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Abstract

The aim of this paper is to introduce and assess three algorithms for the identification of overlapping thematic structures in
networks of papers. We implemented three recently proposed approaches to the identification of overlapping and
hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science
papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three
hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of
titles, abstracts, and keywords. We defined sets of papers dealing with three topics located on different levels of
aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms
produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with
the three predefined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper
networks in research fields.
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Introduction

Over the last years, increasing attention has been paid to the

detection of overlapping substructures in networks. This focus is

motivated by the observation that many real-world structures

cannot be correctly represented by disjoint node subsets of

networks. Scientific fields or, more generally, thematic structures

in science are a case in point. The delineation of scientific fields is a

pertinent problem of science studies in general and bibliometrics in

particular (cf. e.g. van Raan, 2004, p. 39 [1]). Bibliometric

research has shown that clusters in networks of papers do not have

natural boundaries (cf. Zitt et al., 2005 [2]). This is why fields must

be delineated by applying thresholds for parameters. These

thresholds cannot be derived from theoretical considerations.

They must be chosen arbitrarily and are commonly justified in

terms of ‘good structures’ for the purÂ-poses of the analysis at

hand (cf. e.g. references [3,4]).

However, the problem of delineation might be a consequence of

the overlap of thematic structures. The overlap of themes in

publications is well known to science studies. Sullivan et al. (1977,

p. 235) [5] observed that in the literature of the field of weak

interaction half of the references were articles outside the specialty.

Amsterdamska and Leydesdorff (1989, p. 461) [6] provide an

example of an article that targeted two different specialties at once.

If disjoint clusters of co-cited sources (Marshakova 1973 [7], Small

1973 [8]) are projected forward to their citing papers, the clusters

of citing papers inevitably overlap–a phenomenon that has never

been explored by bibliometrics. Taken together, these observations

suggest that the sciences consist of numerous fields of different sizes

that partially or totally overlap, i.e. feature hierarchies as well as

mutually overlapping ‘neighbours’ with fuzzy boundaries.

If thematic structures have boundaries that are hidden by their

overlaps, delineation is not impossible in principle but rather

depends on tools that enable the identification of overlapping fields

and topics.

So far, only one such tool, namely co-citation analysis (hard

clustering of papers according to the relative frequency of their

joint citation by other papers), has been applied to the delineation

task. However, this method assumes disjoint source clusters and

locates thematic overlaps only in citing papers. This unrealistic

assumption makes it unsuitable to detect overlapping topics.

The aim of this paper is to introduce and assess three algorithms

for the identification of overlapping thematic structures in

networks of papers. We derived these algorithms from three

recently proposed approaches to the detection of overlapping and

hierarchical substructures in networks–which in network analysis

are called communities. For a concise description of the current state

of finding communities in networks see the introduction of

reference [9], for a recent review of methods which deliver

overlapping communities see reference [10]. Our selection and

specification of the general approaches is based on the assumption

that the thematic substructures both overlap and build hierarchies.

We further had to take into account the information utilised by

the different approaches. Thematic structures can be determined
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top-down using global information or bottom-up using either

global and local or only local information. In our case, these

different approaches correspond to different ways in which

scientific perspectives are used in the construction of thematic

structures. Since the production of contributions to scientific

knowledge is based on the interpretation of that knowledge by

individual producers [11], thematic structures in paper sets are

always constructed from the individual perspectives of the authors.

A bottom-up approach using only local information enables the

reconstruction of thematic structures from the perspective of those

contributing knowledge to these themes. The use of global

information in the top-down or bottom-up construction of

thematic structures, e.g. by spectral and modularity-based

methods (cf. Fortunato’s 2010 review paper, p. 41, p. 27 [12]

and also reference [13]), is akin to including the perspective of

‘outsiders’, i.e. of authors/papers not contributing to the specific

topic. Such a ‘democratic’ procedure can be justified as well but is

likely to lead to different results (for an attempt to justify the global

perspective see Klavans and Boyack, 2011 [14]).

These considerations made us select three approaches that

enable the identification of overlapping and hierarchical structures

in networks on the basis of local information. A first approach

starts from hard clusters obtained by any clustering method and

fractionally assigns the nodes at the borders between clusters to

these clusters (cf. e.g. Wang et al., 2009 [14]). Another approach is

based on a hard clustering of links between nodes into disjoint

modules, which makes nodes members of all modules (or

communities) that their links belong to (cf. e.g. Ahn et al., 2010

[15]). The third approach constructs natural communities of all nodes,

which can overlap with each other, by applying a greedy algorithm

that maximises local fitness (cf. e.g. LanciÂ-chinetti et al., 2009

[16]).

We introduce the three approaches to finding overlapping

communities and explain their basic mechanisms with a simple

example, namely the social network of 34 members of a karate

club analysed by Zachary (1977) [17] (using the unweighted

graph). Members of the karate club were asked about friendship

ties. The network turned out to have two central actors who, after

the split of the original club, founded separate new clubs. Authors

who implemented algorithms based on the three approaches

applied them to the network described by Zachary.

The comparative analysis applies the algorithms to a network of

492 bibliographically coupled papers published 2008 in six

information-science journals. The use of information-science

papers enabled the construction of paper sets of selected topics

by manually assigning papers to the topics h-index, webometrics, and

bibliometrics on the basis of titles, abstracts, and keywords. The

clustering solutions and the overlap of modules were then assessed

by comparing them to the paper sets. On the basis of this

comparison we discuss advantages and disadvantages of the three

algorithms.

Methods

Reconceptualising Communities in Networks as Fuzzy
Sets
In network analysis, communities are understood as cohesive

subgroups of nodes separated from the rest of the graph i.e. as

groups of densely interconnected nodes that are less densely

connected to other nodes. Most community definitions are based

on these two aspects, i.e. cohesion and separation [12] (pp. 83–87).

Therefore, algorithms for the detection of communities in the

above-described sense are based on definitions of cohesion and

separation, too [18]. Owing to the continuous nature of the two

properties, communities cannot be detected unequivocally.

