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Identifying outliers in Bayesian hierarchical

models: a simulation-based approach

E. C. Marshall∗ and D. J. Spiegelhalter†

Abstract. A variety of simulation-based techniques have been proposed for detec-
tion of divergent behaviour at each level of a hierarchical model. We investigate a
diagnostic test based on measuring the conflict between two independent sources
of evidence regarding a parameter: that arising from its predictive prior given the
remainder of the data, and that arising from its likelihood. This test gives rise
to a p-value that exactly matches or closely approximates a cross-validatory pre-
dictive comparison, and yet is more widely applicable. Its properties are explored
for normal hierarchical models and in an application in which divergent surgical
mortality was suspected. Since full cross-validation is so computationally demand-
ing, we examine full-data approximations which are shown to have only moderate
conservatism in normal models. A second example concerns criticism of a com-
plex growth curve model at both observation and parameter levels, and illustrates
the issue of dealing with multiple p-values within a Bayesian framework. We con-
clude with the proposal of an overall strategy to detecting divergent behaviour in
hierarchical models.
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1 Introduction

Introduction of Markov chain Monte Carlo (MCMC) methods has enabled researchers to

fit a wide range of complex hierarchical models, in which observations are grouped within

‘units’ whose parameters (‘random’ effects) are assumed drawn from some population

model. Applications are not, however, generally accompanied by the kind of model

diagnostics that are standard practice when, say, carrying out regression analysis within

traditional statistical packages. In this paper we consider one such class of diagnostic:

simulation-based methods for detecting observations or units that do not appear to be

drawn from the assumed underlying distributions.

An example of a context in which such diagnostics may be important is that of mak-

ing comparisons between schools, hospitals or other institutions, in which hierarchical

models are being increasingly used from both a non-Bayesian (Goldstein 1995) and a

Bayesian (Normand et al. 1997) perspective. The default assumption for the random

effects distribution is generally Gaussian, which is not only technically convenient but

might also be justified by reasoning that there are inevitably many unmeasured institu-

tional covariates whose total influence, by an informal central limit theorem argument,

might approximate a normal distribution. It is of particular interest to identify institu-
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tions whose effects appear to lie beyond the reasonable tails of the assumed distribution,

and we shall term such institutions divergent, in distinction to merely extreme cases that

are simply in the tails of the random effects distribution. While each of these situations

may be said to represent an ‘outlier’, the latter behaviour does not lead us to question

the model (although of course it still may attract attention to the institution). The in-

terest in this paper will focus only on detection of divergent units, with some comments

on detecting individual divergent observations.

We assume a general conditionally independent hierarchical model is being consid-

ered as our current null hypothesis H0, where H0 encompasses sampling likelihoods,

forms of random effect distribution, and prior distributions. We assume a vector of

observations yij , j = 1, . . . , ni within each unit i, i = 1, ...,K, with

yij ∼ p(yij |γ, xij , φi)

φi ∼ p(φi|β, zi)

β, γ ∼ p(β, γ).

This model is represented in graphical form in Figure 1 (Spiegelhalter 1998), showing

the possibility of a vector of covariates {xij} at observation and {zi} at the unit level,

and γ represents, for example, error variances and regression coefficients. This can be

extended to allow ‘undirected links’ between the random effects φi representing, for

example, temporal or spatial association between the units (Marshall and Spiegelhalter

2003).

A number of features complicate the process of outlier detection in hierarchical

models. First, as emphasised by Langford and Lewis (1998), it may be difficult to assign

divergent behaviour to a particular level of the hierarchy – a unit may apparently be

divergent but this finding may be driven by just a few observations, while conversely,

sparse data within units may be labelled as individually divergent when in reality the

entire unit is at fault. Second, ‘shrinkage’ of parameter estimates towards population

means will tend to mask divergent behaviour, and so it may be misleading to rely on

the size of observed residuals.

Furthermore, two responses are possible to the diagnosis of divergent observations

or units. They might either be identified and considered separately, possibly as fixed

effects, or accommodated by adopting, say, a heavier-tailed distribution. Which of these

approaches is appropriate depends on the purpose of the investigation: for example, in

the epidemiological context of disease mapping, on might be interested in ‘hot-spots’

(identification) or producing maps with reliable estimates of underlying disease risk

(accommodation). Our interest will focus on identification.

The general approach to model criticism taken in the current paper is in line with

well established themes in the Bayesian literature – most notably (i) those of pre-

dictive model criticism, considered by Gelfand et al. (1992), Gelman et al. (1996) and

Bayarri and Berger (2000) amongst others; and (ii) the idea of measuring conflict be-

tween the likelihood and prior to highlight lack of fit (Box 1980; O’Hagan 2003). Section

2 reviews Bayesian predictive approaches to model checking, and provides a formal syn-

thesis of the multitude of approaches to Bayesian model criticism. The cross-validatory
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Figure 1: Null model shown as directed graphical model: circles represent parameters,

squares are observations, arrows represent stochastic dependence, solid box indicates re-

peated observations in unit i, dashed box represents all units except i, and φ\i represents

{φk, k 6= i}.
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method is described in Section 3 using strategies based on replicating both random

effects and data, and comparing these predictions with the observations using ‘mixed’

p-values. Section 4 introduces an alternative, ‘conflict’ p-value that measures discor-

dance between prior and data: we show that in many circumstances this will be exactly

or approximately equal to the ‘mixed’ p-value, but can be applied much more generally.

Section 5 contrasts these two approaches using data from an inquiry into excess surgical

deaths. Since full cross-validation is not routinely feasible when using MCMC methods,

approximate cross-validatory procedures are proposed in Section 6 and compared both

analytically and using the previous example. In Section 7 a more complex growth-curve

example illustrates the full range of methods to detection of both divergent data and

units. Finally, in Section 8 we formulate a practical strategy for hierarchical model

criticism. Appendices contain technical results on the distribution of p-values under

null hypotheses, and exact analysis for normal hierarchical models. WinBUGS code is

available from the authors on request.

2 A review of predictive model checks

2.1 General approaches

There is a large literature on checking hierarchical models, both from the classical and

Bayesian viewpoints (Hodges 1998). One approach involves the embedding of the cur-

rent model H0 in a wider family, indexed by α, such that the simpler model arises when

α = α0. Criticism of H0 is based on inferences on α within H1 or model comparison

between H0 and H1: Bayesian examples include the use of t instead of normal distri-

butions (Wakefield and Bennett 1996), computing Bayes factors between H0 and H1

(Sharples 1990; Albert and Chib 1997) or comparing prior and posterior distributions

for α within H1 (Carota et al. 1996).

The approach taken in the paper is much more in the spirit of classical hypothesis

testing, in which H0 can be criticised without explicit consideration of an alternative.

The standard approach is to specify a discrepancy measure T , and then contrast the

observed discrepancy T obs with some reference distribution p0(T ) under the null hy-

pothesis that H0 is an appropriate model; ‘extreme’ values of T obs relative to this

distribution then cast doubt on H0. The choice of the discrepancy function T and the

associated reference distribution p0 depend very much on the aspect of the model which

is to come under scrutiny.

