 I=l,K
B(I,J)=O.ODO
DO 92 L=l,N

92 B(I,J)=B(I,J)+ZZZ(I,L)*DIFF(L)
95 CONTINUE

DO 105 I=l,K
DO 100 L=l,K
DSUM(I,L)=DSUM(I,L)+(B(I,J)*B(L,J)

100 CONTINUE
105 CONTINUE

DO 115 I=l,N
DO 110 L=l,K
DIFF(I)=DIFF(I)-(Z(I,L)*B(L,J))

110 CONTINUE
115 CONTINUE

SIGSUM=SIGSUM+DDOT(N,DIFF,l,DIFF,l)
120 CONTINUE
C
C THE INITIAL EST OF SIGMA SQUARED IS IN SIGMA2
C

SIGMA2=SIGSUM/DFLOAT«IDM*N)-P-(K*IDM)+K)
C
C CALCULATE AND STORE THE INITIAL EST OF D
C

DO 130 I=l,K
DO 125 J=l,K
D(I,J)=(DSUM(I,J)/(DM-1.)-(SIGMA*ZTZI(I,J»)

125 CONTINUE
130 CONTINUE
C
C THE E-M ALGORITHM
C
C E-STEP
C FIRST STORE USEFUL QUANTITIES
C

ITER=O
1000 ITER=ITER+1

SIGOLD=SIGMA2
DO 140 I=l,K
DO 135 J=l,K
DSUM(I,J)=O.ODO
DOLD(I,J)=D(I,J)

135 CONTINUE
140 CONTINUE

SIGSUM=O.ODO
CALL DGEFA(D,6,K,IPVT,INFO)
IF (INFO.NE.O) GO TO 502
CALL DGEDI(D,6,K,IPVT,DET,WORK,1)

C
C D NOW CONTAINS INV(D)
C

DO 150 I=l,K
DO 145 J=l,K
SUMI(I,J)=ZTZ(I,J)+(SIGMA2*D(I,J»)

145 CONTINUE
150 CONTINUE
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CALL DGEFA(SUMI,6,K,IPVT,INFO)
IF(INFO.NE.O) GO TO 503
CALL DGEDI(SUMI,6,K,IPVT,DET,WORK,1)
DO 160 I=l,K
DO 155 J=l,N
SUMIZT(I,J)=DDOT(K,SUMI(l,I),l,ZT(l,J),l)

155 CONTINUE
160 CONTINUE
C
C CALCULATE THE IMPROVED EST OF THE B'S
C

DO 190 J=l,M
IF (IUSE(J).EQ.O) GO TO 190
DO 165 I=l,N
DIFF(I)=Y(I,J)-XALPH(I)

165 CONTINUE
DO 175 I=l,K
B(I,J)=O.ODO
DO 170 L=l,N
B(I,J)=B(I,J)+(SUMIZT(I,L)*DIFF(L»

170 CONTINUE
175 CONTINUE

DO 185 I=l,K
DO 180 L=l,K
DSUM(I,L)=DSUM(I,L)+(B(I,J)*B(L,J»

180 CONTINUE
185 CONTINUE
190 CONTINUE
C
C
C M-STEP
C
C RE-CALCULATE THE ALPHAS
C

DO 195 I=l,N
195 YSUM(I)=O.ODO

DO 205 J=l,M
IF (IUSE(J).EQ.O) GO TO 205
DO 200 I=l,N
YDIFF(I,J)=Y(I,J)-(DDOT(K,ZT(l,I),l,B(l,J),l»
YSUM(I)=YSUM(I)+YDIFF(I,J)

200 CONTINUE
205 CONTINUE

DO 210 I=l,P
ALPH(I)=DDOT(N,X(l,I) ,1,YSUM,l)/DM

210 CONTINUE
CALL DGESL(XTX,6,P,IPVT,ALPH,O)
DO 215 I=l,N
XALPH(I)=DDOT(P,XT(l,I),l,ALPH,l)

215 CONTINUE
C
C RE-CALCULATE THE D'S
C

DO 225 I=l,K
DO 220 J=l,K
D(I,J)=(DSUM(I,J)/DM)+(SIGMA2*SUMI(I,J»

220 CONTINUE
225 CONTINUE
C
C RE-CALCULATE SIGMA-SQUARED
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C
DO 235 J=l,M
IF (IUSE(J).EQ.O) GO TO 235
DO 230 I=l,N
YDIFF(I,J)=YDIFF(I,J)-XALPH(I)

230 CONTINUE
235 CONTINUE

DO 240 J=l,M
IF (IUSE(J).EQ.O) GO TO 240
SIGSUM=SIGSUM+DDOT(N,YDIFF(l,J) ,1,YDIFF(1,J) ,1)