Instead, structures of varying ‘communityness’ can be identified

[19].

The definition of communities in networks by cohesion and

separation is used in our paper thrice, namely (a) for the

identification of interesting communities in the dendrograms; (b)

in the fitness function used by two algorithms; and (c) in the

characterisation of the fuzzy communities constructed by the

algorithms.

Cohesion and separation can be measured in different ways. For

hierarchies of communities, both cohesion and separation can be

measured directly in the dendrogram. The simplest measure of

separation of a community is the dissimilarity level du at which its

branch in the dendrogram unites with another branch. The

simplest measure of cohesion of a community is the dissimilarity

level db at which its branch in the dendrogram is build from two

branches. A low value of db represents high cohesion.

Thus, high ‘communityness’ is characterised by a high level of

du and a low level of db. This is why the long branches in

dendrograms are commonly considered to be important ones.

They have large differences du{db, i.e. are stable over relatively

large dissimilarity intervals. Using this difference, we can order

branches with respect to their quality as communities, i.e.

combined cohesion and separation.

In our experiments, stability is negatively correlated with

community size. Many small branches are very stable and many

larger branches are very unstable. In order to find ‘interesting’

communities, we plot branch length du{db over community size

and identify communities that are unusually stable for their size,

i.e. are represented by branches far from the axes of the plot.

Another approach to community delineation associates cohe-

sion with high internal and separation with low external degrees of

community members. The internal degree kin(C,Vi) of a node Vi

is defined as the sum of weights of edges linking this node with

nodes in community C, its external degree kout~k{kin, where k

is the node’s total degree. Radicchi et al. (2004) [20] define a

community in the strong sense as a set of nodes all of which have higher

internal than external degrees. For a community in the weak sense they

only demand that the sum of internal degrees exceeds the sum of

external degrees. These sums are usually referred to as the internal

and external degrees of community C:

kin(C)~
X

Vi[C

kin(C,Vi), ð1Þ

kout(C)~
X

Vi[C

kout(C,Vi): ð2Þ

A disadvantage of this measurement is that there can be

coherent subsets of nodes which are separated from the rest of the

graph but do not match the weak definition. For example, Ahn et

al. (2010, p. 1) [15] state that the weak definition of communities

‘‘break[s] down when overlap is pervasive’’, i.e. when ‘‘overlap can

exist for each and every node’’, because ‘‘[w]hen overlap is

pervasive, counterintuitively, each community has many more

external than internal connections.’’ (However, in our tests of the

three algorithms on a network of papers we obtained communities

that match the weak definition, see below, section Results.)

The internal and external degrees of a community can be used

to define its fitness (see the approaches ‘natural communities’ and

‘fuzzification’ for applications). By combining cohesion and

Thematic Structures in Networks of Papers
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separation, the fitness measure evaluates the quality of a

community in a similar way as du{db does based on a

community’s branch in a dendrogram.

When applied to overlapping communities, the measures used

in the delineation of weak communities must take the nature of

overlaps into account. Following Steve Gregory (2011) [21], we

distinguish between crisp and fuzzy overlapping communities. If a

network has crisp overlapping communities, nodes either belong

or don’t belong to a community. Overlapping communities are

fuzzy if individuals’ grades of membership vary. This type of

structure is appropriate for the relationship between papers and

topics because most papers cover several topics in varying

intensities, which led us to the application of fuzzy-set theory.

For basic definitions in fuzzy-set theory used here we refer to the

Supporting Information S1.

Fuzzy set theory operates with membership grades that are real

numbers between zero and one but does not assume that a node’s

grades of membership in different sets sum up to unity. A node

could also be a full member in more than one community.

To determine whether a fuzzy community C is a community in

the weak sense we have to redefine its internal and external degree

kin,out(C) by weighting the degrees with node membership grades.

With mi(C)~1 if Vi[C and mi(C)~0 otherwise, we can rewrite

the definitions given above for crisp communities as

kin(C)~
Xn

i,j~1

mi(C)aijmj(C) ð3Þ

and

kout(C)~
Xn

i,j~1

mi(C)aij ½1{mj(C)�, ð4Þ

where aij is the weight of edge (i,j) and n the graph size. These

formulae can also be used for a fuzzy community C if mi(C) is

identified with node’s Vi membership grade in C. Then 1{mi(C)

is its membership grade in C’s fuzzy complement. Fuzzy set C is a

community in the weak sense if kin(C)wkout(C).

Constructing Natural Communities of Nodes
The Approach. A natural community of a node is a community

that is constructed by a ‘greedy’ algorithm which evaluates the

inclusion of neighbouring nodes into the community using an

appropriate metric or fitness function. If a community with a

neighbour node is fitter than without it, the neighbour will be

included, which leads to a stepwise growth of the natural

community. The essence of this local approach is that

independently constructed natural communities of nodes can

overlap. Figure 1 shows two overlapping communities of karate

club members. On the left-hand side, the red node’s community

has all yellow and green nodes as its members. On the right-hand

side, the violet node’s community has all blue and green nodes as

members. Thus, we have five (green) nodes in the overlap of both

natural communities.

The idea to construct overlapping communities as sub-graphs

which are locally optimal with respect to some given metric was

first published by Baumes et al. (2005) [22]. It can be implemented

in several ways one of which was tested by Baumes et al. in the

same year [23].

Lancichinetti et al. (2009) [16] combined the concept of locally

optimal sub-graphs with the idea of variable resolution to enable

their algorithm to reveal hierarchical community structures. They

introduced a resolution parameter into their fitness function.

Higher resolution results in smaller, lower in larger natural

communities. The fitness function includes only local information.

It is defined as the ratio of the sum of internal degrees kin(C) to the
sum of all degrees k(C)~kin(C)zkout(C) of nodes in a

community C. The denominator is taken to the power of a, the

resolution parameter:

f (C,a)~
kin(C)

k(C)a
: ð5Þ

Figure 1 displays a cover of the karate-club network obtained by

Lancichinetti et al. with a stochastic version of their algorithm for

the resolution interval 0:76vav0:84. Their LFM (local fitness

maximisation) algorithm has to be repeated for all resolution levels

of interest.