First, classical approaches treat the data as random and the parameters as fixed,

and seek discrepancy measures T (y) which are functions of the data y alone so that

T obs = T (yobs), and whose sampling distribution p0(T ) under the null does not depend,

at least as an approximation, on unknown quantities. When checking the distributional

form for the random effects φi, suggestions include setting T (y) as the fixed effects
estimates φ̃i = φ̃i(y), with p0(T ) as their estimated predictive distribution under H0

(Dempster and Ryan 1985; Hardy and Thompson 1998), and setting T (y) as the random

effects estimates φ̂i = φ̂i(y), again with a reference distribution p0(T ) (Lange and Ryan
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1989; Hilden-Minton 1995; Bryk and Raudenbush 1992; Goldstein 1995).

Second, Bayesian approaches to residuals treat the data as fixed and the parameters

as random, and select discrepancy measures T (y, θ) which are functions of the data and

all parameters θ = {β, φ, γ}, or of the parameters alone. The reference distribution is

the posterior distribution p0(T |y) under the null: since T (yobs, θ) is not wholly spec-

ified, an ‘extreme’ value for T must be judged relative to its prior distribution. This

approach underlies the Bayesian residual analysis of Chaloner and Brant (1988), which

was extended by Chaloner (1994) to residuals at higher levels of the model and adapted

by Hodges (1998) to a reformulated normal hierarchical model.

Finally, what we shall term the ‘Bayesian-predictive’ approaches treat both the data

and parameters as random. Considering first the situation in which T (y) is chosen to

be a function of the data alone, Gelman et al. (1996) review three approaches to the

choice of reference distribution in the general context of checking hierarchical models:

1. Box (1980) proposes a prior predictive check in which T (yobs) is compared with

its predictive distribution

p0(T (Y )) =

∫
p(T (Y )|θ)p(θ)dθ.

Reasonable application of this approach requires informative prior distributions

for all model parameters and so may not be generally appropriate.

2. Gelman et al. (1996) suggest a mixed predictive check as relevant to the assess-

ment of hierarchical models such as shown in Figure 1, in which the reference

distribution is taken as

pM
0 (T (Y )|yobs) =

∫
p(T (Y )|β)p(β|yobs)dβ (1)

where p(T (Y )|β) =
∫
p(T (Y )|φ)p(φ|β)dφ is the predictive distribution for T (Y )

in a new set of replicate units. We assume γ is known at this stage. We may also

express pM
0 (T (Y )|yobs) as

pM
0 (T (Y )|yobs) =

∫
p(T (Y )|φ)pM (φ|yobs)dφ (2)

where we shall call pM (φ|yobs) =
∫
p(φ|β)p(β|yobs)dβ the ‘predictive prior’ distri-

bution for φ: we note the care necessary in not confusing pM (φ|yobs) with the stan-

dard posterior distribution for φ given by p(φ|yobs) =
∫
p(φ|yobs, β)p(β|yobs)dβ.

3. Rubin (1984) suggested the posterior predictive approach, in which the observed

discrepancy measure T obs = T (yobs) is compared with its predictive distribution

p0(T (Y )|yobs) given the observed data, which for the model in Figure 1 means

p0(T (Y )|yobs) =

∫
p(T (Y )|φ)p(φ|yobs)dθ (3)
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where p(φ|yobs) is the current posterior distribution. Contrasting (2) with (3), it

is clear that the mixed predictive approach uses a predictive prior distribution for

a new set of random effects, while the posterior predictive checks simply involve

the prediction of new data conditional on the current posterior p(φ|yobs). While

in the former mixed approach the data yobs only influence the predictive distri-

bution through the information they provide about β, in the posterior predictive

approach yobs influence the φ’s directly. Hence we may expect strong conservatism

in the latter case, in that the checking function being predicted is being directly

influenced by the very data which is being checked. This conservatism is explored

in detail by, for example, Bayarri and Berger (2000), Bayarri and Morales (2003)

and Bayarri and Castellanos (2004). The posterior predictive approach may, how-

ever, be more appropriate for addressing a very specific question: conditional on

the truth of the unit-level model, are there any individual data points which ap-

pear outlying? That is, is the likelihood model appropriate? We return to these

ideas later in the paper.

The mixed and posterior predictive approaches have the advantage of being easy to

compute using MCMC by generating replicate datasets Y rep, but when as above they

are not adopted in a full cross-validatory framework, come under criticism because the

data are used twice, first to update the prior p(θ) into a posterior and then for computing

the discrepancy measure. This is recognised by Gelman et al. (1995), who emphasise

that “test quantities are commonly chosen to measure a feature of the data not directly

addressed by the probability model”. Bayarri and Berger (2000) suggest methods of

ensuring this is the case, by either using a posterior distribution that is proportional to

p(yobs|T obs, θ)p(θ) (the partial approach) or by conditioning the reference distribution

on a statistic U that contains as much information about θ as possible (the conditional
approach). The partial approach is clearly the ‘ideal’ in that it obeys the injunction of

Gelman et al. (1995) in explicitly using a probability model that considers T obs as fixed,

but in practice the partial approach is complex to implement in non-trivial situations

such as generalised linear mixed models.

Other suggestions have also been made: for example, Dey et al. (1998) consider

the highly computationally-intensive approach of replicating data Y rep from the prior

distribution, as in the prior-predictive proposal (Box 1980), analysing each replicated

dataset to obtain posterior distributions p(θ|Y rep), and finally seeing whether p(θ|yobs)

is ‘extreme’ relative to the set of p(θ|Y rep).

In our specific context of identifying divergent units or individual data points, it

seems appropriate to consider multiple discrepancy measures based on summary statis-

tics for units or raw data respectively. We shall see in Section 3 that a cross-validatory

approach leads to a convergence of all the proposals listed above. However, we first need

to consider how a discrepancy measure might be compared to a reference distribution.



Marshall and Spiegelhalter 415

2.2 Comparing a discrepancy measure with a reference distribution

Suppose our discrepancy measure T is a function of data Y alone, and interest lies in

comparing the observed value T obs = T (yobs) with a reference distribution p0(T ) derived

using one of the proposals outlined above. Since we are focussing on simulation-based

methods in which replicate values of T will be generated from p0(T ), we shall denote

such values T rep.

Our choice in this paper is based on the ‘lower’ tail-area PL
0 = Pr(T rep ≤ T obs),

which has the double advantage over, say, the standardised Pearson residual or condi-

tional predictive ordinate (Pettit and Smith 1985), of having a familiar calibration that

does not rely on asymptotics, and being calculated directly as the proportion of times

a simulated continuous discrepancy measure is less than or equal to an observed value

(although for discrete measures care is required in defining the p-value). An ‘upper’

tail area is trivially defined as PU
0 = 1 − PL

0 . Small values of either PL
0 , P

U
0 or both

may be of interest depending on the context: in the last case the 2-sided p-value, 2 ×
min(PL

0 , P
U
0 ), can be reported.

If the discrepancy measure T (y, θ) is a function of both data and parameters, then

Gelman et al. (1996) recommend calculating the posterior expectation of the p-value,

Eθ|yobs

[
Pr
(
T (Y rep, θ) ≤ T (yobs, θ)

)]
;

this may be efficiently obtained by drawing θrep from p(θ|yobs), simulating Y rep from

p(Y |θrep), and observing the proportion of times that T (yobs, θrep) exceeds T (Y rep, θrep).