240 CONTINUE
TRACE=O.ODO
DO 245 I=l,K
TRACE=TRACE+DDOT(K,ZTZ(l,I),l,SUMI(l,I),l)

245 CONTINUE
SIGMA2=«SIGSUM)/DFLOAT(M*N»+«SIGMA2*TRACE)/DFLOAT(N»
U=DABS(SIGMA2-SIGOLD)
DO 255 I=l,K
DO 250 J=l,I
R=DABS(DOLD(I,J)-D(I,J»

250 CONTINUE
255 CONTINUE

IF (R.GT.U) U=R
IF (U.GT.CONV) GO TO 1100
IFLAG=l
WRITE(20,*) 'CONVERGED IN',ITER,'ITERATIONS'

1100 IF(ITER.LT.MAXIT) THEN
GO TO 1000

ELSE
WRITE(20,*) 'FAILED TO CONVERGE IN',MAXIT,'ITERATIONS'

ENDIF
RETURN

500 WRITE(20,*)'THE MATRIX TRANS(Z)*Z IS NOT INVERTIBLE'
STOP

501 WRITE(20,*)'THE MATRIX TRANS(X)*X IS NOT INVERTIBLE'
STOP

502 WRITE(20,*)' THE MATRIX D IS NOT INVERTIBLE'
STOP

503 WRITE(20,*) 'THE MATRIX SUMI IS NOT INVERTIBLE'
STOP
END
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C
C
C
C
C
C
C
C
C

C
C
C
C
1000

5
10

15

20

C
C
C

ONCE THE POPULATION PARAMETERS HAVE BEEN
CALCULATED BY FITRCB USING ALL OBSERVATIONS
FINDEM CALCULATES THE MAXIMUM MAHALNOBIS
DISTANCE. THIS NUMBER IS COMPARED TO A
P-VALUE CALCULATED BY THE FUNCTION PVCHI
AND EITHER ELIMINATED OR KEPT. EACH TIME
AN OBSERVATION IS ELIMINATED FITRCB IS
CALLED TO RE-CALCULATE THE PARAMETERS FOR
THE 'TRACKING' POPULATION.

SUBROUTINE FINDEM (N,M,P,K,SIGNIF)
IMPLICIT REAL *8 (A-H,Q-Z)
INTEGER N,M,P,K
INTEGER JPVT(20),IPVT(20)
DIMENSION X(20,6),Z(20,6),Y(20,200)
DIMENSION D(6,6) ,B(6,200),ALPH(6),DET(2)
DIMENSION ZT(6,20)
DIMENSION XALPH(20) ,WORK(20)
DIMENSION ZDT(6,20),COV(20,20) ,U(20) ,DMH(200)
INTEGER IUSE(200)
DIMENSION YDIFF(20)
COMMON/DATAS/X,Z,Y
COMMON/PARAMS/ALPH,B,SIGMA2,D
COMMON/ITCON/MAXIT,IFLAG,CONV
COMMON/USEME/IUSE
COMMON/FIND/ZT,XALPH

FIRST NEED TO CALCULATE THE COVARIANCE MATRIX
THIS CALCULATES INV(Z*D*TRANS(Z)+SIGMA2*I)

DO 10 I=l,N
DO 5 J=l,K
ZDT(J,I)=DDOT(K,ZT(l,I),l,D(l,J),l)
CONTINUE
CONTINUE
DO 20 I=l,N
DO 15 J=l,N
COV(I,J)=DDOT(K,ZDT(l,J),l,ZT(l,I),l)
CONTINUE
COV(I,I)=COV(I,I)+SIGMA2
CONTINUE
CALL DGEFA(COV,20,N,IPVT,INFO)

IF (INFO.NE.O)THEN
WRITE(9,*) 'cov IS NOT INVERTIBLE'
ENDIF

CALL DGEDI(COV,20,N,IPVT,DET,WORK,1)

USE CHOLESKY DECOMP TO CALC MAHALANOBIS DIST

DM=O.
DMAX=-1.0
DO 30 I=l,M
IF (IUSE(I) .EQ.O) GO TO 30
DM=DM+1.
DO 22 J=l,N
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22

25

30

C
C
C

C

C

C

C

YDIFF(J)=Y(J,I)-XALPH(J)
DO 25 J=l,N
U(J)=DDOT (N,COV(l,J),l,YDIFF(l),l)
CONTINUE
DMH(I)=DDOT(N,U(l),l,YDIFF(l),l)

IF(DMH(I).GT.DMAX) THEN
DMAX=DMH(I)
INDEX=I

ENDIF
CONTINUE
PV=PVCHI(DMAX,N,DM)

IF(PV.LT.SIGNIF) THEN
IUSE(INDEX) =0
CALL FITRCB(N,M,P,K)
GO TO 1000

ELSE
RETURN

ENDIF
END

FUNCTION PVCHI(DMAX,N,DM)
WRITTEN BY D MOHR 10/1/89
RETURNS PROB. MAX OF M INDEP CHI-SQUARED VARIATES
(EACH WITH N D.F.) WILL BE GREATER THAN D.
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N
DATA DL7/-.356675/
RN2=DFLOAT(N)/2.
DM2=DMAX/2.
PV=GAMMP (RN2 , DM2)
PV=DLOG(PV)
DL7M=DL7/DM
IF (DL7M.GT.PV) THEN