The construction of a scientific paper’s natural community in a

similarity network of papers can be interpreted as the construction

of its thematic environment from its own ‘scientific perspective’.

This idea is attractive from a conceptual point of view because it

mimics the way in which scientists apply their individual

perspectives when constructing their fields. This is why locality is

a realistic assumption for topic extraction in paper networks.

At the same time, the strictly local approach enables the local

exploration of networks which are too big for global analysis like

the Web or the complete citation network of scientific papers. A

node’s natural community is a local structure that can be

constructed without knowing the whole graph. The idea to find

local community structures without knowing the whole graph by

using a greedy local cluster algorithm goes back to Clauset (2005)

[24]. His procedure can also be used to construct overlapping

graph modules [25]. In contrast to the resolution-depending fitness

function of Lancichinetti et al. (2009) [16] Clauset evaluated

modules with a function that does not depend on resolution.

MONC Algorithm. MONC [26] uses ideas from

Lancichinetti et al. (2009) [16] but replaces their numerical

approach by a faster and more precise parameter-free analytical

solution. The specific form of the fitness function itself is the only

arbitrary presetting of the algorithm. Other resolution-dependent

fitness functions are possible [27] (p. 8).

Lancichinetti et al. proposed an algorithm which rests on a

greedy expansion of natural communities of nodes by local fitness

maximisation (LFM algorithm). Communities of different nodes

can overlap each other. The size of a natural community of a node

depends on resolution a. LFM has to be repeated for each relevant

resolution level to reveal the hierarchical structure of the network.

Our parameter-free MONC algorithm exactly calculates resolu-

tion levels at which communities change by including a node that

improves their fitness. To save further computing time, MONC

merges overlapping natural communities when they become

identical during the iteration process [26].

Similar to Lee et al. (2010) [28]–who tested a variant of LFM–we

found that using cliques as seeds gives better results than starting

from single nodes. While Lee et al. use maximal cliques (i.e. cliques

which are not sub-graphs of other cliques), we optimise clique size

by excluding nodes that are only weakly integrated [26] (p. 6).

MONC assigns each node to the seed clique whose fitness it

improves at maximal resolution and then constructs a natural

community as an ordered set of nodes entering the community at

decreasing levels of resolution. For a more detailed description of

MONC we refer the reader to the Supporting Information S1.

From MONC results, we construct fuzzy natural communities of

nodes, i.e. fuzzy sets in which each node of the graph has a

Thematic Structures in Networks of Papers
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membership grade. Each fuzzy natural community represents its

seed node’s perspective on the whole network. Since the emphasis

on local perspectives lets MONC construct many natural

communities that are very similar, the fuzzy natural communities

are hard-clustered hierarchically using the fuzzy-set Jaccard index

as a similarity measure for, e.g., single-linkage clustering. Branches

in dendrograms derived from MONC results do not represent

disjoint sets of nodes but overlapping fuzzy communities.

MONC Post-Processing. Greedy algorithms which locally

maximise a resolution depending fitness (or density) function can

reveal hierarchies of overlapping modules. Lancichinetti et al.

(2009, pp. 7–9) [16] have successfully tested their LFM algorithm

on a simple benchmark graph with two hierarchical levels.

MONC (like LFM) needs some postprocessing to reveal a

graph’s hierarchy. We successfully tested the following procedure

for detecting a graph’s hierarchy from MONC results. A node’s

membership grade in a community depends on the resolution level

at which it becomes a member (cf. next subsection). With this

definition communities become fuzzy sets over the universe of all

nodes. Two communities are similar if their fuzzy intersection is

large. As a relative measure, we use the fuzzy Jaccard index to

define the similarity of two natural communities. Then commu-

nities can be clustered by any hard-cluster algorithm to reveal the

graph’s hierarchy.

Here we should add a comment. We construct a node’s

perspective on the whole graph i.e. its natural community as a

fuzzy set over the universe of all nodes. We hierarchically cluster

the fuzzy sets which is equivalent to node clustering based on a

variant of the concept of structural equivalence [12] (p. 86). Nodes

are structurally equivalent if their neighbourhoods are equal, they

are structurally similar if their neighbourhoods are similar in some

sense. We operationalise structural similarity of two nodes as the

fuzzy Jaccard index of their fuzzy natural communities represent-

ing their perspectives on the whole graph. Despite the equivalence

of our method to the concept of structural similarity of nodes we

insist on the definitions given above: we do not cluster nodes but

their fuzzy natural communities.

In our earlier paper [26] (section 4.3, p. 16) we discussed a post-

processing different from the one applied here. At that time we

tested MONC on non-hierarchical benchmark graphs and had to

chose a resolution level. After determining all communities existing

at this level we found many near-duplicates which will merge at

some lower level of resolution. From each set of near-duplicate

communities we constructed a consensus module [26] (pp. 21–22).

MONC Grades of Membership. MONC’s greedy

expansion of seeds can be discussed in terms of ‘hosts inviting

guests’ to their communities. Each node i of the (connected) graph

is ‘invited’ to each community j at some level of inverse resolution

cij . To construct fuzzy communities with various grades of node

membership we propose to define the membership grade of node i

in the community of node j as

mij~exp({c
2
ij): ð6Þ

Using the decreasing exponential function of squared cij (as in the

density function of the normal distribution) ensures that

1. the host is full member in its own community because it is a

member of its own natural community at infinite resolution

(cjj~0, i.e. mjj~1),

2. ‘late guests’ get lower grades, and

3. the ‘first guests’ get membership grades near one (the function

starts from one, its derivation from zero).

We assume that the dendrogram of fuzzy natural communities

reflects the graph’s hierarchical structure. For each branch we

define a community as the fuzzy union of all fuzzy sets of the

branch’s nodes. This means that all host nodes of the branch are

full members of the branch community. This definition ensures the

hierarchical order of branches: if two branches unite then their

communities are fuzzy subsets of their fuzzy union. Thus, each

branch of the dendrogram of fuzzy natural communities, i.e. each

vertical line, represents a fuzzy community.