Each unit or observation can give rise to its own p-value for which low values are

of interest, leading to the classical problem that the interpretation of an apparently

extreme p-value depends on the number that have been calculated, since the proba-

bility of a false positive result increases with increasing number of tests. It may be a

useful guideline to multiply small p-values by the number calculated – the classic Bon-

ferroni adjustment. Alternatively one can make use of the false discovery rate (FDR)

procedure of Benjamini and Hochberg (1995), possibly adapted for dependent p-values

(Benjamini and Yekutieli 2001): see Section 7 for an example. It may seem paradoxical

that a Bayesian model-checking procedure can lead to classical adjustments for multiple

comparisons, and this is discussed further in Section 8.

3 ‘Cross-validatory’ methods for identifying divergent pa-

rameters

Cross-validation or ‘leave-one-out’ methods are well-established: the data being checked

is left out, a prediction is made based on the remaining data, and divergence between

observed and prediction casts doubt on the assumptions. See Gelfand et al. (1992) and

Bernardo and Smith (1994) for extensive discussion of this approach from a Bayesian

perspective. In the context of checking unit i, it is natural to leave yi out of analysis,

where yi may be a vector, and use a discrepancy measure Ti = T (yi). Then, using the
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structure and notation of Figure 1, the reference distribution p0(T
rep
i ) conditional on

remaining data y\i, is obtained from

p(T rep
i |y\i) =

∫
p(T rep

i |φi, γ)p(φi|β), p(β, γ|y\i)dφidβdγ. (4)

now allowing γ to be unknown.
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Figure 2: Cross-validatory ‘mixed’ replication of parameters and data: the double di-

rected arrow indicates a logical function. The double ringed nodes represent quantities

to be compared in order to assess divergence.

(4) may also be written as

p(T rep
i |y\i) =

∫
p(T rep

i |φi, γ)p
M (φi, γ|y\i)dφidγ,

using the ‘predictive prior’

pM (φi, γ|y\i) =

∫
p(φi|β)p(β, γ|y\i)dβ.

Following this formulation, as reflected in Figure 2, we would obtain βrep, γrep|y\i

as part of an MCMC simulation, then a replicate φrep
i |βrep, followed by a simulated
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Y rep
i |φrep

i , γrep, and hence obtain T rep
i = T (Y rep

i ) which can then be compared with

T obs
i using techniques described in Section 2. Since the reference distribution is ob-

tained entirely independently of yi, in most situations the resulting mixed p-values

Pi,mix = Pr(T rep
i ≤ T obs

i |y\i) (6)

will be a ‘proper’ p-value, in that it will be drawn from a uniform distribution on (0, 1)

under H0 (although the p-values for each unit will not in general be independent): see

Section A.1 for detailed discussion. This suggests a strategy of quantile-quantile (QQ)

plots of p-values against order statistics of the uniform (0, 1) distribution, as well as

taking into account multiple comparisons (Section 2.2).

We note that all the Bayesian-predictive approaches outlined in Section 2 (except

the posterior predictive approach) coincide in this cross-validatory context: as pointed

out by Carlin (1999), the reference distribution (4) corresponds to both a partial poste-
rior and a conditional prediction where the posterior is based on data disjoint from Ti

(Draper 1996; Bayarri and Berger 2000), a prior prediction where the prior conditions

on other data, and a mixed prediction according to its definition. This approach can

also be seen as an application of the cross-validatory suggestions of Gelfand et al. (1992)

to hierarchical models.

The issue remains of selecting a discrepancy measure Ti for a vector yi. If Ti is

chosen to be the full data yi, then the individual observations yij each contribute to the

overall measure of divergence. However, the reference distribution is then a convolution

of the likelihood p(yij |φi) with the prior p(φi|β), and so loses power if our interest is

solely in checking for divergent φi and we are willing to assume the likelihood is correct.

This is clearly illustrated if sufficient statistics si exist, since by definition the likelihood

factorises p(yi|φi) into p(yi|si)p(si|φi). The first term contains no information about φi

and hence its inclusion in a reference distribution for a discrepancy measure can only

add noise to the procedure. Thus it will be more efficient to use si as a discrepancy

measure or, more generally, if closed-form estimators φ̂i exist, to set Ti = φ̂i(yi) and

then compare φ̂i with p(φ̂rep
i |y\i).

4 Measuring conflict between prior and likelihood

In many circumstances closed form estimators φ̂i will not exist to use as discrepancy

functions: for example in non-normal generalised linear models with covariates, and non-

linear models such as used in pharmacokinetics. An alternative approach is motivated

by the observation by Box (1980) that the ‘mixed’ approach described above can also be

interpreted as measuring conflict between likelihood and prior: see also O’Hagan (1994)

[p 179] and O’Hagan (2003).

A general implementation is illustrated in Figure 3. At each iteration a predictive
prior replicate φrep

i |y\i is generated just as in the standard cross-validation approach

described above. A second replicate φfix
i |yobs

i is then generated from the posterior dis-

tribution for the ‘fixed effect’ estimate using only the data from the unit being tested

and a ‘non-informative’ or ‘reference’ prior for φi: this can also be termed a likelihood



418 Identifying outliers in hierarchical models

replicate since it is essentially drawn from a normalised likelihood in a suitable parame-

terisation. These prior and likelihood replications can be considered as two independent

sources of evidence about φi, and conflict between them suggests faults in the model.

_^]\XYZ[�

vvnnnnnnnnnnnnnnnnnnnnnnnn

��onmlhijkgfed`abc������� onmlhijkgfed`abc������

��

gfed`abc�! �

��" � "  �

_^]\XYZ[#

OObbD
D
D
D
D
D
D
D
D
D
D

_ _ _ _ _ _�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _

Figure 3: Checking for divergent φi based on comparing two parameter replicates: φrep
i

simulated from the predictive prior and φfix
i simulated from, essentially, the normalised

likelihood. The double ringed nodes represent quantities to be compared in order to

assess divergence.

How may prior and likelihood replicates best be compared? O’Hagan (2003) suggests

normalising the prior and the likelihood to have unit maximum height, and using the

ordinate at which they cross as a measure of conflict. Our preference is to define a

p-value. First define the difference in replicates as φdiff
i = φrep

i −φfix
i : then for scalar φi,

we can calculate a ‘conflict’ p-value

Pi,con = Pr(φdiff
i ≤ 0|y) (7)

from simulated values of φdiff
i .

A primary reason for choosing this measure of conflict is to match, or closely ap-

proximate, the cross-validatory mixed p-value (6), when it exists. For example, consider
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the simple normal hierarchical model with likelihood

Yi ∼ N(φi, σ
2) (8)

(so that in this instance γ = σ) and a predictive prior for φi (i.e. the posterior condi-

tional on the remainder y\i of the data) given by

φi|y\i ∼ N(β̃, ω̃2), (9)

where β̃, ω̃2 are functions of y\i and known parameters - see A.2 in the Appendix for

details. Then assuming a uniform prior for the fixed effect φfix
i , we have

φfix
i |yobs

i ∼ N(yobs
i , σ2)

φrep
i |y\i ∼ N(β̃, ω̃2)

and so φdiff
i |y ∼ N(yobs

i − β̃, σ2 + ω̃2). The p-value (7) measuring the conflict between

prior and likelihood is therefore

Pi,con = Pr(φdiff
i ≤ 0|y) = Φ

(
yobs

i − β̃√
σ2 + ω̃2

)
. (10)

However, from (8) and (9) we see that the predictive distribution is Y rep
i |y\i ∼ N(β̃, σ2+

ω̃2), and hence we obtain the cross-validatory mixed p-value (6)

Pi,mix = Pr(Y rep
i ≤ yobs

i |y\i) = Φ

(
yobs

i − β̃√
σ2 + ω̃2

)
, (11)

so in these circumstances Pi,mix = Pi,con exactly.