PVCHI=.3
ELSE

PV=DEXP(PV*DM)
PVCHI=l.-PV

ENDIF
RETURN
END

FUNCTION GAMMQ(A,X)
FROM 'NUMERICAL RECIPES'
IMPLICIT REAL*8 (A-H,O-Z)
IF(X.LT.O •• OR.A.LE.O.)PAUSE
IF(X.LT.A+l.)THEN

CALL GSER(GAMSER,A,X,GLN)
GAMMQ=l. -GAMSER

ELSE
CALL GCF(GAMMCF,A,X,GLN)
GAMMQ=GAMMCF

ENDIF
RETURN
END

SUBROUTINE GSER(GAMSER,A,X,GLN)
FROM 'NUMERICAL RECIPES'
PARAMETER (ITMAX=lOO,EPS=3.E-7)

4'3
FIN0058
FIN0059
FIN0060
FIN0061
FIN0062
FIN0063
FIN0064
FIN0065
FIN0066
FIN0067
FIN0068
FIN0069
FIN0070
FIN0071
FIN0072
FIN0073
FIN0074
FIN0075
FIN0076

FIN00770
FIN00780
FIN00790

FIN0080
FIN0081
FIN0082
FIN0083
FIN0084
FIN0085
FIN0086
FIN0087
FIN0088
FIN0089
FIN0090
FIN0091
FIN0092
FIN0093
FIN0094
FIN0095
FIN0096
FIN0097
FIN0098
FIN0099
FIN0100
FIN0101
FIN0102
FIN0103
FIN0104
FIN0105
FIN0106
FIN0107
FIN0108
FIN0109
FINOllO
FIN01ll
FIN01l2
FIN01l3
FIN01l4
FIN01l5
FIN01l6
FIN01l7



IMPLICIT REAL*8 (A-H,O-Z)
GLN=GAMMLN(A)
IF(X.LE.O.)THEN

IF(X.LT.O.)PAUSE
GAMSER=O.
RETURN

ENOIF
AP=A
SUM=l./A
OEL=SUM
DO 11 N=l, ITMAX

AP=AP+l.
OEL=OEL*X/AP
SUM=SUM+OEL
IF(ABS(OEL) .LT.ABS(SUM)*EPS) GO TO 1

11 CONTINUE
PAUSE 'A TOO LARGE, ITMAX TOO SMALL'

1 GAMSER=SUM*EXP(-X+A*LOG(X)-GLN)
RETURN
END

C
SUBROUTINE GCF(GAMMCF,A,X,GLN)

C FROM 'NUMERICAL RECIPES'
PARAMETER (ITMAX=100,EPS=3.E-7)
IMPLICIT REAL*8 (A-H,O-Z)
GLN=GAMMLN(A)
GOLD=O.
AO=l.
A1=X
BO=O.
B1=1.
FAC=l.
DO 11 N=l,ITMAX
. AN=FLOAT(N)

ANA=AN-A
AO=(A1+AO*ANA)*FAC
BO=(B1+BO*ANA)*FAC
ANF=AN*FAC
A1=X*AO+ANF*A1
B1=X*BO+ANF*B1
IF(A1.NE.0.)THEN

FAC=l./Al
G=B1*FAC
IF(ABS«G-GOLO)/G).LT.EPS)GO TO 1
GOLO=G

ENOIF
11 CONTINUE

PAUSE 'A TOO LARGE, ITMAX TOO SMALL'
1 GAMMCF=EXP(-X+A*OLOG(X)-GLN)*G

RETURN
END

C
FUNCTION GAMMLN(XX)

C FROM 'NUMERICAL RECIPES'
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 COF(6),STP,HALF,ONE,FPF,X,TMP,SER
DATA COF,STP/76.1800917300,-86.5053203300,24.0140982200,

* -1.23173951600,.1208580030-2,-.5363820-5,2.5066282746500/
DATA HALF,ONE,FPF/O.500,1.0DO,5.5DO/
X=XX-ONE
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11

C

C

TMP=X+FPF
TMP=(X+HALF)*LOG(TMP)-TMP
SER=ONE
DO 11 J=1,6

X=X+ONE
SER=SER+COF(J)/X

CONTINUE
GAMMLN=TMP+LOG(STP*SER)
RETURN
END

FUNCTION GAMMP(A,X)
FROM 'NUMERICAL RECIPES'
IMPLICIT REAL*S (A-H,O-Z)
IF (X.LT.O •• OR.A.LE.O.) PAUSE
IF (X.LT.A+l.) THEN

CALL GSER(GAMSER,A,X,GLN)
GAMMP=GAMSER

ELSE
CALL GCF(GAMMCF,A,X,GLN)
GAMMP=l. -GAMMCF

ENDIF
RETURN
END
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