Fuzzy Node Communities from Hard Link Clustering
The Approach. If links instead of nodes are clustered, nodes

with more than one link can be fractional members of clusters, as

Figure 2 shows for the karate club. For example, vertex 1 (violet

point) has four edges belonging to one and twelve edges belonging

to another hard cluster of links. Thus, it has membership grades 4/

16 and 12/16, respectively, in the two clusters.

Figure 1. Natural communities. Karate club graph with overlapping communities of two nodes (red and violet).
doi:10.1371/journal.pone.0033255.g001
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For clustering links we need a measure of link similarity.

Restricting the analysis to connected links, Ahn et al. (2010, eq. 2,

p. 5 [15]) chose the Jaccard index of neighbourhoods of the two

nodes at the not connected ends of the two links (a node itself is

included into its neighbourhood).

In a different approach to link clustering, Evans and Lambiotte

(2009) [29] used the line graph of an undirected graph. To get a

graph’s line graph first a bipartite graph of the graph’s nodes and

edges is constructed by putting an edge node on each edge. The

bipartite graph can then be projected onto the line graph, a graph

where nodes and edges have interchanged their roles.

Recently Ball et al. (2011) [30] successfully tested an algorithm

which finds overlapping node communities with a generative

stochastic model of hard link clusters. Kim and Jeong (2011) [31]

applied the fast Infomap [32] algorithm to link clustering.

The clustering of citation links instead of papers is of high

interest to bibliometrics because a citation is probably the

conceptually most homogenous bibliometric unit. Since many

references are referred to only once in a paper, it can be assumed

that these links between the citing and the cited publication can be

assigned to one theme. Even though there are many cases in which

a paper cites a source for several different reasons, a citation link

can be assumed to have a higher thematic homogeneity than a

publication. Based on this assumption of homogeneity, citation

links can be hard-clustered, which leads to overlapping clusters of

papers. The membership grade of a paper to a module

corresponds to the part of outgoing citation links of this paper

within this link cluster.

We applied the hierachical link clustering (HLC) method

suggested by Ahn et al. (2010) [15] to cluster citation links in the

approximately bipartite network of papers and their cited sources.

Ghosh et al. (2011) [33] have generalised HLC to tripartite graphs.

We did not consider the line-graph approach because it is not

local (due to its use of modularity).

HLC Algorithm on Bipartite Citation Graphs. We

consider the approximately bipartite network of papers and cited

sources. Citation links between the two types of nodes can be hard-

clustered, which leads to induced overlapping communities of

papers (and also to communities of sources which, however, are

not analysed here). The membership grade of a paper to a

thematic community equals the fraction of its citation links

belonging to the corresponding link cluster.

Links can be seen as similar if the neighbourhoods of their nodes

overlap to a high degree. Thus, the Jaccard index of these

neighbourhoods can be used as a similarity measure (cf. Ahn et al.,

2010, eq. 2, p. 5 [15]). We discuss the definition of similarity

between links in a bipartite graph in terms of papers and cited

sources. The neighbourhood of a paper pi is the set of its

references Ri, the neighbourhood of a cited source si is the set of

papers Ci citing it. The neighbourhood Ni of citation link i is then

the union of these disjoint sets: Ni~Ri|Ci.

Since papers might cite sources from the same year, some of the

cited sources are also citing papers. However, in the 2008 volumes

of six information-science journals we found less than one percent

of citation links to about 60 papers (of 492) in these volumes. This

means that only a small proportion of citation links were

misclassified due to their incomplete neighbourhood.

The size of the intersect of two link neighbourhoods is given by

DNi\Nj D~DCi\Cj DzDRi\Rj D ð7Þ

and the size of their union by

DNi|Nj D~DCi|Cj DzDRi|Rj D: ð8Þ

The distance metrics used for clustering is then

dij~1{
DCi\Cj DzDRi\Rj D

DCi|Cj DzDRi|Rj D
: ð9Þ

Ahn et al. calculate similarities only for link pairs which have a

node in common because they ‘‘expect’’ disconnected link pairs to

be less similar than pairs connected over a node [15] (p. 5). Since

counterexamples disproving this assumption can be constructed,

we decided to calculate similarities for all pairs of nodes. Such a

procedure uses more information but is also more time-

consuming.

Figure 2. Hard clusters of links. Karate club graph with overlapping node communities induced by three hard link clusters.
doi:10.1371/journal.pone.0033255.g002
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Hard clustering of links can be done with any hierarchical

clustering method. We tested four standard methods. The

dendrograms of Ward and average clustering of citation links

seem to reflect the graph’s hierarchy more adequately than those

of single-linkage and complete-linkage clustering. The latter two

methods impose too low or too high restrictions, respectively, on

finding clusters.

HLC Grades of Membership. As discussed above, the

membership grades of nodes in HLC communities are already

unambiguously determined by the algorithm itself. A node’s grade

is the portion of its links in the link cluster under consideration.

Fuzzification of Hard Clusters
The Approach. The approach assumes that hard-cluster

algorithms validly identify disjoint community cores which just

need to be ‘softened’ at the borders. If this is the case, modifying a

hard cluster by evaluating the inclusion of its nodes and

neighbouring nodes with regard to some metric or fitness is a

plausible method for constructing overlapping communities. The

fitness balance of a node with respect to a cluster can then be used

to decide about its membership and to calculate its membership

grade. Thus, we construct fuzzy overlapping communities.

Figure 3 shows the karate-club result Wang et al. (2009) [14]

obtained with their implementation of the fuzzification approach,

which they applied to two hard clusters.

Fuzzification and Membership Grades. A straightforward

approach to making hard clusters overlapping and fuzzy is to

redefine the membership grades of all nodes with links crossing

borders. If some of a node’s links end within cluster C and some

outside C then its membership grade mi(C) can be defined as

mi(C)~kin(C,Vi)=k(Vi), ð10Þ

where kin(C,Vi) is the sum of weights of edges between vertex Vi

and vertices in C and k(Vi) the sum of all its edge weights. We use

this definition to calculate fractional grades after we constructed

overlapping communities by fitness improvement. We also tested a

definition of membership grades that uses the fitness balances of

nodes at cluster borders. However, we used the definition by

equation 10 because the result is better comparable to the results

of the other two algorithms.