If φi is a vector of dimension n, let E[φdiff
i |y] = mφi

, Cov[φdiff
i |y] = Σφi

. Then

m′
φi

Σ−1
φi
mφi

is a standardised discrepancy measure. If we were willing to assume a mul-

tivariate normal distribution for φdiff
i , this discrepancy measure could be compared with

a χ2
n distribution. In Section A.2 we derive exact forms for the cross-validatory mixed

discrepancy measures in general normal hierarchical models with known variances, show

the resulting p-values have uniform distributions under H0, and that they exactly match

the p-values based on conflict between prior and likelihood. However, in non-normal

models with multiple parameters per unit the resulting p-values should be interpreted

with caution, since in general we might not expect a good χ2 approximation which, in

turn, would not give rise to a uniform distribution of p-values under the null hypothesis.

Two issues arise in generating the ‘likelihood-based’ replicates that represent fixed

effect estimates: choice of a ‘non-informative’ prior and handling nuisance parameters.

First, the ‘non-informative’ prior for the fixed effect model should be chosen so that

the conflict p-values match, as far as possible, the mixed p-values when they exist.

In Section A.3 we show that if φi is a location parameter and an estimator φ̂i has a

symmetric likelihood, then Pi,mix = Pi,con when adopting a uniform prior for φfix
i . In
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other situations, Box and Tiao [p. 32] show that using Jeffreys’ non-informative prior

is equivalent to a locally uniform prior in a parameterisation that leads to approximate

‘data-translated’ likelihoods. We would therefore recommend the use of a Jeffreys’

prior for φi when generating the fixed-effect posterior distribution: examples include

p(φ) ∝ φ−
1
2 for a Poisson mean φ, and p(φ) ∝ φ− 1

2 (1 − φ)−
1
2 for a Bernoulli mean φ:

since we are concerned with parameters appearing in likelihoods for observed data the

known difficulties with using Jeffreys’ priors for hyper-parameters should not arise.

Second, problems arise in the presence of the nuisance parameters denoted γ in

Figure 3, which may for example comprise error variances and regression coefficients

at the observation level. In general these will not be estimable from individual units

i. The simulated values from p(γ|y\i) may be used, as illustrated in Figure 3, which

means that y\i will slightly influence φfix
i and hence the two replications are not entirely

independent. We would not, however, expect such an influence to be large. Care should

also be taken that there is no ‘feedback’ from yi when sampling γ, although again in

practice we would not expect this to be very influential.

5 Example: Bristol Royal Infirmary Inquiry data

A public inquiry was set up following suggestions of excess mortality in complex paedi-

atric cardiac surgery carried out at the Bristol Royal Infirmary prior to 1995. Part of

the data presented to the Inquiry is shown in Table 1, based on national returns derived

from patient administration systems: this source of data is treated with some suspicion

by clinicians but data submitted to their professional register show much the same pat-

tern. For detailed statistical discussion see Spiegelhalter et al. (2002). Publication of

the final report of the Inquiry (BRI Inquiry Panel 2001) has led to substantial changes

in health service monitoring in the UK.

The baseline analysis (Spiegelhalter et al. 2002) is a random-effects model

Yi ∼ Binomial(πi, ni)

logit(πi) = φi

φi ∼ N(β, ω2).

Independent uniform priors are initially assumed for β and ω. Each hospital is removed

in turn from the analysis, the parameters re-estimated, and the observed deaths yobs
i

compared to the predictive distribution of Y rep
i |y\i to give the mixed p-value, defined

as

Pi,mix = Pr(Y rep
i > yobs

i ) +
1

2
Pr(Y rep

i = yobs
i ) :

a ‘mid’ p-value is used given the discrete response. We note that, in contrast to (6),

the upper tail-area is being used as a one-sided p-value since in this context these are

the only departures of interest. All computations have been carried out in WinBUGS

(Spiegelhalter et al. 2003) and are based on 100000 iterations following convergence.

The left-hand side of Figure 4 illustrates these tail areas for Bristol (hospital 1) and

Leicester (hospital 2), based on the 100000 simulations.
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Full data ‘Tenth data’

Hospital Operations ni Deaths yi Operations Deaths

1 Bristol 143 41 14 4

2 Leicester 187 25 19 3

3 Leeds 323 24 32 2

4 Oxford 122 23 12 2

5 Guys 164 25 16 3

6 Liverpool 405 42 41 4

7 Southampton 239 24 24 2

8 Great Ormond St 482 53 48 5

9 Newcastle 195 26 20 3

10 Harefield 177 25 18 3

11 Birmingham 581 58 58 6

12 Brompton 301 31 30 3

Table 1: Numbers of open-heart operations and deaths for children under one year of age

carried out in 12 hospitals in England between 1991 and 1995, as recorded by Hospital

Episode Statistics. The ‘tenth’ data represents similar mortality rates but based on

approximately one tenth of the sample size.

Spiegelhalter et al. (2002) calculated such p-values, and also presented summaries

of the prior and likelihood for Bristol, although no formal measure of their conflict was

made. Here we shall use Pi,con as such a formal measure. We assume a Jeffreys’ prior

for πfix
i , and the resulting posterior distribution for πfix

i and the predictive distribution

for πrep
i are shown in Figure 4 for Bristol (hospital 1) and Leicester (hospital 2), with

Pcon given by (7). Pmix and Pcon are remarkably close even though the model does not

strictly obey the criteria for an exact match.

Figure 5 compares mixed and conflict cross-validatory p-values for all hospitals, and

their close agreement is clear. Any measure of agreement between p-values should re-

flect the importance of close agreement at the extremes, and therefore we first carry out

an inverse-normal transformation to the real line to obtain z-scoresZi,con = Φ−1(Pi,con),

Zi,mix = Φ−1(Pi,mix). The relative agreement between mixed and conflict cross-validatory

p-values is then derived from the percentage relative agreement between Zi,con and

Zi,mix, defined as 100 |Zi,con −Zi,mix|/Zi,mix, and then taking the average of this quan-

tity over the 12 hospitals.

The ‘baseline analysis’ column of Table 2 summarises the 12 conflict p-values, for

example, by transforming to

X2
con =

∑

i

Z2
i,con,

which would have a χ2
12 distribution were the p-values to have independent Uniform(0,1)

distributions. X2
con and X2

mix closely agree. The lack of independence between the p-
values is illustrated by the fact that the X2’s are not ‘significant’, even with the extreme

contribution from Bristol, and so the X2’s should only be used for comparing methods
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rather than assessing ‘significance’.