Since with equation 10 fractional memberships are calculated

using non-fractional (zero or full) memberships of nodes as

obtained by fitness evaluation, it would be interesting to see

whether an iteration procedure converges.

For such an iteration we reformulate fractional assignment of

membership grades. The definition in equation 10 is equivalent to

calculating the new membership grade mi of node i as the average

of its neighbours’ current grades. If the graph is weighted we have

to weight a neighbour’s grade with the link weight. Recalculating

grades can therefore be done by multiplying the vector ~mm of zero-

one grades mi,i~1, . . . ,n of a hard input cluster with a matrix A�,
which is obtained from the adjacency matrix A by normalising its

rows to sum to one:

~mm/A �~mm: ð11Þ

The node’s own grade could be included into the average by

setting the diagonal of the adjacency matrix to one, aii~1. In both

cases, the iteration according to equation 11 lets any initial grade

vector ~mm that is not orthogonal to the principal eigenvector of

matrix A� converge to that eigenvector. It can be shown that all

components of the principal eigenvector of matrix A� are equal. In
fact, when we iterate the whole graph’s grade vector, i.e. start from

mi~1,i~1, . . . ,n, then averages of grades are always equal to one

and the iteration does not change any grade. Thus, the iteration

indeed converges but its result is trivial and cannot be used to

assign meaningful membership grades to nodes.

Steve Gregory’s COPRA algorithm for the construction of

overlapping communities [34] also averages membership grades of

neighbours in an iteration to obtain a node’s grade. COPRA

avoids the trivial solution of uniform memberships by deleting

grades below a threshold [34] (p. 5). We did not yet test this

method because we search for parameter-free algorithms.

Fuzzification Algorithm. We implemented an algorithm

that evaluates border nodes of each hard cluster with regard to

their connections with it. Border nodes have edges crossing the

cluster’s border and can be located inside or outside the cluster.

The algorithm uses an evaluation metric that is based on the

fitness function defined by Lancichinetti et al. (2009) [14,16] (see

above, equation 5, page 4). For each border node of a cluster we

calculate the cluster’s fitness with and without this node. The

Figure 3. Fuzzification of hard clusters. Karate club graph with overlapping communities from two hard clusters.
doi:10.1371/journal.pone.0033255.g003
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fitness balance of a node with respect to a cluster determines its

membership. Negative balance means exclusion from the cluster.

We evaluate all border nodes of a cluster without changing it

during the evaluation (in contrast to the greedy LFM algorithm

which updates the community after deciding about a node’s

membership). The fitness-inherent resolution paraÂ-meter con-

trols the extent of the overlap, where lower values cause a wider

area to be considered for the inclusion into the former hard

cluster. While MONC uses resolution levels to calculate

membership grades, the fitness-inherent parameter is arbitrary

here. Thus, we didn’t apply it in our comparison and set a~1.

In a second step the crisp overlapping communities are made

fuzzy. The fractional membership grade of a node could be

defined using its fitness balance as input but this did not lead to

fuzzy communities that match the three predefined topics. Hence,

we used a definition that ignores the value of (positive) fitness

balances: The membership grade mi(C) of vertex Vi in community

C is defined by equation 10.

For a more detailed description of the fuzzification algorithm we

refer the reader to the Supporting Information S1.

Data
The Paper Network. We apply the three algorithms to a

network of papers in the 2008 volume of six information-science

journals with a high proportion of bibliometrics papers (for details of

data see reference [26], papers downloaded from Web of Science).

We start from the affiliation matrix M of the bipartite network

of papers and their cited sources. Here we neglect that a few cited

sources (less than one percent) are also citing papers in the 2008

volume. Link clustering is done with M itself, the other two

algorithms analyse a bibliographic-coupling network constructed

from M as follows. In the network of papers, two nodes (papers)

are linked (bibliographically coupled) if they both have at least one

cited source in common. To account for different lengths of

reference lists we normalise the paper vectors of M to an

Euclidean length of one. With this normalisation, the element aij
of matrix A~MMT equals Salton’s cosine similarity of biblio-

graphic coupling between paper i and j.

The symmetric adjacency matrix A describes a weighted

undirected network of bibliographically coupled papers. The

main component of the network of 533 information-science papers

2008 (528 articles and five letters) contains 492 papers. Three

small components and 34 isolated papers are of no interest for our

cluster experiments.

Three Topics. For the evaluation of the three algorithms, we

compare the topics they construct with three topics we identified

ourselves. Using our knowledge of bibliometrics, we could identify

three topics belonging to that field, namely h-index, bibliometrics,

and webometrics. The h-index is an indicator for the evaluation of

a researcher’s performance, which has been proposed by the

physicist J. E. Hirsch in 2005. Since then, the use of the h-index for

evaluating individual researchers, proposals for h-index derivatives

and for h-indices of journals or other aggregates of papers have

been discussed in the literature. 46 of the 492 papers cite the 2005

paper by Hirsch, which is the most cited source in our sample. The

h-index is clearly an invention in the field of bibliometrics. About

200 other papers are also addressing bibliometric themes. For the

purposes of this evaluation, we excluded analyses of patents from

bibliometrics. In a smaller webometrics set, internet activities of

(mainly academic) institutions and individuals are analysed.

We first assigned papers to the three topics on the basis of their

keywords and subsequently checked the classification by inspecting

titles and abstracts. This led to 42 papers assigned to the h-index

and its derivatives, further 182 bibliometric papers not mentioning

the h-index in title or abstract, 24 webometric papers, and eight

papers in the overlap between webometrics and bibliometrics. In

Figure 4 we display the graph of the sample of 492 bibliograph-

ically coupled papers using the force-directed placement algorithm

by Fruchterman and Reingold (as implemented in the R-package

igraph, cf. http://www.r-project.org).

Results

MONC
For each branch community we plot its stability i.e. its branch’s

length du{db over community size, which is estimated by the

number of full members (Figure 5, cf. also above, p. 2). Three of

the outliers correspond to our predefined topics, and will be

evaluated in comparison with results of the other algorithms (see

below, section Comparison of Identified Communities). The two stable

communities with about 400 full members unite bibliometrics,

webometrics, information retrieval and some other smaller topics

but do not include a set of less central graph nodes.

For better comparability, all membership grades below a

threshold are set to zero. We derive the thresholds from plots of

membership grades (Figure 6). These plots show that at some

critical membership grade the node sets of each branch inflate to

nearly the whole graph. We argue that this inflation marks the

border of a community of a branch. We set the grade’s threshold

on a value that cuts the step curve at the last steepest gradient

before inflation (mthr~:229, :355, :1 for h-index, bibliometrics,

and webometrics, respectively).

Hierarchical Link Clustering
For all pairs of citation links from the 492 citing papers to all

sources we determine link similarities. We restrict clustering to all

m~5005 citation links to sources which are cited more then once.

Figure 4. Information science 2008. Three topics and their overlaps
in a network of 492 bibliographically coupled papers. Topics assigned
manually to papers by inspection of their keywords, titles and abstracts.
The nodes’ colours correspond to four sets: (i) green to h-index, (ii) blue to
bibliometrics without h-index and without webometrics, (iii) red to
webometrics without bibliometrics, and (iv) violet to the overlap of
webometrics and bibliometrics. Transparent nodes are papers dealing with
other information-science topics, mainly with information retrieval and
information behaviour.
doi:10.1371/journal.pone.0033255.g004
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Citation links to sources cited only once are excluded because all

such links from the same reference list would be clustered at zero-

distance level with one another and then merged with the link to

the least cited source in their list. This cannot be justified on the

basis of what is known about these links.

We applied the average-clustering method to this set. The

corresponding dendrogram does not give a clear picture of the

graph’s hierarchy unless we re-parametrise the distance axis. We

choose d?d log2 m to de-skew distances d . Using these rescaled

data, we plot branch length over community size to find relatively

stable and large communities (Figure 7). We measure community

size by the sum of fractional membership grades of papers

attached to the clustered citation links. Like in the MONC case,

we find our three topics as exceptional points in the plot although

the stability of the bibliometrics branch is only high in comparison

with its predecessors and followers in the dendrogram.

Fuzzification Algorithm
We applied standard Ward and average clustering on the

network of n~492 bibliographically coupled information-science

papers (based on arc cosine of cosine similarity as the distance

measure). Complete and single linkage failed to provide acceptable

results as can be already deduced from the dendrograms. Average

clustering also results in a dendrogram which is not easy to

interpret. The Ward dendrogram shows a very stable and clear h-

index cluster which is united with the rest of the graph in the last

merging step (cf. Figure 8). Fitness-based optimisation with

resolution a~1 enlarges this cluster extremely and lowers

precision without gain in recall with respect to the set of manually

selected h-index papers. Figure 9 visualises how the original hard

cluster is expanded and shows how membership grades of the final

fuzzy community are distributed. Thus, fitness maximisation is not

a successful strategy for this topic that has been well matched (by

e.g. Ward) clustering already and is highly connected to its

network environment.

If we omit fitness maximisation and only calculate fractional

membership grades according to equation 10 the result is not

better. Many external border nodes become partial members of

the fuzzy h-index community.

On the other hand, the hard bibliometrics cluster is much

smaller than expected and needs fitness maximisation or at least

fractional membership grades to match the topic.

Figure 5. Stability over size of all MONC branch communities.
Stable communities corresponding to our three topics in information-
science papers 2008 are marked: bibliometrics (blue), webometrics
(red), h-index (green).
doi:10.1371/journal.pone.0033255.g005

Figure 6. Plots of MONC communities of the three topics in
information-science papers 2008: h-index, bibliometrics, we-
bometrics. Coloured lines mark corresponding thresholds.
doi:10.1371/journal.pone.0033255.g006

Figure 7. Stability over size of all 5004 HLC branch communi-
ties. Stable communities corresponding to our three topics in
information-science papers 2008 are marked: bibliometrics as blue,
webometrics as red, and h-index as green point, respectively.
doi:10.1371/journal.pone.0033255.g007
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Comparison of Identified Communities
To compare the results we calculate fuzzy Salton’s cosine of

manually defined topics with fuzzy communities identified by the

three algorithms considered. In addition, table 1 gives values of

fuzzy precision and recall, the geometric mean of which equals the

cosine. The fuzzy versions of cosine, precision, and recall are

calculated with fuzzy set variants of intersection and set size.

Figure 10 shows how the h-index topics identified by the three

algorithms fit this topic as the pre-defined paper set.

Table 2 shows how fuzzy communities constructed by the

algorithms overlap each other. In table 3 we list the fuzzy internal

and external degrees, kin(C) and kout(C) (cf. equations 3 and 4,

p. 4), together with their ratio kin(C)=kout(C) for each fuzzy topic

community constructed by the three algorithms. Note, that for all

three algorithms the values of kin(C) and kout(C) are calculated

using cosine similarity of bibliographic coupling as link weights. All

fuzzy communities are communities in the weak sense. The ratio

can be interpreted as a measure of ‘communityness’.

In order to test wether the three communities match the weak

community definition also with regard to the bipartite graph of

papers and cited sources we calculated kin(C) and kout(C) for all

communities of papers and sources induced by the corresponding

link clusters. Table 4 shows that in the full graph of papers and

sources all three selected communities match the weak definition,

even if kin(C) and kout(C) are calculated with crisp memberships,

i.e. with m(C)~1 for all members of community C.