The good agreement between Pmix and Pcon may, however, reflect the approximate

normality due to the substantial sample size. We therefore consider the ‘tenth data’

shown in Table 1 obtained by dividing all numerators and denominators by ten and

rounding to the nearest integer. Table 2 shows the p-values still agree well, illustrating

the good data-translation property of the Jeffreys’ prior, even with small sample sizes.

Finally, the wide interval around the posterior estimate of ω illustrates the difficulty

of accurately estimating a random-effects standard deviation ω with data on only 11

units, especially when assuming a uniform prior for ω. In order to assess the effect

of assuming an informative prior for ω, we can use the fact that 95% of hospitals will

have odds on death within a range of exp(± 1.96 ω). Reasonable homogeneity between

hospitals would therefore correspond to values of ω less than around 0.2, since then the

odds ratio between a ‘high’ mortality (97.5 centile) and ‘low’ mortality hospital (2.5

centile) would be around exp(2 × 1.96 × 0.2) = 2.2. An informative prior was therefore

adopted by assuming a ‘half-normal’ distribution, so that ω = |W |, where

W ∼ N(0, ψ2),

with ψ = 0.1. The resulting prior for ω has a mode at 0; a median of 0.67 ×ψ = 0.067

and 95% point 1.96 ×ψ = 0.20.

The results in Table 2 show that this informative prior leads to a low estimate 0.09

for ω when Bristol is excluded, and hence makes its p-value somewhat more extreme.

The agreement between the mixed and conflict p-values remains good.

6 Alternatives to cross-validation

MCMC techniques are well-suited to generating replicate parameters and data at each

iteration, but are ill-suited to a full cross-validatory approach in which each observation

or unit has to be removed in turn and the analysis re-run. A number of approximations

can be proposed: see Marshall and Spiegelhalter (2003) for further discussion and an

example in spatial modelling.

1. Full-data mixed replications, which involve repeating the cross-validation proce-

dure of Section 3 but without leaving yi out of the analysis, thus generating φrep
i |y

followed by Y rep
i . This is illustrated in Figure 6(a). The generation of a new φrep

i

can be viewed as ’ghosting’: for each unit in turn, a ghost unit is created in a par-

allel universe, and observations generated. Some conservatism will be introduced,

but this may be only moderate as yobs
i only influences φrep

i through β. We denote

the resulting full-data p-values Pmix.f .

2. Full-data prior and ‘likelihood’ replications in which yobs
i contributes to the sim-

ulation of φrep
i through influencing, to some extent, β. This is illustrated in

Figure 6(b). We might expect this to have similar properties to full-data mixed

replication. A replicate set of data is required to simulate φfix
i , which is then



Marshall and Spiegelhalter 423

Quantity Baseline analysis Tenth data Informative prior

on ω
Pmix for Bristol (hosp. 1) 0.00201 0.0556 0.00001

Pcon for Bristol (hosp. 1) 0.00191 0.0483 0.00001

X2
mix 12.9 5.7 29.4

X2
con 13.0 6.2 28.2

Relative error

(mixed vs conflict) 0.8% 4.1% 0.8%

Between-hospital sd ω:

excluding Bristol (hosp. 1)

median 0.19 0.17 0.09

95% interval (0.01 to 0.46) (0.01 to 0.68) (0.004 to 0.22)

excluding Leicester (hosp. 2)

median 0.44 0.19 0.25

95% interval (0.02 to 0.46) (0.01 to 0.75) (0.14 to 0.36)

Table 2: Comparison of mixed and conflict p-values when carried out using full cross-

validation, in which each hospital is removed in turn. X2 statistics are a composite

measure of the extremity of the p-values. ‘Tenth data’ corresponds to original counts

divided by ten and rounded to the nearest integer, while the informative prior on ω
reflects prior belief in reasonable homogeneity of centres.
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compared with φrep
i to create a measure of conflict. Care is required when pro-

gramming in WinBUGS (Spiegelhalter et al. 2003) or elsewhere, as there must not

be feedback to γ from the replicate set of data otherwise the precision of γ will be

over-estimated. We denote the resulting p-values Pcon.f .

3. Full-data posterior predictive p-values in which data are replicated from

p(Y rep
i |φi, γ) (Figure 6(c)). This is likely to be very conservative as yobs

i strongly

influences φi and hence Y rep
i will tend to agree too well with yobs

i . Although

Gelman et al. (1995) and Gelman et al. (1996) do not recommend this procedure

for outlier detection, their recommended global measures of goodness-of-fit are

based on it (Section 8). We denote the resulting p-values Ppost−pred.f .

In Section A.4 we extend the analysis of Marshall and Spiegelhalter (2003) and show

that the full-data mixed (and equivalently the prior and ‘likelihood’ replication) tech-

nique only induces mild conservatism in the normal hierarchical model, whereas, as

noted by Bayarri and Berger (2000) and Robins et al. (2000), the full-data posterior

predictive p-values can be very conservative.

Figure 7 shows the results from applying these three approximate methods to the

Bristol data, comparing with the ‘gold-standard’ cross-validatory mixed p-values. Both

the full-data mixed (a) and conflict (b) p-values are little influenced by the lack of

cross-validation, as might be expected from the analysis in Section A.4. In contrast,

Figure 7(c) reveals the predicted conservatism of the posterior predictive p-values.

Table 3 reproduces the previous results but using the the full data, and shows there is

still good agreement between mixed and conflict p-values. All the results show the deep

conservatism of the posterior predictive values, emphasising the danger of producing

replicates that are heavily dependent on the data being checked.

7 Example: Longitudinal model following hepatitis vac-

cination

Spiegelhalter et al. (1996) considered the following example involving vaccination against

hepatitis B (HB) in which 2 or 3 longitudinal log(anti-HB titre) observations are avail-

able from each of I =106 children, comprising 288 observations in all. The null modelH0

assumes normal errors and random coefficient linear growth curves with time t measured

on a centred logarithmic scale, and a covariate µ0 comprising the baseline log(titre). The

covariate is not directly observed, but a baseline observation y0 is assumed made with

the same error as the subsequent observations.
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Quantity Baseline analysis Tenth data Informative prior

on ω
for Bristol (hosp. 1):

Pmix.f 0.024 0.068 0.0012

Pcon.f 0.024 0.059 0.0013

Ppost−pred.f 0.23 0.096 0.058

X2
mix.f 7.9 5.0 17.4

X2
con.f 7.9 5.5 17.3

X2
post−pred.f 1.1 3.9 4.8

% Relative error vs cross-validatory mixed

Full-data mixed 7.2% 8.0% 10.4%

Full-data conflict 7.0% 6.5% 10.3%

Full-data post-pred 95.5% 22.6% 69.6%

Between-hospital sd ω
median 0.40 0.18 0.24

95% interval (0.23 to 0.73) (0.01 to 0.70) (0.13 to 0.35)

Table 3: Comparison of mixed, conflict and posterior-predictive p-values when using the

full data for prediction rather than leaving each centre out in turn. The cross-validatory

mixed approach is considered the ‘gold-standard’.
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For the jth measurement on the ith individual we therefore assume

yij ∼ N(µij , σ
2)

µij = φi1 + φi2tij + γµi0

φi ∼ N2(β,Ω)

yi0 ∼ N(µi0, σ
2)

µi0 ∼ N(η, τ2)

where β, γ, log(σ), η and log(τ) are given locally uniform prior distributions and a diffuse

Wishart prior is specified for Ω−1.