The assumption that hard clusters can be improved by fitness-

based optimisation and fuzzification could not be validated with

Ward clusters as input. While the optimised and fuzzified

bibliometrics cluster gained slightly better similarity results than

the other two algorithms, the clearly identified h-index hard-

cluster did not improve because both fitness maximisation and

calculating fractional membership grades according to equation 10

included too many nodes which were related but were not assigned

to the topic. The fitness-inherent resolution parameter could

improve similarity values but would have to be chosen differently

for different clusters–a procedure which cannot be applied when

target topics are not known in advance. The fact, that fuzzification

results in an h-index community with best ratio kin(C)=kout(C)

should be interpreted with care. It only means, that the algorithm

finds a big cluster which is relatively separated from the rest of the

graph. It (partly) includes many papers which do not refer to the h-

index.

Hierarchical clustering of citation links gave better results than

MONC. Link clustering classifies h-index as a bibliometric topic

whereas MONC only includes some h-index papers into

bibliometrics. Fuzzy cosines of HLC communities and manually

Figure 8. Stability over size of branch communities. Stable Ward
clusters corresponding to our three topics in information-science
papers 2008 are marked: bibliometrics as blue, webometrics as red, and
h-index as green point, respectively.
doi:10.1371/journal.pone.0033255.g008

Figure 9. Membership distribution of h-index topic in informa-
tion-science papers 2008 determined by the fuzzification
algorithm. The red step curve represents the initial hard cluster, the
violet curve the members after fitness maximisation, and the green
curve the grades of membership in the final fuzzy community.
doi:10.1371/journal.pone.0033255.g009

Table 1. Topic matches by algorithms.

topic MONC HLC fuzzy

h-index .71 .93 .59

precision .56 .91 .35

recall .89 .95 1.00

bibliometrics .79 .82 .83

precision .72 .83 .87

recall .86 .81 .80

webometrics .58 .60 .46

precision .53 .85 .45

recall .64 .43 .47

bib-web overlap .46 .29 .30

precision .34 .24 .14

recall .64 .36 .65

Fuzzy cosine indices, precision, and recall of paper sets and fuzzy communities
(and of bibliometrics-webometrics overlap) found by the three algorithms.
doi:10.1371/journal.pone.0033255.t001
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selected topics are always better than the corresponding MONC

values (s. table 1).

Discussion

Assumptions Used
All three algorithms implemented by us are based on the

assumptions that a graph’s communities (1) are best determined

locally, (2) overlap each other, (3) are best described by fractional

membership grades, and (4) form a hierarchy. We used these four

assumptions as criteria in our selection of approaches to

community detection. Nonetheless, with respect to all four criteria

there are differences between the selected algorithms. Another

criterion was that results should not–at least not strongly–depend

on arbitrary parameters. Furthermore, each of the algorithms is

based on specific assumptions, which we already mentioned in the

respective sections of this paper.

The fuzzification procedure based on hard clusters whose

fitness is improved assumes that the hierarchical cluster algorithm

delivers essentially valid but improvable hard clusters. We did not

achieve such an improvement when using standard fitness

measures. With respect to its input data, this procedure–like

MONC but unlike HLC–assumes that a network of scholarly

papers weighted with paper similarity (based on references and/or

text) can be used to identify hierarchical thematic structures.

Hierarchical link clustering: Paper networks are projec-

tions of bipartite graphs and thus do not use the full information

content of the raw data. Hierarchical link clustering (HLC) rests on

a broader information basis when applied to links in bipartite

networks of papers and their cited sources or in tripartite networks

of papers, cited sources, and terms used in papers and sources.

HLC only assumes that a source is cited for only one reason or for

only very few similar reasons in one paper. In the case of terms,

the assumption is that authors use one term in one paper with only

one meaning. These assumptions are plausible and could be tested

in case studies. A further advantage of link clustering is that it

enables the combination of citation and textual information in

tripartite graphs–a very ‘natural’ solution of this longstanding

problem (cf. e.g. the introduction of reference [35] and sources

cited there).

Figure 10. The h-index communities constructed by the three
algorithms in information-science papers 2008. Saturation of
points correlates with membership grade. Colours of circles denote
manually determined topics (green to h-index, blue to bibliometrics
without h-index and without webometrics, red to webometrics without
bibliometrics, and violet to the overlap of webometrics and biblio-
metrics).
doi:10.1371/journal.pone.0033255.g010

Table 2. Community matching between algorithms.

MONC HLC fuzzy

topic HLC fuzzy MONC

h-index .73 .60 .62

bibliometrics .76 .84 .78

webometrics .63 .46 .55

bib-web overlap .51 .41 .43

Fuzzy cosine indices of fuzzy communities (and of bibliometrics-webometrics
overlap) found by the three algorithms.
doi:10.1371/journal.pone.0033255.t002
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For MONC there are no further assumptions beyond the four

mentioned above and the one about paper-similarity networks.

However, we found that MONC needs some post-processing to

reveal the hierarchy of a graph. Thus, it is assumed that

hierarchical clustering of the nodes’ perspectives results in a

realistic hierarchy of topics.

Methodological Aspects
Our implementations of the three approaches to overlapping

communities all involve a hard clustering procedure. The

fuzzification algorithm uses hard clusters of nodes as input, i.e.

clustering has to be done as pre-processing. Hard clustering of

fuzzy natural communities is part of MONC’s post-processing. In

the case of HLC, the algorithm itself is a hard clustering

procedure. For HLC we only need to calculate link similarities

as some kind of pre-processing.

We have presented results obtained with only one standard

hard-cluster algorithm per approach but tested also other ones.

Fuzzification and link clustering also worked with Louvain

algorithm [36] but we abandoned this fast modularity-driven

method due to its use of global information (and the poor

hierarchical structure obtained). Fuzzification could perform

better with average-linkage clustering but its dendrogram showed

only very small stable communities. In the case of average link

clustering (HLC) we succeeded in finding relatively stable

communities of some size after re-parametrising the dendrogram’s

similarity axis.

When it comes to defining grades of a node’s memberships in

different communities, link clustering implies a very plausible and

consistent definition. MONC membership grades could also be

defined alternatively to the ansatz used here (equation 6). We see

this methodological ambiguity as a disadvantage (arbitrary

parameters are only a special case of such an ambiguity). In our

fuzzification experiments we calculated fractional membership

grades using non-fractional (zero or full) membership of nodes as

input (equation 10). An alternative would be to use the fitness

balances of a node as input for a membership definition. Our

attempts to define grades this way led to communities with only

very few full members, which could be a desired feature for topic

extraction that cannot be achieved by HLC membership grades.