This example is important because the functional form has a strong scientific inter-

pretation, and systematic deviations in individuals could cast doubt on the underlying

model. The presence of measurement error on the covariate means that standard esti-

mation and diagnostic procedures are not readily available.

Divergent children have been investigated using conflict p-values of both intercept

φi1 and gradient φi2, in which predictive prior replicates generated conditional on all

observed data are contrasted with replicates generated conditional only on the data for

that child, based on full data without cross-validatory removal of each case. Figure 8

shows that the intercepts show reasonable agreement with a uniform distribution. In

contrast, the gradients exhibit a cluster of surprisingly small p-values: with false dis-

covery rate (FDR) (Benjamini and Hochberg 1995) of 0.05, four gradients are identified

as being divergent: no adjustment for non-independent p-values has been made since

we view this full-data approach as exploratory. These cases are highlighted in Figure 9

and Table 4.

Although the focus in this paper has been on the detection of divergent units, the

divergence of individual observations may also be of interest. This could be checked by

an approximate cross-validation using mixed replicates which are sensitive to both child

and observation divergence, or posterior-predictive replicates which target divergence

within a child. However, neither approach identifies individually divergent observations

using a FDR of 0.05, but this lack of sensitivity might be expected in this example given

very limited data per child.

The posterior predictive approach essentially seeks to identify individual observations

that do not fit the fitted straight line for each child: examination of Figure 9 reveals that,

for example, the fitted line for Child 20 will be strongly shrunk towards the common

gradient, and hence neither of the two observations will fit the fitted line for that child,

the first observation being low and the second high. For Child 34 the second observation

is identified as high, for Child 76 the first is high and for Child 95 the first is low. In

contrast, the mixed approach simply identifies individual observations that lie outside

the general ‘cloud’, without taking into account the other observations on that child.

In order to assess the impact of the divergent children on the conclusions of inter-

est, we removed their observations and re-analysed the data. Applying approximate
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Divergent children? Divergent observations?

Intercept Gradient

Child Pcon(φi1) Pcon(φi2) observation ppost−pred pmix

20 0.0014 0.0000 1 0.999 0.966

2 0.002 0.018

34 0.584 0.0003 1 0.065 0.664

2 0.025 0.012

76 0.456 0.0014 1 0.018 0.169

2 0.893 0.907

3 0.889 0.921

95 0.568 0.0004 1 0.968 0.935

2 0.758 0.692

3 0.254 0.059

Table 4: Children from hepatitis data with any p-value less than 0.0025 or greater than

0.9975. Diagnostics for divergent children are based on replication of intercepts and

gradients separately. Divergent observations are examined by posterior-predictive and

mixed p-values.

cross-validatory predictive checks did not highlight any further divergent children or

observations (data not shown). In this particular example, the conclusions are fairly

insensitive to the outliers – Table 5 shows the data are compatible with β2 = −1, γ = 1

which are important and interpretable values corresponding to titre/baseline being in-

versely proportional to time.

Parameter Complete data Outliers removed

β1 6.04 (5.70,6.38) 6.06 (5.72,6.39)

β2 -1.07 (-1.34,-0.79) -1.12 (-1.35,-0.90)

γ 0.98 (0.65,1.17) 0.82 (0.59,1.06)

Table 5: Posterior means and 95% credible intervals for the parameters of interest, with

and without data from the four divergent children.

8 Some conclusions and a recommended strategy

In this paper we have attempted to develop a practical approach to model checking in

Bayesian hierarchical models, that does not rely on analytical results or approximations

and could be widely implemented in MCMC software. This has required a careful
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approach to handling predictive distributions through generating replicate parameters

and observations, in particular making a clear distinction between the mixed approach,

in which full ‘ghost’ sets of random effects are generated, and the posterior-predictive

approach, in which the generated random effects depend directly on the observed data.

The mixed approach can be approximated by a ‘conflict’ p-value, and leads us naturally

to consider measures of conflict between prior and likelihood as the basis for model

diagnostics.

Ideally one would carry out a full cross validation for individual units or sets of

units, or alternatively use the partial approach of Bayarri and Berger (2000) in order

to avoid any conservatism and ensure proper p-values with Uniform (0,1) distribution

under the null hypothesis that the model assumptions are appropriate. However the

partial approach appears only to be easily implemented in rather simple models, and full

cross-validation approach is generally impractical within an MCMC analysis, except as

a response to a preliminary screen. Our analytic and practical results suggest a full-data

mixed approach provides a reasonable basis for preliminary screening.

As mentioned previously, it may at first appear strange that a Bayesian modelling

procedure should lead to considerations of multiple comparisons and adjustment of

p-values and so on. A similar debate has been going on in other areas in which

many hypotheses are being tested, such as functional magnetic resonance imaging

(Genovese et al. 2002) and microarray data (Efron and Tibshirani 2002), in which it

has been suggested that a more appropriate Bayesian procedure would be to model an

alternative hypothesis and hence produce posterior probabilities of the null and alter-

native hypothesis, rather than p-values (Efron et al. 2001). However, while this may

be possible within a restricted domain such as microarrays, it does not seem feasible

within generic hierarchical modelling and so a multiple p-value procedure, in which no

precise alternative hypothesis is specified, seems reasonable.

The theoretical and empirical investigations described in this paper lead us to make

the following recommendations in each of three potential scenarios in the criticism of

hierarchical models.

1. If concern lies solely with the random-effects prior distribution p(φi|β) (i.e. we are

prepared to believe the form of likelihood) then there are two potential strategies

depending on whether or not estimates of the random effects φ are available in

closed form. If closed form estimates are available, mixed replication can be used

in which the unit-specific parameter estimates themselves are the discrepancy

functions (i.e. Ti(y) = φ̂i ; i = 1, .., I). The realised discrepancy statistics are then

compared to their predictive distribution, where the latter may be the true cross-

validatory predictive distribution p(φ̂rep
i |y\i) (Section 3), or the mixed predictive

distribution p(φ̂rep
i |y) (Section 6) as a preliminary screen, followed by the full

cross-validation for ‘suspicious’ units.

If closed form estimates do not exist then conflict p-values can be used in which the

(predictive) prior, φrep
i , and ‘likelihood’, φfix

i replicates are contrasted. Note that

the former may be derived ignoring that from unit i (Section 4) or, less accurately,
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conditional on all the data (Section 6).

2. If concern lies solely with the likelihood p(yi|φi) for a vector yi, then posterior

predictive replication of individual observations may be appropriate – see Section

6 (point 3). However, even in this context there may be considerable conser-

vatism and so ideally a more precise approach, such as the partial procedure of

(Bayarri and Berger 2000), should be used.

3. If we are concerned with both prior and likelihood, then the strategy depends

on whether yi is a scalar or vector: (i) if a scalar, then mixed replication of

individual observations can be used, although it will not be possible to then dis-

tinguish failures in the specification of the prior or the likelihood; (ii) if a vector,

we recommend a two stage ‘bottom-up’ process in which strategy 2 is first used

to check the likelihood assuming independent parameters (fixed effect estimates)

(Hilden-Minton 1995), and then strategy 1 is used to check the prior.