MONC membership grades fit into the framework of fuzzy set

theory because a node’s grades in general do not sum up to unity.

Link clustering leads to node grades which are normalised. Thus,

an HLC grade is more adequately interpreted as a probability.

Concluding Remarks
We implemented three local approaches to the identification of

overlapping and hierarchically ordered communities in networks

as algorithms and tested their ability to extract manually defined

thematic substructures from a network of information-science

papers and their cited sources.

Hierarchical clustering of citation links proved to be the most

satisfactory approach–with regard to the test results, to its

methodological simplicity, to its ability to work with the broadest

information basis (the bipartite graph of papers and sources), and

to its potential for a simple inclusion of text information in

addition to citation data–an issue on top of our agenda.

Clustering citation links does not need to be restricted to a small

period of time but can also be applied to a longer time period. This

might make it possible to solve the problem of tracing the

development of topics over time. The only limitation HLC

encounters is the limited coverage of publication databases, i.e. the

existence of citation links to publications that are not included in

the database.

MONC was found to be useful for overcoming the longstanding

problem of field delineation by greedily expanding the paper set

downloaded from a citation database [26] (p. 19). Instead of

delineating research fields by journal sets, they can be identified

with a large enough natural community–obtained with low

enough resolution–of an appropriate seed node. In other words,

the strictly local approach enables the local exploration of

networks which are too big for global analysis like the Web or

the complete citation network of scientific papers. A node’s natural

community is a local structure that can be constructed without

knowing the whole graph.

Hierarchical clustering of citation links can be applied to this

problem too. Starting with one citation link, we include from its

neighbourhood the most similar citation link and proceed in this

manner until we reach a large similarity gap.

The fuzzification algorithm matches target topics only in some

cases. Iterating fitness-based optimisation may lead to more

consistent clusters by removing loosely connected nodes. First

experiments did not confirm this assumption. However, there is a

large number of variations of how nodes can be included and

excluded. An iteration node by node leads to a version of the LFM

algorithm [16] applied to hard clusters instead of single nodes or

Table 3. Fuzzy kin=kout of communities.

C variable MONC HLC fuzzy

h-index kin=kout 5.97 7.41 9.70

kin 244.65 245.66 352.21

kout 40.98 33.17 36.31

biblio- kin=kout 3.41 19.03 15.37

metrics kin 314.23 466.97 456.97

kout 92.03 24.54 29.74

webo- kin=kout 1.43 1.21 1.32

metrics kin 21.04 10.74 45.01

kout 14.71 8.85 34.19

The ratio kin(C)=kout(C), kin(C), and kout(C) of fuzzy communities found by the
three algorithms with regard to the bibliographic coupling graph of papers.
doi:10.1371/journal.pone.0033255.t003

Table 4. Values of kin and kout of HLC communities
calculated in the bipartite graph of papers and cited sources.

C variable fuzzy m(C) crisp m(C)

h-index kin=kout 4.94 4.19

kin 1064.63 1354

kout 215.37 323

biblio- kin=kout 13.03 12.87

metrics kin 4472.67 4942

kout 343.33 384

webo- kin=kout 3.46 3.01

metrics kin 338.29 440

kout 97.71 146

The ratio kin(C)=kout(C), kin(C), and kout(C) of fuzzy communities found by
HLC algorithm calculated with fuzzy and crisp membership grades, respectively,
with regard to the bipartite graph.
doi:10.1371/journal.pone.0033255.t004
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cliques, an approach already proposed by Baumes et al. (2005)

[23].

A last remark concerns the hierarchical order of networks. Since

until now we have only tested whether the methods considered

could find communities which correspond to three topics defined

before (at different levels of an assumed hierarchy) we did not yet

evaluate the whole hierarchies obtained which is a nontrivial issue

[37,38] especially in the case of overlapping communities [16]

(p. 6). As for communities, we think of a hierarchy as a structure

that can be materialised with more or less certainty.

Supporting Information

Supporting Information S1 Basic definitions of fuzzy-set

theory and details of algorithms.

(PDF)
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27. Havemann F, Heinz M, Struck A, Gläser J (2010) Identification of overlapping

communities by locally calculating community-changing resolution levels. Poster

at ASONAM conference, Odense, Denmark, August 2010, arXiv preprint

1008.1004.

28. Lee C, Reid F, McDaid A, Hurley N (2010) Detecting highly overlapping

community structure by greedy clique expansion. In: Proceedings of the 4th

SNA-KDD Workshop. ArXiv preprint arxiv: 1002.1827.

29. Evans T, Lambiotte R (2009) Line graphs, link partitions, and overlapping

communities. Physical Review E 80: 16105.

30. Ball B, Karrer B, Newman M (2011) Efficient and principled method for

detecting communities in networks. Physical Review E 84: 036103.

31. Kim Y, Jeong H (2011) Map equation for link communities. Phys Rev E 84:

026110.

32. Rosvall M, Bergstrom C (2008) Maps of random walks on complex networks

reveal community structure. Proceedings of the National Academy of Sciences

105: 1118.

33. Ghosh S, Kane P, Ganguly N (2011) Identifying overlapping communities in

folksonomies or tripartite hypergraphs. In: Proceedings of the 20th international

conference companion on World Wide Web ACM. pp 39–40.

34. Gregory S (2010) Finding overlapping communities in networks by label

propagation. New Journal of Physics 12: 103018.

35. Janssens F, Zhang L, Moor B, Glänzel W (2009) Hybrid clustering for validation

and improvement of subject-classification schemes. Information Processing &

Management 45: 683–702.

36. Blondel V, Guillaume J, Lambiotte R, Lefebvre E (2008) Fast unfolding of

communities in large networks. Journal of Statistical Mechanics: Theory and

Experiment 2008: P10008.
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