A Appendices

A.1 The distribution of cross-validatory p-values

For p-values to be useful they should have a sound calibration, and it is well-known that

a classic ‘proper’ p-value will have a uniform (0,1) distribution under the null hypothe-

sis. However a number of interpretations can be given to this statement depending on

the null hypothesis underlying the reference distribution: below we consider three null

hypotheses comprising a conditional distribution, a full joint distribution of prior and

parameters, and a ‘true’ sampling model.

First, we consider a cross-validatory p-value for a scalar yi

P(yi) = P0(Y
rep
i ≤ yi|y\i)

as a function of yi alone. Then if Y rep
i is truly generated from p0(yi|y\i), then P has a

uniform distribution since

EYi|Y\i
[P(Yi) ≤ α] = α.

Second, we take a pre-posterior Bayesian approach, in which

P(Y ) = P0(Y
rep
i ≤ Yi|Y\i)

is considered as a function of the entire future data Y . Let θ denote the parameters

of the model that must be provided with prior distributions, and assume that p(θ) is

proper and hence p0(y) =
∫
p(y|θ)p(θ)dθ is proper for any y. Then, as a special case of

Theorem 1 of Bayarri and Berger (2000), it follows that

P (P(Y ) ≤ α) = EY\i
EYi|Y\i

[P(Y ) ≤ α] = EY\i
[α] = α, (12)

and hence the p-value also has a uniform distribution with respect to the predictive

distribution before sampling any data, but conditional on the truth of the prior p(θ)
and the likelihood p(y|θ), and hence the joint distribution p0(y).
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Third, we consider the crucial question addressed by Bayarri and Berger (2000) and

Robins et al. (2000) concerning whether the p-values derived from a Bayesian argument

in fact are frequentist p-values, in the sense that they have uniform (0,1) distributions

under the ‘true’ model p(y|θT ). Suppose the distribution of P(Y ) does not depend on

θ, which will certainly be the case if we are concerned with checking aspects of the

model that do not depend on θ. Then Bayarri and Berger (2000) show that P will be

a frequentist p-value when p(θ) is proper, and also if p(θ) is improper provided certain

conditions are fulfilled (as is the case for reference priors in location-scale problems).

This follows from the observation that, reversing the argument of (12),

α = P (P(Y ) ≤ α) = Eθ

[
EY |θ[P(Y ) ≤ α]

]
,

and so, since EY |θ[P(Y )] does not depend on θ, then EY |θT [P(Y ) ≤ α] = α.

Thus the cross-validatory p-values should in general have uniform (0,1) distributions

under the ‘true’ sampling model, as well as under the assumed Bayesian joint distribu-

tion of parameters and data. Robins et al. (2000) show that, under certain conditions,

posterior predictive p-values do not have uniform (0,1) distributions even asymptoti-

cally, but their condition concerning normality of the test statistic is not fulfilled in our

context.

A.2 Cross-validatory mixed replication in the Normal hierarchical

model

Although in practice the relevant p-values and standardised discrepancy measures may

be obtained using MCMC methods, it is illuminating to consider circumstances in which

analytic forms are available. Consider the normal hierarchical model

φi ∼ Np(β,Ω)

Yi ∼ Nni
(Xiφi, σ

2Ini
)

where Xi is a known design matrix, Ini
is the ni ×ni identity matrix, and σ2 and Ω are

assumed known.

Suppose we take Ti = yi, a vector of length ni. Then conditional on β,

Y rep
i |β ∼ Nni

(Xiβ,XiΩX
′
i + σ2Ini

).

Assuming a normal prior for β results in a normal posterior distribution, conditional on

the remaining data y\i, denoted β|y\i ∼ Np(β̃\i, Γ̃\i). Algebraic forms for β̃\i, Γ̃\i can be

obtained, for example, from Lindley and Smith (1972). Thus the predictive distribution

for Y rep
i is

Y rep
i |y\i ∼ Nni

(Xiβ̃\i, Xi(Ω + Γ̃\i)X
′
i + σ2Ini

)

and this forms the reference distribution with which to compare T obs
i = yobs

i .

We have argued, however, that it will generally be more powerful to take Ti = φ̂i =

(X ′
iXi)

−1X ′
iyi, the least squares estimate and also the posterior mean under a locally
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uniform prior for φi. Then conditional on β,

φ̂rep
i |β ∼ Np(β,Ω + σ2(X ′

iXi)
−1).

Thus the predictive prior distribution for φ̂rep
i is

φ̂rep
i |y\i ∼ Np(β̃\i,Ω + Γ̃\i + σ2(X ′

iXi)
−1) (13)

and this forms the reference distribution with which to compare T obs
i = φ̂obs

i . In this

situation the standardised cross-validatory mixed discrepancy measure is

X2
cross:mixed = (φ̂obs

i − β̃\i)
′(Ω + Γ̃\i + σ2(X ′

iXi)
−1)−1(φ̂obs

i − β̃\i) (14)

which is distributed as a χ2
p random variable under the full Bayesian modelH0. The sam-

pling distribution of X2
cross:mixed is independent of the location parameter β which has

been given a reference prior distribution, and hence by Theorem 1 of Bayarri and Berger

(2000) (Section A.1) the resulting p-values should have uniform (0,1) distributions under

the true sampling model in H0.

To obtain the conflict measure, the predictive distribution for φ̂rep
i is given by (13).

Assuming a locally uniform prior for φi provides a fixed-effect distribution

φfix
i ∼ Np(φ̂

obs
i , σ2(X ′

iXi)
−1).

The standardised cross-validatory conflict discrepancy between these distributions is

denoted

X2
cross:conflict = (φ̂obs

i − β̃\i)
′(Ω + Γ̃\i + σ2(X ′

iXi)
−1)−1(φ̂obs

i − β̃\i), (15)

precisely the measure (14) obtained when directly predicting φ̂obs
i : this was illustrated

in the simple normal case in Section 4. Theil (1963) essentially obtains (15) and terms

it a prior/data ‘compatibility statistic’.

Thus, in normal models with known variance, comparison of the observed parameter

estimates with their cross-validatory predictive distribution under the null model gives

exactly the same conclusions as comparing the two independent sources of evidence,

prior and likelihood, concerning the individual parameters. This was illustrated in

Section 4 using the simplest univariate case, in which ni = 1, Xi = 1, p = 1, φi ∼
N(β, ω2). Assuming a locally uniform prior for β, it follows that β̃\i = y\i and Γ̃\i =

(ω2 + σ2)/(I − 1), and hence φrep
i |y\i ∼ N

(
y\i, (Iω

2 + σ2)/(I − 1)
)
. Hence in the

notation of (9), β̃ = y\i, ω̃
2 = (Iω2 +σ2)/(I−1) - the equivalence of the two approaches

is shown in (10) and (11).

A.3 When will the cross-validatory conflict p-value be the same as

the mixed p-value ?

Apart from the normal model described in Section 4, we can identify other circumstances

in which the conflict and mixed approaches provide identical results. Suppose φi is scalar



432 Identifying outliers in hierarchical models

and an estimator φ̂i exists based on a sufficient statistic, then the two p-values may be

written as

Pmix =

∫
Pr(φ̂rep

i ≤ φ̂obs
i |φrep

i )p(φrep
i |y\i)dφ

rep
i

Pcon =

∫
Pr(φfix

i > φrep
i |φ̂obs

i )p(φrep
i |y\i)dφ

rep
i .

Thus a sufficient condition for equality of Pmix and Pcon is that Pr(φ̂rep
i ≤ φ̂obs

i |φrep
i ) =

Pr(φfix
i > φrep

i |φ̂obs
i ) for all values of φrep

i .

We show that this will be the case under the conditions (i) φi is a location parameter

and φi − φ̂i is a pivotal quantity i.e. p(φ̂i|φi) = f(φ̂i − φi), (ii) the likelihood p(φ̂i|φi)

is symmetric around φi so that f(φ̂i − φi) = f(φi − φ̂i), and (iii) φi is given a locally

uniform prior for the fixed effect estimate. These conditions imply that, as functions of

φ̂i and φi, p(φ̂i|φi) = f(φ̂i − φi) = f(φi − φ̂i) = p(φi|φ̂i). Hence

Pr(φfix
i > φrep

i |φ̂obs
i ) =

∫ ∞

φrep
i

p(φfix
i |φ̂obs

i )dφfix
i

=

∫ ∞

φrep
i

f(φfix
i − φ̂obs

i )dφfix
i

=

∫ ∞

φrep
i −φ̂obs

i

f(u)du

where u = φfix
i − φ̂obs

i . Now u has the same distribution as −v, where v = φ̂rep
i − φrep

i .

So we have

Pr(φfix
i > φrep

i |φ̂obs
i ) =

∫ φ̂obs
i −φrep

i

−∞

f(v)dv

=

∫ φ̂obs
i

−∞

f(φ̂rep
i − φrep

i )dφ̂rep
i

= P (φ̂rep
i ≤ φ̂obs

i |φrep
i ).

Hence for location parameters in symmetric distributions with known scale parameters

the conflict and mixed approaches will give identical results. As discussed in Section 3,

this should also be approximately true in ‘data-translated’ likelihoods and hence argues

for the use of Jeffreys’ prior for the fixed-effect replications.

A.4 Full data in the Normal hierarchical model

For the mixed replication, the development follows that of Section A.2 except that β̃, Γ̃
are based on the full data. Thus

X2
full:mixed = (φ̂obs

i − β̃)′(Ω + Γ̃ + σ2(X ′
iXi)

−1)−1(φ̂obs
i − β̃) (16)
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which will not have an exact χ2
p distribution under the null hypothesis. To illustrate the

conservatism resulting from using the full data instead of leaving out unit i, we consider

the fully balanced case in which Xi = X, i = 1, ...,K. Then it is straightforward to show

that

KΓ̃ = (K − 1)Γ̃\i = Ω + σ2(X ′
iXi)

−1

Kβ̃ = (K − 1)β̃\i + φ̂obs
i =

K∑

j=1

φ̂obs
j .

Substituting into (16), rearranging, and comparing with (14) reveals that,

X2
full:mixed = X2

cross:mixed

(
K − 1

K + 1

)
.

Using the ‘incorrect’ full data X2 statistic therefore reduces the ‘correct’ X2 by a factor

(K − 1)/(K + 1) in this balanced case, introducing a fairly moderate (and potentially

correctable) conservatism. The results are exactly the same for the conflict procedure

shown in Figure 6(b).

For the posterior replication shown in Figure 6(c), we first note that φi has a prior

φi|y\i ∼ Np(β̃\i,Ω + Γ̃\i) and likelihood φ̂obs
i |φi ∼ Np(φi, σ

2(X ′
iXi)

−1), which entails a

posterior distribution of φi given all the data

φi|y ∼ Np(φ̃i, (σ
−2X ′

iXi + (Ω + Γ̃\i)
−1)−1),

where φ̃i = σ−2X ′
iXiφ̂

obs
i + (Ω + Γ̃\i)

−1β̃\i. Thus the replicate distribution with which

to compare φ̂obs
i is

φ̂rep
i |y ∼ Np(φ̃i, σ

2(X ′
iXi)

−1 + (σ−2X ′
iXi + (Ω + Γ̃\i)

−1)−1). (17)

Considering the fully balanced case Xi = X, i = 1, ...,K., it can be shown that

X2
full:post = (φ̂obs

i − β̃\i)
′D(Ω + Γ̃\i + σ2(X ′

iXi)
−1)−1(φ̂obs

i − β̃\i) (18)

where D = (K − 1)(2KΩσ−2X ′
iXi + (K + 1)Ip)

−1. Comparison with (14) reveals

D as a measure of conservatism which will increase as the between-unit variability Ω

increases. In the simplest situation in which ni = 1, Xi = 1, φi ∼ N(β, ω2), then

D = (K − 1)/(2Kω2/σ2 +K + 1) ≈ (2ω2/σ2 + 1)−1 for large K, showing the strong

conservatism induced when the between-unit to within-unit variability increases.
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Hospital 1 :      P−mixed = 0.002

Predicted proportion of deaths
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Hospital 1 :      P−conflict = 0.00191

True mortality rate
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Prior
Estimated

Hospital 2 :      P−mixed = 0.442

Predicted proportion of deaths
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Hospital 2 :      P−conflict = 0.444

True mortality rate

0.0 0.10 0.20 0.30 0.40 0.50

Figure 4: For hospital 1 (Bristol) and hospital 2 (Leicester), the left-hand plot shows

the cross-validatory ‘mixed’ prediction of proportions of deaths, and Pcon is the area

to the right of the observed proportion of deaths as indicated by the vertical line. The

right-hand plot shows the predictive prior (for the true mortality rate based on the

remainder of the data) and the ‘likelihood’ (the posterior for the true mortality rate

using Jeffreys prior and the observed data for that hospital alone), with Pcon being the

probability of a random draw from the ‘likelihood’ exceeding a draw from the prior.

p-values near 0 correspond to higher than expected mortality, near 1 to lower.
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Cross−validatory P−mixed
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Figure 5: Comparison of cross-validatory Pmix and Pcon for the 12 hospitals, with mean

relative agreement measured on the inverse-normal scale.
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Figure 6: Alternative replication approaches when using full data (not cross-validation).

(a) ‘Mixed’ replication of random effects and data, (b) Conflict between ‘predictive prior’

replication of random effects and ‘likelihood’ replication of fixed effects, (c) posterior-

predictive replication of data alone. In each case, the double ringed nodes represent

quantities to be compared in order to assess divergence.
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Cross-validatory P-mixed
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Figure 7: Comparison of cross-validation and full-data p-values for Bristol data calcu-

lated using three different approximations: (a) mixed, (b) conflict, (c) posterior predic-

tive.
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Figure 8: QQ plot of 2-sided conflict p-values for I = 106 children, where the plotted

p-values correspond to (a) intercepts, (b) slopes. The Benjamini and Hochberg criterion

is superimposed on p-values of less than 0.05, identifying four gradients.
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anti-hepatitis B titres in Gambian children 
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Figure 9: Trajectories for 106 children, highlighting children with gradients identified

as divergent under a false discovery rate of 0.05.


